尽管市场上也把建站、网店开发、小程序开发等免代码服务也称为零代码开发,但因为这些平台面向的是特定的目的,服务一个专有的范式,所以一般不将他们划入零代码平台的范畴之内。真正的零代码开发平台面向的是广泛和多样的需求,在设计aPaaS产品的时候,并不确定一个特定的用户会用它来搭建什么应用。
当然,虽说面向的需求是广泛的,也不代表aPaaS是万能的。零代码开发几乎都是面向企业应用世界,而很难扩展到消费者应用领域,比如游戏、社交、工具软件等必然长期属于原生开发的世界。
所以,零代码应用开发平台需要一个比较准确的定义。它是指围绕企业数据和业务管理需求,通过可视化方式设计数据结构,用户交互形式、设置访问权限和定义工作流程的平台。你会发现,即使是原生开发企业软件,大体也是按照以上这几个步骤来进行的。
我用一个相对完整的列表,将零代码开发平台的能力元素和特性描述如下:
1)可视化构筑业务对象数据表(Entity),并支持建立关联。甚至需要支持跨应用的数据表关联。(这是aPaaS未来可能胜出其他方案的关键优势)。
2)为不同的数据场景配置不同类型的视图(View),能够定义数据行和列的过滤,能够设置列表、看板、日历等不同界面形式。
明道云构筑的销售应用数据视图
3)能够定义不同用户角色(Role),并赋予角色不同的数据访问和改写权限(PermissionSet)。权限定义越精细越好。
明道云构筑用户角色和权限组合的界面
4)能够建立针对数据的汇总表和统计图表(Report)
5)能够建立自定义的输入表单(Form),分发给不同角色使用。
6)能够建立自定义的打印报表(FormReport),用于输出各类形式表格,通过Email,短信发送或者打印。
7)能够管理企业用户、部门、组织结构,并将其用于应用逻辑关系,比如应用的分发,角色的赋予和工作流中的流向信息。
8)能够可视化配置工作流(Workflow),支持特定条件下的数据新增,改写,删除等 *** 作,并能够融入数据填写,审批等人工流程节点。工作流的运行能够监控和保存日志。
明道云构筑审批工作流的界面
9)应用能够封装后分发()给不同的用户。
10)面向企业内部个人用户的工作台,仪表台等特性,实现个性化使用。
不同的aPaaS产品会有不同的特色和侧重点。所以以上特性并不一定存在于每一个aPaaS产品中。但是,特性越完整的,就越接近一个典型意义上的零代码企业应用开发平台。在以上实现中,有纯粹的零代码模式,也有个别需要用低代码方式来降低产品复杂度,但同时也会让非技术人员难以上手。
所以,aPaaS是SaaS应用和开发工具的混合,说它是SaaS,是因为开发者和终端用户使用的是同一个产品,只是通过权限和分发关系让界面千人千面。说它是开发工具,是因为它用模型模拟的应用搭建思路和原生数据库应用开发是类似的。
软件的应用特点和二次开发能力共存也不是一个新鲜事物。用Excel软件构筑一个个人所得税计算器,让用户可以输入自己的工资,即可得到应缴税额,对于使用者来说是应用,对编制这个Excel文件的人来说是开发工具,但他们用的都是Excel。
为什么企业软件领域可以实现零代码开发?
为什么游戏和社交软件做不到零代码开发,而企业软件市场却出现了零代码工具?是因为企业软件的开发比较简单吗?
当然不是。能够模式化完成一个工作的原因在于这项工作具备可重复性,就像我们会用3D打印制作一两件零件,但如果要生产成千上万个同样的零件,我们宁可花费成本先去制作模具。企业软件可以模式化开发的原因就在于大多数企业管理软件都由非常类似的需求和实现方式来构成,如果不积极利用这些相似性和模型化方法就需要不断重复发明类似的轮子。
当然也并非所有的企业应用都有相似性。在特定行业和职能中总有一些需要专门化设计和开发的应用。但在企业的运营全流程中,围绕客户,供应商,销售订单,产品,供应商,采购订单,制造流程,服务流程等商业对象,企业软件要解决的问题具有很强的相似性。这些相似性,或者使用范式可以被概括为以下环节:
1)围绕上述商业对象(BusinessObjects)的数据搜集和存储,并对数据的有效性进行验证。例如:建立一个采购订单,向特定供应商采购三项商品。
2)数据的查询和呈现。例如:运营部门查询处A仓库在今天应该到货的采购订单。财务部门查询货物已经收讫,并且应该在本周付款的采购订单。
3)数据的计算。例如:当采购订单的货物到达特定仓库后,更新相关商品的库存信息。
4)流程的控制。例如:当起草采购订单并准备发出时,根据采购的类别和金额发起不同的审核流程,在审核通过或者拒绝后执行不同的流程内容。
5)信息通知。例如:在采购订单批准后,自动生成采购单并发送给供应商,并通知仓库准备收货。
6)数据的统计和分析。例如:汇总过去一年的采购订单中按照BOM清单的产品金额分布,或者按照供应商的分布。
企业软件的设计和开发人员对以上这些使用范式都非常熟悉,它们经常出现在各种企业软件的开发需求中。实际上,除了以上抽象出的范式,企业软件的其他独特功能点并不太多了,甚至很多属于所有企业级软件共有的模块,比如管理用户和用户组,权限角色等。正是因为这个原因,企业软件的开发存在高度模型化的可能,从而在大部分场景下,摆脱对原生代码开发的依赖。
在云时代之前,除了Aess以外,苹果公司也有FileMaker,Intuit公司也曾经开发过Quickbase(这个名字来源于Intuit公司财务软件产品Quicken),Quickbase后来被剥离,一直到今天都在提供服务。即使在原生开发领域内,企业软件市场也出现了各种现成的开发框架,它们和今天的零代码平台一样,都是为了通过模型化来提高交付效率和质量的办法。
为每个企业的软件需求,都从第一行代码开始写起,单独依靠某种高级语言和集成开发环境建立开发项目,这种做法已经越来越没有必要。正如Gartner的预测,大部分的企业应用将来都会依赖零代码平台,以至于不远的将来,零代码平台并不会刻意保留这个前缀,因为这将成为天经地义的事情,这就像今天为了满足一个通用需求,大多数企业不会去定制开发,甚至零代码平台都不会用,而是直接使用一个标准的SaaS产品。
为什么aPaaS具有难以替代的优势?
用户开始选择aPaaS产品,不仅仅是因为他们可以这样做,更重要的是因为不得不这样做。因为aPaaS与定制开发,以及标准SaaS产品相比有几个难以替代的优势。
1)满足企业的多样化需求
企业软件需求的多样化是定制开发模式的起源。虽然标准SaaS产品能够满足企业应用需求中的共性部分,但是因为行业、规模和产品内在特性的差异,每个企业的管理方式和流程都有自己的特点,而且它还会根据企业的规模阶段不断演变。这种差异在不同职能中程度不一,一般来说,围绕产品设计、制造和服务履行的核心业务流差异度更高,而人事,财务等价值创造的支持环节差异度比较小。
在这种背景下,用户始终在寻求一种既能保持足够的灵活性,又能够控制开发的成本和复杂度的方法。aPaaS基本就是直接针对这个问题而诞生的。
2)从定制开发中需求沟通的痛苦中解脱
企业软件实现过程中的第一痛点还不是贵,而是需求沟通的复杂。有业务需求的人不是开发软件的人,能够开发软件的人对业务痛点并没有切身的体会和经验。于是行业非常依赖专业的企业软件需求分析和实现方法设计能力,但这个能力是非常稀缺的资源。这也难怪企业软件开发需求的提出主体总是五花八门的,他们之间也需要进行复杂的沟通和信息汇总。
更要命的是,很多时候需求在实施之前都无法100%确定,企业自己无法提出一个完整的解决方案。这时候,要么需要求助于咨询机构这样的外脑,要么就只能走一步看一步。这两个方案听起来都不令人舒适。前者绝非普通中小企业所能够承受,后者可能会影响系统的开发和实施质量。
aPaaS的出现倒是让走一步看一步的方案变得更加现实。企业可以通过零代码平台渐进地开始实施。如果整个系统过于复杂,可以先从一个具体的环节开始,局部数字化(比如先把订单管起来)。反正用aPaaS搭建的速度足够快,用户甚至可以利用零代码工具来生成企业应用原型,在实际使用中进行验证,确认了终端用户可以掌握,原先识别的问题可以被有效解决之后,再继续推进更完整的实施。
可以这么说,零代码工具可以让开发者和使用者之间的距离充分缩短。在极端情况下,使用者甚至可以自己就是搭建开发者自己。他们可能在一两个小时的搭建后就能够确认这个方案是不是能够有效地解决问题。
3)在企业内部打通数据中台的需求
在企业IT中,还有一个致命痛点存在,那就是不同业务系统之间的数据相互隔离,不能综合使用,使得企业难以进行跨职能的数据相关性和因果分析,也难以实现跨职能的数据自动化。比如要分析一个价格调整措施对财务报表的影响,这个工作在任何一个孤立的信息系统中是无法完成的,而如果要做到,就至少需要从采购,销售,营销和财务系统中获得数据。同样的道理,企业也很难在遇到财务目标无法达成的情况下,自动做出最优的价格决策。这些都是影响企业运营水平至关重要的问题。近年来,Gartner提出的PacedLayer架构,以及阿里给电商企业提供的中台方案就是针对这种需求的反馈。
大企业当然可以投入专门的资金来打造数据中台性质的系统,但小企业支付不起,并不代表他们不想获得这样的能力。aPaaS平台提供了这个可能性。
首先,因为aPaaS平台管理数据的模型一致,所以它一般能够提供一个标准化程度非常高的编程接口,从外部系统汇合数据变得相对容易很多,这就像路由器一样,不管你有多少联网设备,它们都可以用统一的协议连接在一起。有了集中的数据,各种应用需求都变得容易兑现。哪怕个别系统依然需要通过抽取数据服务后另行原生开发,也比不断重复做数据整合工作要高效很多倍。
甚至,如果用aPaaS平台直接管理业务数据对象,这个数据整合工作都可以免除。用户可以直接在各个职能相关的数据对象中建立关联,建立汇总查询,批量抽取数据到BI平台,建立不同数据之间的自动化。
有关企业数字中台的介绍,建议可以读一下这篇采访文章。
4)突出的成本和效率优势
零代码开发平台和原生代码开发相比到底能够提高多少效率目前还没有精确的计量,但这个效率差至少是10倍以上。传统开发模式需要10天的,aPaaS一天之内就能够搞定。
更重要的效率差别不仅仅是时间,还包括零代码平台可以免除专业技术人员的参与。虽然它要求搭建者熟悉业务,完成基本的逻辑梳理,但毕竟这和动辄需要和好几位技术人员一起开会沟通需求要高效得多。即便在复杂的应用系统上,也至多只需要2-3人分工就能够完成整个项目的实现。因为简化协作的原因带来的成本节省甚至都不值十倍了。因为所有人都知道找到靠谱的定制软件开发团队几乎就是一件撞大运的事情。
同时,定制开发通常很难提供高品质的软件。软件运行的可靠性,缺陷消除的程度都很难和标准化产品相比,毕竟定制软件只有一个用户。而一个aPaaS平台不仅要同时服务很多终端用户,还要服务五花八门的应用搭建者,它能够做到一次对,次次对;一次缺陷消除,所有用户收益的效果。
5)开箱即用和自己动手的两全
和成型的SaaS应用相比,aPaaS看似有一个缺点,就是依然需要“搭建”。这有点像整体家具系统,摆在样品间很好看,但是实际买回家还需要施工人员来拼装才能达到预期的效果。
实际上,这个问题并不是无解,甚至很好解。aPaaS一开始自然不可能获得各个行业的最佳实践,让每个企业都能够看到“样板间”效果。但是,随着时间的推移,用户企业和集成商的参与,样板间会越来越多,甚至比SaaS产品提供的用例方案更加强大,因为后者提供的是一个固定家具的摆设效果,而前者能够根据不同的房型,提供不同的家具组合方案。
而且,在足够明确的细分市场下(比如金属加工制造流程管理这样的颗粒度),可以在aPaaS平台上开发出完全开箱即用的应用,直接分发给不同企业使用。有了这个能力,aPaaS不仅能够服务好终端用户,还能够催生集成商工作模式的变革,他们不仅可以通过出售IT服务挣钱,还能够在服务中加入解决方案的价值,消除定制开发成本,大幅提高项目服务毛利。
有了开箱即用的能力后,就能够大大加速企业采纳的意愿。而且,才采纳以后,“自己动手”的能力依然存在。就像先进的整体家居系统不仅可以组合,而且可以重新组合。企业软件的适用模式永远和企业阶段有关,比如小型制造业并不见得需要质量管理单元,但当年产值突破一亿元左右后,不仅面临ISO认证的刚性需求,也内在地需要引入全面质量管理。这样的企业可以在软件实施后依照实际需要继续调整、改进和增加软件模块。这个过程同样是低成本和高效率的。
6)平台特征提供的计算能力保证
在数据库应用中,有一个潜在的计算性能问题,尤其是在大规模数据表中进行复杂查询和联动计算时。如今,很多行业的企业数据规模都从数千数万条记录增长到百万,千万,甚至电商厂商轻而易举可以达到亿级数据。在制造和物流行业,物联网技术也必然带动更多的联网对象,产生的数据不仅规模巨大,而且计算形式也需要有针对性地加强。
对于定制实施系统来说,要分别通过分布式数据库,流式计算等先进技术来克服性能问题是一件极其昂贵的事情。aPaaS平台虽然为用户提供的是一个应用级的产品,但因为它范式统一,就有机会将这些基础计算隐藏起来,让用户不必关心这些后台事务就能够获得高性能的计算服务。通过aPaaS平台管理的数据表无论规模有多大,读写有多么频繁,实时查询的要求有多高,总有一个计算框架可以胜任。这种平台的扩展性让客户可以真正放心,aPaaS带来的不仅仅是开发效率的提升,还包括一个伸缩自如的基础设施服务。即便企业将来的业务规模成长百倍,也不会需要彻底重建IT系统。实际上,年收入数百亿美元的业务,背后驱动的IT平台极有可能就是Salesforce的force平台搭建的应用,而不需要是独立建立的应用系统。
正是因为以上这些优势,aPaaS在没有得到行业命名之前就已经开始逐步渗透到企业IT服务领域。在最近几年正在悄悄替代大量的定制实施软件项目,也让原先依靠标准SaaS产品的企业找到了新的选择。
aPaaS目前适合什么样的企业?
aPaaS虽然拥有巨大的优势,但也不代表它能够满足所有行业和企业的所有IT需求。下面列出了一些常见的排除项。aPaaS方案对这些性质的需求吸引力不强。
1)行业有明显的专有特征
有些行业本身的专有化程度很高,而且企业之间的差异性不大,这时候垂直的行业应用可能更加合理。
围绕这个特征最典型的例子就是餐饮业和酒店业。所有餐饮业的运营逻辑都是类似的,除了单店和连锁可能使用不同复杂度的方案以外,应用模块都大同小异。而且,这个行业解决问题的方法和范式是有明显的行业特征的,比如餐厅的排队等座系统,点单结账系统等。用零代码工具来构建如此专有的场景反而更加麻烦,而且无法有效提供有行业特色的视图。
2)行业有独立的代码审计要求
金融等行业的核心业务系统因为法规等要求不能使用零代码平台,因为它无法满足代码审计的要求。aPaaS平台不一定能够提供源代码给用户企业,而且即使提供,也无法佐证应用系统处理数据的准确性。这些行业因为监管要求高,本身资金也宽裕,所以不会应用aPaaS方案在核心业务环节。
3)面向顾客的前台系统
这个当然就是指的电商网店平台了。虽然电商零售的基本数据管理和aPaaS的能力并无太大的距离,但是面向消费者的前台系统一般要求更高的灵活性和营销设施的配套,用零代码平台创建不如直接使用专门的电商系统,比如有赞、微盟等开店方案。它们提供的不仅仅是店面功能,还包括围绕顾客的营销服务和支付平台,这些是aPaaS所不擅长的领域。
除此之外的大部分企业IT需求,零代码平台都有足够的优势来胜任。而且,随着软件和服务的界限越来越模糊,很难说未来的aPaaS不能扩展它的领地。企业软件的本质就是生产力工具,aPaaS的核心精神就是围绕企业的数字化运营提供高生产力选项。
在用户渗透的过程中,当前阶段的零代码平台更多满足的还不是普通企业的需求,而是那些有一定的自建IT能力的企业。他们一般拥有若干名信息化专员,能够理解自己企业的核心业务流程和问题,能够和业务部门展开有效的沟通。除了终端企业用户外,行业咨询群体和ISV群体也开始更多关注零代码工具,因为行业咨询者永远都希望拥有属于自己的落地工具集,而他们很难投入做出自己高质量的原生软件产品;而ISV群体则常年面临项目实施成本高,客户需求差异度大的痛点,希望通过某种平台来降低开发服务成本,沉淀自己的方案能力,从而让项目实施具备更多的可复制特点。行业咨询、管理咨询和ISV群体对零代码平台的掌握最终会让这个门类的解决方案走入更多的主流企业用户。
鸿蒙(Harmony OS)是华为自2012年开发的一款可兼容Android 应用程序的跨平台 *** 作系统 截至2019年6月14日, 华为高管证实了新系统的存在以及华为在全球申请“Hongmeng”商标一事, 并且说明主要是用于物联网, 未必会发展为手机系统 2019 年 8 月 9日华为开发者大会上,华为消费者业务首席执行官余承东正式宣布发布自有 *** 作系统鸿蒙,内核为Linux内核、鸿蒙微内核和LiteOS 未来将摆脱Linux内核和LiteOS, 只有鸿蒙微内核从此,Harmony OS(鸿蒙 *** 作系统,简称鸿蒙)正式进入公众视野 与支持者相对的各种黑化声音同样不绝于耳,相对于这些无脑黑,节奏黑, 难道我们不能好好的找找资料,真正了解鸿蒙是个啥 后面将从 Linux 内核, 鸿蒙微内核, 兼容 Android, 全场景交互体验等方向来一次 HarmonyOS 的学习之旅
PS: 这几篇所有整理的内容都基于网络上的公开资料(维基百科等),为了基本上所有非技术人员也都能无障碍看懂
要想了解 *** 作系统,必然先了解一下 *** 作系统的发展 历史 ,不过是不查不知道,一查吓一跳,这世上的 *** 作系统是真的好多啊,因此肯定是没必要一一道来的, 一些 历史 脉络部分,我这里大致的梳理一下一些关键的标志性系统,辅助我们来了解 HarmonyOS,从此不再人云亦云
目前大家接触比较多的常见 *** 作系统也就那几个, 大致分类有, 电脑端: Unix, Linux, MacOS,Windows, 手机端:Android, iOS
1969年在AT&T的贝尔实验室开发Unics, 1973年, 用C重新编写后正式命名为 Unix, 标志着通用 *** 作系统的到来, 一开始和学术界有合作(加州伯克利大学),从而快速在各大高校传开;
1977年,伯克利大学的Bill Joy 教授获得Unix的核心原始码后, 修改成适合自己机器的版本,并增加了编译工具和很多功能软件,最终命名为BSD;
1979年 AT&T 公司发行Unix70, 出于商业考量将Unix的版权收了回去 这也导致了BSD的后裔一直跟AT&T 相关公司产生了法律纠纷,直到1994年1月才了结
1994年6月,44BSD 以两种形式发布:可自由再发布的44BSD-Lite, 不包含AT&T源码; 另有 44BSD-Encumbered,跟以前的版本一样,遵照AT&T的许可证。几种基于44BSD的包(比如FreeBSD、OpenBSD和NetBSD)也得以继续维护。
这期间, 学术界自力更生, 在1986年一个叫 Andrew Tanenbaum(安德鲁·塔能鲍姆)教授就参照Unix的功能编写完成并发布一个Minix系统, 用于教学用途, 并于次年发布了相关书籍。
1991年,一个叫 Linus Torvalds 的学生对只能用于教学用途的 Minix 系统不满足,于是就基于Minix开始编写自己 *** 作系统, 并于9 月份开源, 也就是 Linux。
Linux 有多牛, 今天的Linux系统掌管着超级计算机和大部分服务器、主机,再加上 Android 的智能移动设备, 还有桌面系统,嵌入式设备,以及纯粹的上网本, Linux王国的领土几乎扩展到了整个网络系统,搜索,购物,聊天等全球数十亿人离不开的服务,都运行在Linux之上。
到此,所以鸿蒙的内核里有 Linux 内核的存在,有毛病吗
首先,前面有了解到 Linux 之所以成功, 在于其技术的更加先进,但是这种先进它并不是颠覆,他本身就是基于 Minix 的基础之上, 它在一开始的一段时间内是必须要有 minix 才能运行的起来的,
其次, 是有这么一个长达两年多的 Unix 的版权之争, 从而给 Linux 提供一个绝佳的成长时间, 毕竟就像Linus 自己说的那样,当时如果有可用的 386BSD,他也不会选择自己再去重新开发一个 Linux
再者, Linux 1991 年开发并开源出来, 到 1993 年大约有100余名程序员参与了Linux内核代码编写/修改工作,其中核心组由5人组成,此时Linux 099的代码大约有十万行,用户大约有10万左右。到鸿蒙正式公开的2019年, Linux 内核已有大约2500万行代码。
对比之下, 挺有意思的是, 余承东也说过 HarmonyOS 一开始并没有打算放到手机上, 相较于 Unix 闭源后逼出来的这个 Linux, HarmonyOS 却是美国的打压和制裁逼出来的, 而鸿蒙的今后的成长, 我们是可以共同见证得到并也可以参与得了的
思考二: Linux 这么牛,为什么在电脑时代的桌面 *** 作系统上,没有竞争过 Windows 和 MacOS 呢 但是到了手机时代, Linux 内核的 Android 却可以和 iOS 平分天下 原因同样也很多, 其中也有两个公认的关键点,
另一个最重要的关键点则是有一家强有力的公司所支撑的系统开发和生态建设, 桌面时代 Windows 有微软,MacOS 有苹果, Linux 呢是一个松散的开源社区, 但是到了手机时代,iOS 有苹果, Android 有谷歌;
这篇先留点坑,鸿蒙的微内核和智能生态先不表, 我们依然从 Linux 这条线, 再来看一下 Android
大家一般都知道的, Android 是一个基于 Linux 的、由 Google 主导的开源系统。那么为什么谷歌还能掐华为的脖子,而华为却还是能兼容 Android 呢
其实严格意义上来说,Android=AOSP+GMS, 谷歌的手机 Pixel 出厂自带的系统即为Android,而一般来说,谷歌在自己(主导)开发的新一代Android系统成型时,都会放出其中的aosp代码。也就是Android系统等于开源的aosp,加上额外的闭源部分(其中包括GMS)的组合。AOSP 全名为Android Open-Source Project, 华为的开放源代码 OpenHarmony 是一种概念的 GMS 全名为 Google Mobile Service(谷歌手机服务),而这也就是谷歌限制华为的关键之处,GMS 是谷歌的应用和服务全家桶,包括电话,邮件,应用商店等一系列应用和消息推送服务,海外的手机没有这些东西,就跟砖头没什么两样了
这个服务本身在国内是无法使用的, 国内的各种定制 ROM(如小米的 MIUI,华为的 EMUI 等)都是基于AOSP 加上自家的云服务的定制修改各大品牌的 *** 作系统如下:
苹果--iOS
谷歌--Android(AOSP+GMS)
三星--Android(AOSP+GMS)
小米--MIUI(基于AOSP)
OPPO--Color OS(基于AOSP)
VIVO--Funtouch OS(基于AOSP)
一加--H2 OS(基于AOSP)
锤子--Smartisan OS(基于AOSP)
魅族--Flyme(基于AOSP)
联想--ZUI(基于AOSP)
华为--国内: EMUI(基于AOSP),国外 Android(AOSP+GMS), HarmonyOS2
其一,看到这里,那些一直老是质疑鸿蒙就是安卓(AOSP)套壳的质疑是怎么回事,估计大家也都清楚了其实啊,大家都知道,技术发展的现在,开发一款系统并不能难倒这些 科技 大厂,生态的支撑才是决定一个体统生死的关键,鸿蒙兼容安卓,有错吗鸿蒙兼容安卓本来就是一个正确的决策嘛 当然,这里是在做科普,而非为了争辩什么 因为其实有些东西它就在那里,有公开的资料
其二,看到这里,其实也能看到国内的手机厂商没有第一时间去响应鸿蒙一个原因了,一个明显的问题就是支持鸿蒙是有两套方案的:一是组织团队基于Open Harmony开发呢?还是说直接放弃已有的生态直接用HarmonyOS2?如果是你,你会第一时间选择这其中的一项吗?最近魅族宣布接入鸿蒙的,不是魅族手机,而是其Lipro品牌下的智能家居生态产品。
关于生态还是放到下次在统一聊,还是回到主线,我们再来梳理一下安卓的大致 历史 。
2005年 7 月 11 日,Google 收购了 Android 科技 公司,Android的关键人物包括安迪·鲁宾、利奇·米纳尔和克里斯·怀特,以及所有Android 科技 公司的员工都一并加入Google,作为收购的一部分。
2007年11月5日,在Google的领导下,成立了开放手持设备联盟(Open Handset Alliance),那是包括Google在内的 科技 公司联盟,其他成员包括HTC、摩托罗拉、Samsung等设备制造商,无线运营商则包括Sprint及T-Mobile,芯片制造商高通及德州仪器,目标是为移动设备开发“首个真正开放和全面的移动设备平台”。随后,其他厂商加入,包括Broadcom、Intel、LG、Marvell等。联盟开放手持设备联盟的创建目的是为了创建一个更加开放自由的移动电话环境。而在开放手持设备联盟创建的同一日,联盟对外展示了他们的第一个产品:一部搭载了以Linux 26为核心基础的Android *** 作系统的智能手机。
2008年12月9日,新一批成员加入开放手持设备联盟,包括ARM、华为、索尼等公司
为了跟iPhone 3G能互相媲美,诺基亚和黑莓手机于2008年均宣布有关触摸屏的智能手机的信息,Android的焦点最终也转向触摸屏。第一款运行Android系统的商用智能手机是HTC Dream,亦名为T-Mobile G1,该智能手机于2008年9月23日发布
同时,一个负责持续发展Android *** 作系统的开源代码项目成立了AOSP(Android Open Source Project)。除了开放手持设备联盟之外,Android还拥有全球各地开发人员组成的开源社区来专门负责开发Android应用程序和第三方Android *** 作系统来延长和扩展Android的功能和性能。
之后便是大家熟悉的各种基于 AOSP 的安卓智能机出现在了大家的手上
至此,大家应该真正都明白 Android 和 AOSP 的关系了,也能理解 OpenHarmony 和 HarmonyOS2 的关系了吧
OpenHarmony 是不兼容安卓的,至于很多人一直还在质疑 HarmonyOS2 是安卓套壳这个事, 我是有点奇怪的, OpenHarmony的开源代码已经放出来了, 华为的官方解释也就是在那里他们都视而不见HMS Core(华为移动服务)是基于华为终端设备和安卓平台,对应用开发者开放并提供各种服务能力的移动服务框架。, 适用产品是手机和平板, 并且其升级不涉及系统版本,HMS Core (华为移动服务)同GMS(谷歌移动服务)一样,可以在安卓开源项目(安卓系统)上运行,支持安卓应用,但部分需要GMS支持的安卓应用,在HMS Core平台下可能无法运行。
作为结尾,想说明一下,到现在为止,所有的关于对鸿蒙的解读还只是按照安卓的框架和场景设定来思考的, 实际上,鸿蒙的定位是服务于物联网 关于鸿蒙微内核,全场景交互体验我们放到下一篇,这里还涉及到 iOS,以及谷歌的新系统面对如此庞大的市场,作为互联网时代的科技巨头之一,谷歌自然不会视而不见。实际上,从2011年开始,谷歌在物联网方面的布局就首次进入了人们的视野。从软件到硬件,谷歌在物联网领域做了什么?
软件:系统+通讯
2011年5月,在当年的GoogleI/O大会上,谷歌首次提出了Android@Home智能家居计划。通过Android@Home,用户在一部安卓手机或平板上就能控制家中的电灯、空调、音响播放器等一系列的智能家居产品。
在技术实现上,Android@Home采用了基于IEEE802154标准的ZigBee技术,其传输特点就是低功耗、低成本和低延迟。同时,谷歌还在安卓 *** 作系统的底层开放了针对家电控制的专用API接口,符合规范的家电通过ZigBee技术与手机建立好物理连接,安卓应用程序就能通过专用的API实现对这些家电的一系列智能化控制,除了远程开关 *** 作之外,一些智能电灯产品甚至能在用户玩游戏时配合剧情产生频闪效果。
到了2012年,谷歌又基于Android@Home发布了一款名为NexusQ的球状流媒体播放器,该产品被外界视为谷歌凭借Android@Home进入智能家居的标杆。但不幸的是因为高昂的定价和只能支持谷歌的内置服务,NexusQ并没有受到消费者的欢迎,在2013年年初就匆匆下架。至此,谷歌以自身产品进军智能家居的努力宣告失败,而在随后接近一年的时间中,Android@Home也逐渐淡出了人们的视野。
作为一家主打软件产品的公司,谷歌在打造物联网软件平台的努力自然不会随着Android@Home的失败而消失。
2014年10月,谷歌公布了ThePhysicalWeb项目源码,希望通过统一资源定位符(URL)的方式建立起一套智能硬件之间的互联互通标准。用户不需要下载专门的App,只需要像浏览网页时那样,点击某个设备对应的URL链接,就能实现对该智能硬件的 *** 作。但作为一个早期的实验性项目,谷歌并没有正式推出,只是在开发者群体进行了小范围的交流。
在2015年的GoogleI/O大会上,谷歌针对物联网应用正式发布了名为Brillo的物联网RTOS实时 *** 作系统,和基于json的物联网通讯语言Weave。
其中Brillo是一个极简化的Android *** 作系统,拿掉了所有复杂的上层界面,只留下 *** 作系统底层的核心,使得Brillo可以被方便地嵌入门铃、监控摄像头、烤箱等各种型号的智能硬件之中。
而Weave是基于json的智能硬件通信语言,谷歌意在创建智能硬件间通用的通信、指令收发方案,让智能设备之间通过Weave实现自主化的互动和沟通。例如在用户锁门的同时,不需要手动 *** 作,烤箱和空调就会探测到门锁的状态并主动关闭自己的电源。
I/O大会之后,谷歌又在7月份发布了一款开源的低功耗蓝牙通信平台Eddystone,目的是为了抗衡苹果的iBeacon,在物联网近场通讯技术上保留自己的话语权。
2016年年初,谷歌针对Brillo、Weave和Eddystone等技术召开了Ubiquity开发者峰会,向开发人员全面介绍了这些技术的实现细节,帮助他们在谷歌的物联网框架下进行更深度的开发。
至此,谷歌在物联网软件方面形成了从 *** 作系统到通讯协议的全面布局。
物联网工程需要学的课程:
物联网工程导论、嵌入式系统与单片机、无线传感器网络与RFID技术、物联网技术及应用、云计算与物联网、物联网安全、物联网体系结构及综合实训、信号与系统概论、现代传感器技术、数据结构、计算机组成原理、计算机网络、现代通信技术、 *** 作系统等课程以及多种选修课。
物联网专业是一门交叉学科,涉及计算机、通信技术、电子技术、测控技术等专业基础知识,以及管理学、软件开发等多方面知识。作为一个处于摸索阶段的新兴专业,各校都专门制定了物联网专业人才培养方案。
扩展资料:
典型应用:
智能家居
目前智能家居才刚刚兴起,物联网10时代的核心将会是“技术”,国内绝大部分传统厂商比较缺乏的是软硬结合的开发实力。
因此在这一阶段,氦氪想做的是先用一整套高效快速的解决方案帮助厂商们打好地基。而在智能家居市场的地基初步打好后,物联网20时代的核心会转移到“服务”上,比如:
电商、音乐、社交方面的互联网服务;
数据运营中心,提供数据存储、挖掘、智能算法等服务,协助市场运营、了解用户偏好等;
智慧控制系统,包括AI、语音识别、手势交互等;
安全系统,提供通讯、数据存储安全安全保障;
视频云,提供大数据量的图像、以及图像识别服务;
这时,这类“服务”将会成为氦氪关注的重点。苏立挺告诉我,目前他们已经基本完成了物联网10阶段想做的事情,正在向市场推这套智能硬件解决方案,同时他们也开始进行了物联网20阶段的一些服务开发。
在采访过程中,苏立挺多次表达了这样一个观点:物联网发展的最终核心是云端技术的比拼 。也正因为此,氦氪在自己的云端服务上加重了对可拓展性、兼容性、以及自由度的打磨。
参考资料来源:百度百科-物联网工程专业
2020年,Gartner更新并发布了针对企业级低代码开发平台的关键能力报告《企业低代码应用平台的关键功能》,与同期的上一份报告相比,该报告首次出现了“ API和集成”和“平台生态系统” 。
一、低代码开发是什么意思?低代码开发基于可视化和模型驱动的概念,结合了云原生和多终端体验技术,它可以在大多数业务场景中,帮助企业显著的提升效率,还能进一步降低企业开发成本,也就是我们所说的“降本增效”。为专业开发者提供了一种全新的高生产力开发范式。
另一方面,低代码能让不懂代码的人通过“拖拉拽”开发组件来完成应用程序的构建。从某种意义上说,低代码可以弥补日益扩大的专业技术人才缺口,同时也可以促进企业与技术之间深度协作的最终敏捷形式。
1、来自Wikipedia的低代码定义
从Wiki的定义中,我们可以提炼出几个关键信息:
低代码开发平台(LCDP)本身也是一种软件,它为开发者提供了一个创建应用软件的开发环境。对于程序员而言,低代码开发平台的性质与IDEA、VS等代码IDE(集成开发环境)几乎一样,都是服务于开发者的生产力工具。
与传统代码IDE不同的是,低代码开发平台提供的是更高维和易用的可视化IDE。大多数情况下,开发者并不需要使用传统的手写代码方式进行编程,而是可以通过图形化拖拽、参数配置等更高效的方式完成开发工作。
2、来自Forrester的低代码定义
相比Wiki的版本,Forrester定义更偏向于阐明低代码所带来的核心价值:
低代码开发平台能够实现业务应用的快速交付。也就是说,不只是像传统开发平台一样“能”开发应用而已,低代码开发平台的重点是开发应用更“快”。更重要的是,这个快的程度是颠覆性的:根据Forrester在2016年的调研,大部分公司反馈低代码平台帮助他们把开发效率提升了5-10倍。而且我们有理由相信,随着低代码技术、产品和行业的不断成熟,这个提升倍数还能继续上涨。
低代码开发平台能够降低业务应用的开发成本。一方面,低代码开发在软件全生命周期流程上的投入都要更低(代码编写更少、环境设置和部署成本也更简单);另一方面,低代码开发还显著降低了开发人员的使用门槛,非专业开发者经过简单的IT基础培训就能快速上岗,既能充分调动和利用企业现有的各方面人力资源,也能大幅降低对昂贵专业开发者资源的依赖。
二、低代码开发平台的特点?1、提效降本
对研发人员的提效:相比于传统开发模式,低代码开发搭建的抽象程度更高,通过牺牲部分定制性换来更高效的开发方式。
对企业客户的提效:研发一个低代码开发平台,专业性要求很高,而且用户群会很窄,因此需要针对不同用户的诉求开发定制方案,本质上是通过降低通用性换取更低的上手成本,或者针对某个领域降低上手成本,比如数据图表搭建、CRM客户管理、生产管理、OA协同办公系统搭建等。
2、质量保障
项目延期交付已成为行业常态,而瓶颈几乎总是开发人员(对机器能解决的问题都不是问题);优秀的开发人才永远是稀缺资源,还贼贵;软件质量缺陷始终无法收敛,线上故障频发资损不断。有了低代码开发平台,简单培训一下,不懂代码的业务人员也能立刻搭建系统,而且有问题可以随时找低代码厂商处理。
3、扩大应用开发劳动力
通过让大部分开发工作可以仅通过简单的拖拽与配置完成,低代码开发平台(包括零代码)显著降低了使用者门槛,让企业能够充分利用前面所提到的平民开发者资源。部分纯零代码需求场景下,低代码还能让业务人员实现自助式(self-service)应用交付,既解决了传统IT交付模式下的任务堆积(backlog)问题,避免稀缺的专业开发资源被大量简单、重复性的应用开发需求所侵占,也能让业务人员真正按自己的想法去实现应用,摆脱交由他人开发时不可避免的桎梏。
三、低代码开发的核心能力1、易用性-无代码应用开发
易用性,在不写代码的情况下能够完成的功能多寡。该指标标识低代码开发平台生产力的关键指标。
2、应用用户体验
使用低代码开发平台所构建的应用程序的用户体验。该指标能够决定最终用户对开发者的好评程度。一般的说,独立的软件开发团队为企业客户做项目交付时,对该能力的要求会显著高于企业客户自主开发;开放给企业的客户或供应商的项目,对该能力的要求会高于企业内部用户使用的项目。
3、数据建模和管理
数据建模和管理的便利性。该指标就是通常所讲的“模型驱动”,相比于表单驱动,模型驱动能够提供满足数据库设计范式的数据模型设计和管理能力。开发的应用复杂度越高,系统集成的要求越高,这个能力就越关键。
4、流程和业务逻辑
流程应用与业务逻辑开发能力和效率。这个能力有两层,第一层是指使用该低代码开发平台是否可以开发出复杂的工作流和业务处理逻辑;第二层是开发这些功能时的便利性和易用性程度有多高。一般的说,第一层决定了项目是否可以成功交付,而第二层则决定项目的开发成本。不论如何,使用者都应关注第一层。在此基础上,如果项目以工作流为主时,第二层也应该作为重要的评估指标。
5、平台生态
开发平台的生态系统。低代码开发平台的本质是开发工具,内置的开箱即用的功能无法覆盖更多应用场景。此时,就需要基于该平台的完整生态系统,来提供更深程度、更全面的开发赋能。很多开发平台都在建立自己的插件机制,这就是平台生态的一个典型体现。
6、接口和集成
编程接口与系统集成能力。为了避免“数据孤岛”现象,企业级应用通常需要与其他系统进行集成,协同增效。此时,内置的集成能力和编程接口就变得至关重要。除非确认可预期的未来中,项目不涉及系统集成和扩展开发,开发者都应该关注这个能力。
值得一提的是,在另一家权威行业机构,Forrester的《2019 Q1 Forrester Wave:面向应用程序开发和交付专业人员的低代码开发平台》报告中,编程接口被认定为企业级低代码开发平台的重要标志,不具备编程接口的“低代码”被划归为“无代码”,转移到那些只适用有限用例的平台报告中。
7、架构
系统是否支持更先进的架构、清晰的分层,以对接物联网IoT、RPA机器人、ML机器学习等新的技术?如果开发者希望自己开发的应用有更长的生命周期,深入了解低代码开发平台产品的架构就变得尤为重要。
8、服务质量
服务质量。与上一点类似,服务质量也是衡量运行于公有云模式下低代码开发平台的指标。这里的服务质量,除了通常所说的“无故障使用时间”外,还要考虑资源是否支持独占模式,避免某一个应用的高负荷,导致其他应用不可用或出现性能劣化。
9、用户模型与软件开发周期
用户模型与软件开发周期支持。软件开发的生命周期中,除了开发和交付,还需要包含设计、反馈、测试、运维等多个环节,如系统开发早期的用户模型建立和验证过程通常需要快速的Mockup和迭代,投入的开发力量甚至不少于正式开发。如果一套低代码开发工具具备全生命周期所需的各项功能,将会大大简化开发者的技术栈,进一步提高开发效率。开发者所开发的系统规模越大,这一能力就越重要。
10、治理
治理(开发管理)。企业级软件的项目规模通常比较大,而且业务更关键,这就对开发团队管理提出了更高的要求。现代软件开发中主推的敏捷开发是否能在低代码中落地,是衡量开发管理能力的重要指标。这通常包含了代码库权限管理,版本权限管理,发布权限管理等一系列功能,帮助开发团队负责人降低软件开发管理过程中带来的各种人为风险。开发团队规模越大,越推荐开发者关注这一指标。
11、安全与合规
低代码开发平台需要在部署方式、系统安全机制和权限管理和控制功能等层面发力,全方位赋能开发者构建安全的,符合企业规则的企业级应用。支持本地部署、全SSL数据传输、密码强度策略、跨域访问控制、高粒度的用户权限控制等都是该能力的具体体现。大型企业、特定行业企业(如军工、金融等)通常对该指标的关注程度会更高一些。
合理并且有效地运用低代码,不仅可以让我们工作高效地运行,还能最大程度保证团队目标的达成。我推荐使用织信,它内置100+标准应用模板,覆盖:数字化校园、OA协同办公、ERP进销存、CRM客户管理、人事绩效财务、企业服务、个人及组织等多个应用场景。点击一键安装,即可免费试用。并且拥有在线搭建功能,可根据企业需求实现自主配置。是帮助企业开启数字化转型的重要引擎。现在注册还可享终身免费使用权益。
影响物联网IoT实施的最主要因素之一是人才缺口:现有市场供应无法跟上拥有物联网技术的工程师的需求。根据Canonical的研究,大约68%的公司正在努力为他们的物联网项目雇佣开发人员。但技能短缺的另一面是,职业前景对于具有物联网技术的专业人员来说是非常光明的。在这里,我们重点关注物联网中最常用的编程语言,即Java,C,C ++,Python,JavaScript和Go,然后分析专门从事这些语言的专业人员可以获得多少收入。我们还会考虑资历和地点等因素。
作为一个技术强国,美国在IT 薪资标准方面常常成为世界其他国家的基准。以下是根据Payscale的数据对美国顶级物联网IoT编程语言以及相应的开发者薪资数据的简要统计。
美国最热门的物联网编程语言的平均工资统计
平均而言,Java和C开发人员可以获得比物联网中使用其他语言的开发人员更高的薪水,尽管高级Go编程人员的薪水潜力最高、尽管初级和中级Go开发人员与其他同行相比低调,但Skilled Go的开发人员却是业内薪酬最高的开发人员之一。
从Java开始,我们来看看物联网IoT中最流行的编程语言的平均薪水。
Java:物联网技术最流行的编程语言
Java有多个应用领域,从后端编程到Android的移动应用。根据 Eclipse基金会执行的2017年物联网开发者调查,Java首次提供了用于物联网开发的编程语言列表,专门用于网关和云。
使用Java进行物联网开发的一个主要好处是便携性。Java没有任何硬件限制,这意味着您可以在计算机上编写和调试Java代码,并将其部署到几乎任何运行Java虚拟机的设备上。出于这个原因,许多公司选择聘请Java开发人员进行物联网项目。
根据Payscale的数据,美国Java开发者的平均薪水约为88万美元。瑞士的Java开发者的平均收入较高,每年约为96,000美元。与此同时,英国和以色列的Java开发人员的平均薪水则明显较低,分别为4万5千美元和33万美元。
Java开发人员的平均工资
但是,Java开发人员的平均工资可能不具代表性,因为根据相关技术人员的经验和资历,个人薪酬差别很大。例如,从Java初级到高级Java开发人员的薪酬跳跃在美国是66万美元到97万美元,在英国是从41,000美元到61,000美元。
Java在美国和英国的平均初级,中级和高级Java开发人员工资
我们对美国Java开发者工资的研究表明,不同州的平均薪水可能远高于全国平均水平。例如,加利福尼亚州的开发人员对美国开发人员的平均薪水最高(133万美元)。这一事实在很大程度上是该州IT总体高技能需求的一个功能。
C:嵌入式设备的关键编程语言
C编程语言接下来成为物联网IoT堆栈最喜欢的语言。然而,根据Eclipse基金会的说法,它被认为是受限设备开发的领先技术。
该编程语言提供对低级硬件API的直接访问。由于其与机器语言的相似性,C非常快速且灵活,使其成为处理能力有限的物联网系统的完美选择。
与Java类似,C开发人员的薪酬在世界各地差异很大。在美国,C开发人员每年可赚取约10万美元,而在瑞士,C开发人员的平均年薪为92,000美元。在我们分析的国家中,C专家的最低工资在英国。据Payscale称,英国年平均C开发人员薪水仅略高于4万美元。
C开发人员的平均工资。来源:Payscale
C级初级和高级开发人员的薪酬差异也很大。高级C开发人员的收入几乎是美国和英国入门级员工的两倍。
C在美国和英国的初级,中级和高级C开发人员的平均工资
C ++:Linux的第一语言
与其前身C一样,C ++已广泛用于嵌入式系统开发。但是,C ++的主要优势在于处理能力,在任务更加复杂时使其成为C的有用替代方案。
C ++最适合编写硬件特定的代码。它可与Linux,第一大物联网技术 *** 作系统配合使用。但是,与Java相比,它具有有限的可移植性。
与C开发人员相比,C ++工程师的薪水更低。我们的研究发现,C ++开发人员在以色列和丹麦的预计收入约为82-86,000美元,而在美国,这个数字仅为71,000美元。
平均C ++开发人员工资统计。来源:Payscale
然而,尽管美国的C ++开发人员平均费用较低,但经验丰富的专家在职业生涯后期可以达到六位数。
美国和英国的初级,中级和高级C ++开发人员的平均工资。
Python:面向数据的物联网系统的解决方案
作为最受欢迎的网络编程语言之一,以及科学计算的前沿技术,Python在物联网开发中也获得了巨大的推动力。 对于数据密集型应用程序,Python是一个不错的选择,特别是在管理和组织复杂数据时。
此外,由于语言的清晰语法,用Python编写的源代码非常紧凑且非常易读。这对于计算能力和内存有限的小型设备来说效果特别好,尽管速度不如C / C ++快。
美国的平均Python开发人员薪水约在71k美元左右,而拥有类似技能的开发人员则分别在以色列和瑞士分别可以获得约68-67k的薪水。
Python开发人员的平均工资。来源:Payscale
与其他一样,初级和高级Python开发人员之间的薪酬差距很大。
美国和英国的平均初级,中级和高级Python开发人员薪水
仔细观察数据显示,尽管全国平均水平相对较低,但在美国,Python开发人员的薪水可能会非常高。由于开发商需求迫切,供应量有限,某些州的薪酬可能高达14万美元。传统上,加利福尼亚州是为技术专家提供最高工资的州之一。当地的Python开发人员平均赚取了大约135万美元。
JavaScript:事件驱动物联网应用的最佳解决方案
根据年度StackOverflow开发者调查显示,JavaScript是过去五年来最流行的编程语言之一,是现代Web开发中的核心技术。
在许多其他应用领域中,JavaScript是物联网编程语言中最常用的构建事件驱动系统。它可以管理连接设备的大型网络,并且在需要处理多个任务而无需等待其他任务完成时可以胜任。JavaScript对IoT的主要优势之一是非常节约资源。
随着IBM和三星等主要公司在他们的物联网项目中积极采用JavaScript(即Nodejs),对具有物联网(IoT)体验的JavaScript开发人员的需求仍然很高。这意味着能够全面的提高薪水。
瑞士的JavaScript开发者平均可以赚取约96k美元。令人惊讶的是,美国JavaScript专家的平均薪水要低得多,开发者可以得到69万美元。
全球JavaScript开发人员的平均工资。来源:Payscale
不同州之间的薪资数据差别很大:例如,研究发现,康涅狄格州,马萨诸塞州,加利福尼亚州和纽约州是JavaScript开发者收入最高的美国州,平均薪资介于10万美元至14万美元之间。
同样,根据经验,JavaScript开发人员的工资差别很大:美国的专业JavaScript开发人员平均可赚取10万美元,英国则可赚取6万美元左右。
美国和英国的平均初级,中级和高级JavaScript开发人员工资
Go:坚固的技术堆栈为复杂的物联网网络提供动力
Go是一款开源编程语言,由Google创建。尽管它不能像语言那样拥有同样广泛的用途,但我们之前专注于这一点,它是在您的物联网系统内建立通信层的强大技术。
Go语言关于物联网的主要优势是并发性和同时运行多个进程(数据输入和输出)的能力。这使得构建由多个传感器和设备组成的复杂IoT网络变得更加容易。
虽然它已被评为美国最高收入技术(根据最新的StackOverflow开发者调查),但美国的Go平均薪水相当平稳 - 约为73,000美元,而英国则为43,000美元。
根据最近的调查显示,由于全球Go开发者工资数据不足,我们将重点关注美国和英国这些Go开发者人数最多的国家的薪水。
在美国和英国的平均Go开发者工资。来源:Payscale
高技能的Go开发者在美国可以获得高达14万美元的收入 - 几乎是初级Go程序员的三倍,是英国高级Go开发者的两倍。
在美国和英国的平均初级,中级和高级Go开发人员工资
结论
正如我们所看到的,物联网中最热门编程语言的开发人员的工资差别很大,并且取决于许多关键方面。为了理解这些信息,重要的是要看到更大的空间,并能够识别现有的市场趋势。
以上由物联传媒提供,如有侵权联系删除
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)