9月16日,展锐和11家物联网模组和方案商签署5G合作协议。这显示出这家目前国内除了海思(Hisilicon)之外唯一拥有消费级(5G移动SoC)和工业级(物联网)芯片设计能力的芯片商,正在加快物联网应用生态的搭建速度。
从展锐对自身商业定位“数字世界的生态承载者”角度观察,不难发现,在5G时代,展锐更侧重底层数字通信技术的生态聚合对物联网的支撑能力。
整体上,展锐的商业定位由三大底座技术支撑:马卡鲁通信技术平台, AIactiver技术平台和先进半导体技术平台。
展锐正在两个方向——消费级5G SoC移动及基带以及工业级物联网芯片设计——与高通、联发科、海思和苹果等芯片商展开正面“竞合”。
展锐消费级5G SoC移动芯片设计水平和市场主流旗舰级顶尖竞品的差距,已从10年缩短至1年。在各类消费级终端出货量上,展锐的同比增幅因基数较低而显得璀璨夺目。展锐4G移动芯片也开始为荣耀和realme等主流智能手机商大规模采用。
除此之外,展锐在4G/5G技术的主场——物联网,斩获同样颇为耀眼。
根据市场研究公司Counterpoint近日发布的第二季度全球蜂窝物联网市场跟踪报告,展锐在物联网领域依然延续高速增长:2021年第二季度,展锐是全球前五大蜂窝物联网芯片厂商中唯一一家同比增速超过100%的玩家。
在NB-IoT、Cat1和5G等物联网全场景各个领域,展锐在高速推进,并于中国、欧洲、印度、中东和非洲和拉美等区域,蜂窝物联网芯片出货量均位列当地芯片供应商前三。
展锐高级副总裁、工业电子BU总经理黄宇宁说,“工业电子BU自2019年成立以来,顺应了工业与 社会 数字化转型中对连接和计算的刚需,整体业绩连年翻番。”
展锐CEO楚庆认为,5G技术专为“万物互联”而生。即使是智能手机,也是物联网的一部分,有别于工业物联网,智能手机终端属于C端消费级场景。
自2019年进入“5G”元年至今,物物连接的规模快速扩容。
据黄宇宁预计,2023-2024年,支持5G R17技术规范的RedCap(低容量:Reduced Capacity)特性设备将得以普及,这将进一步提供超高密度的连接容量,真正实现将“每一块石头都连上网”。
5G万物互联网络的价值和连接数量的关系是什么?
根据梅特卡夫定律(Metcalfe's law):网络的价值与联网数量的平方成正比。有别于一般的资源,分享使用的人越多,每个人得到的资源就越少。依靠连接构建的网络则恰恰相反,使用的人越多,网络的价值越大。
黄宇宁说,“可以想象,拥有30亿-50亿甚至 500亿个连接的网络价值能有多大?!”
超量的IoT连接,叠加“端边云”的智能计算,数字世界和物理世界的边界将被打破,数字化红利也将从消费领域扩展到 社会 的各个基础行业,包括5G在内的全场景通信技术,将完成从个人到工业体系再到整个 社会 的智能化升级。
当前,IoT蜂窝通信网络呈现出四代技术并存的局面。
2G/3G正在加速向4G/5G转网,4G阶段出现为物联网场景做“预热”的通信标准,如NB-IoT低功耗广域物联网和Cat1中速广域物联网等,这些标准的特性是“人联网”。
5G通信技术,是为物联网而生的首个通信制式,除了“人联网”,还实现了“物连物”。
在5G三大场景中,eMBB(Enhanced Mobile Broadband)最先实现商用,侧重追求极致大宽带移动通信体验;uRLLC(ultra-Reliable and Low Latency Communications)提供极低时延和高可靠性,是5G面向行业连接应用的关键手段;mMTC(massive Machine Type of Communication),即海量机器类通信,专为构建万物互联而生。
基于展锐在全场景通信技术领域长期的技术沉淀,展锐能为多样化的连接(尤其是工业级IoT)提供技术支撑:从十米到十万公里距离的连接,展锐有较为完整的商用连接技术和产品体系。
比如5G R15 eMBB场景,展锐研发了业内首款同时支持载波聚合、上下行解耦和超级上行等技术的5G调制解调器。
R15 eMBB实现了5G基本功能,保证5G“能用”:但是,虽然R15的网络传输速度在目前应用最广泛,但该版本只解决了传输数据的问题,做不到终端精度控制,这需要R16加以解决。
R16标准完善了uRLLC和mMTC特性,让5G从“能用”进化到“好用”,加速5G在工业、 汽车 、能源、医疗和公用事业等行业领域的规模应用,使5G成为推动经济 社会 数字化转型的重要抓手。
7月30日,展锐和中国联通完成全球首个基于3GPP R16标准的5G eMBB+uRLLC+IIoT(增强移动宽带+超高可靠超低时延通信+工业物联网)端到端的业务验证。
9月16日,展锐与联通数科联合官宣基于唐古拉V516(5G)平台,在5G物联网领域开展战略合作,共同面向5G工业互联网重大机遇,推进5G R16技术发展和商用加速向纵深落地。
展锐5G R16 Ready的关键特性,主要功能是实现了5G更好地支持垂直行业应用,为工业装备、钢铁制造、交通港口、矿产能源、医疗 健康 等领域带来数字智能技术变革。
除了5G,在中低速物联网技术应用场景,展锐也有所布局,如在公网对讲机领域,展锐份额接近80%,云喇叭市占率为70%,OTT(Over The Top)领域Wifi份额有60%,市占率第一,在快递车充电换电领域,展锐产品份额占比近60%。
与业内通行做法一样,展锐在构筑4G/5G物联网技术和应用体系时,也采取了与上下游合作伙伴联合的方式。
这种联合,就技术层面看,分为两层:一是在最新5G通信技术版本方面于中国联通单独合作;二则是基于成熟的5G通信技术版本,与更广泛的生态合作伙伴建立战略关系。
比如9月16日,除了官宣和中国联通在新一代5G通信版本R16方面的深度合作,展锐还与包括鼎桥通信、广和通、海信通信、通则康威、讯锐通信、移远通信和有方 科技 等11家物联网模组和方案解决商,基于唐古拉V510(5G)平台做了战略联合发布。
展锐唐古拉V510是已成熟商用的5G基带芯片平台,支持5G网络切片等多项5G前沿技术,可广泛适配全球移动通信运营商的网络,能满足5G发展阶段中的不同的通信和组网需求。
为物联网提供通信技术、算力和芯片,探究展锐的商业目标,不难发现,展锐希望围绕芯片应用平台构筑产业生态,通过提供算力和通信技术能力,改造产业链,进而拓展全新业务空间。
华尔街见闻了解到,展锐的产业目标是成为“全场景物联芯片解决方案技术服务商”,其商业定位确立为“数字世界的生态承载者”。
此项定位由三大底座技术支撑:马卡鲁通信技术平台, AIactiver技术平台和先进半导体技术平台。
据展锐高级副总裁夏晓菲解释,马卡鲁技术平台将调制解调器(Modem)、射频(RF)收发器及射频天线模块集成为统一的5G解决方案,在支持3GPP协议演进的同时,能针对5G典型高价值特性,开发网络驱动单元,以提供一栈式解决方案包。
马卡鲁技术平台的能力,主要集中在为港口、钢铁、矿区和制造等垂直行业客户,包括智能机、智能穿戴和AR/VR等消费应用,提供低时延、高精度和安全可靠的连接体验。
5G行业应用将分阶段实现商业化落地,这已是业界共识。夏晓菲说,“马卡鲁通信平台能在不同阶段支撑产业变革。”
华尔街见闻了解到,展锐马卡鲁通信技术平台的技术设计路径分三个阶段:2019年为5G元年,eMBB技术得以落地,5G FWA(Fixed Wireless Access:固定无线访问)/CPE(Customer Premise Equipment:信号转换器)和5G视频监控为典型的大带宽应用得到初步应用。
其次,5G To B应用逐步实现规模复制,同时更深入垂直行业。机器视觉、工业网关、AGV(Automated Guided Vehicle:自动导引车)小车及无人机等典型行业应用具备适应性高、通用性强等特点,有机会率先实现千万级规模复制。
以5G R16新版通信技术标准为代表,将有效满足智能电网/制造/交通/医疗等行业的差异化需求。此阶段具有更高性能、更广连接和更安全可靠的特性。
马卡鲁通信技术平台具备R16的技术能力,故而能推动5G技术真正进入生产核心环节,从而为工业40提供技术保障。
技术的演进永无止境。
虽然R16最先落地的三种能力——超低时延、超高可靠和更低能耗进一步夯实工业40的技术基础,R16的其他技术能力还没完全落地,但展锐已在参与推进R17版的技术标准制定。
华尔街见闻获悉,5G终端向末端节点渗透,需要更精简的终端解决方案。在3GPP R17讨论轻量版5G时,展锐认为合理的带宽范围是20MHz,这个主张已成功被标准采纳。
通过对工业I/O节点的带宽、时延、性能需求分析,展锐在天线数、MIMO(Multi Input Multi Output:无线扩容和增频技术)层数、BWP带宽等方面做了精确的精简,从而实现更高的灵活性。
同时,通过增强的非连续接收特性(eDRX:Discontinuous Reception),采用更长的休眠模式,让特定的物联网终端得到更高的续航能力。
通过这些关键技术,马卡鲁平台将彻底实现从网关到I/O节点的全场景覆盖,而这也是 AIactiver技术平台的能力,能实现5G技术对生产全流程的改造。
值得一提的是,今年2月展锐成为荣耀芯片套片供应商。
什么是套片?
单独的芯片无法在终端硬件体系中发挥作用,必须做成套片形式。这就涉及了展锐第三大技术底座——先进半导体技术平台。
这个技术平台的支柱是工艺制程和封装,展锐提供整体套片方案。
简单来说,套片包括SoC、射频和电源芯片(PMIC)等。根据芯片集成度、功耗和数模混合架构的不同需求做各类芯片组成,最终通过封装技术做成集成度更高、无线性能更优的解决方案。
华尔街见闻了解到,展锐正在持续投入SiP(System in Package:系统封装)技术。其成果是通过SiP技术,将LTE Cat1整个方案的尺寸,做到了一元硬币大小。当前的互联网只限于信息共享,网络则被认为是互联网发展的第三阶段。网络可以构造地区性的网络、企事业内部网络、局域网网络,甚至家庭网络和个人网络。网络的根本特征并不一定是它的规模,而是资源共享,消除资源孤岛。 网络技术具有很大的应用潜力,能同时调动数百万台计算机完成某一个计算任务,能汇集数千科学家之力共同完成同一项科学试验,还可以让分布在各地的人们在虚拟环境中实现面对面交流。 发展历程 网络研究起源于过去十年美国政府资助的高性能计算科研项目。这项研究的目标是将跨地域的多台高性能计算机、大型数据库、大型的科研设备、通信设备、可视化设备和各种传感器等整合成一个巨大的超级计算机系统,以支持科学计算和科学研究。 微软公司把开发力量集中在数据网络上,关注使用网络共享信息,而不是网络的计算能力,这反映了学术和研究领域内的分歧。事实上,很多用于学术领域的网络技术都能够成为商业应用。 Argonne Globus是美国阿贡(Argonne)国家实验室的网络技术研发项目,全美12所大学和研究机构参与了该项目。Globus对资源管理、安全、信息服务及数据管理等网络计算的关键理论进行研究,开发能在各种平台上运行的网络计算工具软件,帮助规划和组建大型的网络试验平台,开发适合大型网络系统运行的大型应用程序。 目前,Globus技术已在美国航天局网络、欧洲数据网络、美国国家技术网络等8个项目中得到应用。2005年8月,美国国际商用机器公司(IBM)宣布投入数十亿美元研发网络计算,与Globus合作开发开放的网络计算标准,并宣称网络的价值不仅仅限于科学计算,商业应用也有很好的前景。网络计算和Globus从开始幕后走到前台,受到前所未有的关注。 中国非常重视发展网络技术,由863计划“高性能计算机及其核心软件”重大专项支持建设的中国国家网络项目在高性能计算机、网络软件、网络环境和应用等方面取得了创新性成果。具有18万亿次聚合计算能力、支持网络研究和网络应用的网络试验床——中国国家网络,已于2005年12月21日正式开通运行。这意味着通过网络技术,中国已能有效整合全国范围内大型计算机的计算资源,形成一个强大的计算平台,帮助科研单位和科技工作者等实现计算资源共享、数据共享和协同合作。 关键技术 网络的关键技术有网络结点、宽带网络系统、资源管理和任务调度工具、应用层的可视化工具。网络结点是网络计算资源的提供者,包括高端服务器、集群系统、MPP系统大型存储设备、数据库等。宽带网络系统是在网络计算环境中,提供高性能通信的必要手段。资源管理和任务调度工具用来解决资源的描述、组织和管理等关键问题。任务调度工具根据当前系统的负载情况,对系统内的任务进行动态调度,提高系统的运行效率。网络计算主要是科学计算,它往往伴随着海量数据。如果把计算结果转换成直观的图形信息,就能帮助研究人员摆脱理解数据的困难。这需要开发能在网络计算中传输和读取,并提供友好用户界面的可视化工具。 研究现状 网络计算通常着眼于大型应用项目,按照Globus技术,大型应用项目应由许多组织协同完成,它们形成一个“虚拟组织”,各组织拥有的计算资源在虚拟组织里共享,协同完成项目。对于共享而言,有价值的不是设备本身而是实体的接口或界面。 从技术角度看,共享是资源或实体间的互 *** 作。Globus技术设定,网络环境下的互 *** 作意味着需要开发一套通用协议,用于描述消息的格式和消息交换的规则。在协议之上则需要开发一系列服务,这与建立在TCP/IP(传输控制协议/网际协议)上的万维网服务原理相同。在服务中先定义应用编程接口,基于这些接口再构建软件开发工具。 Globus网络计算协议建立在网际协议之上,以网际协议中的通信、路由、名字解析等功能为基础。Globus协议分为构造层、连接层、资源层、汇集层和应用层五层。每层都有各自的服务、应用编程接口和软件开发工具、上层协议调用下层协议的服务。网络内的全局应用都需通过协议提供的服务调用 *** 作系统。 构造层功能是向上提供网络中可供共享的资源,是物理或逻辑实体。常用的共享资源包括处理能力、存储系统、目录、网络资源、分布式文件系统、分布式计算机池、计算机集群等。连接层是网络中网络事务处理通信与授权控制的核心协议。构造层提交的各资源间的数据交换都在这一层控制下实现的。各资源间的授权验证、安全控制也在此实现。资源层的作用是对单个资源实施控制,与可用资源进行安全握手、对资源做初始化、监测资源运行状况、统计与付费有关的资源使用数据。 汇集层的作用是将资源层提交的受控资源汇集在一起,供虚拟组织的应用程序共享、调用。为了对来自应用的共享进行管理和控制,汇集层提供目录服务、资源分配、日程安排、资源代理、资源监测诊断、网络启动、负荷控制、账户管理等多种功能。应用层是网络上用户的应用程序,它先通过各层的应用编程接口调用相应的服务,再通过服务调用网络上的资源来完成任务。应用程序的开发涉及大量库函数。为便于网络应用程序的开发,需要构建支持网络计算的库函数。 目前,Globus体系结构已为一些大型网络所采用。研究人员已经在天气预报、高能物理实验、航空器研究等领域开发了一些基于Globus网络计算的应用程序。虽然这些应用仍属试验性质,但它证明了网络计算可以完成不少超级计算机难以胜任的大型应用任务。可以预见,网络技术将很快掀起下一波互联网浪潮。面对即将到来的第三代互联网应用,很多发达国家都投入了大量研究资金,希望能抓住机遇,掌握未来的命运。 中国也加强了网络方面的投入。中科院计算所为自己的网络起名为“织女星网络”(Vega Grid),目标是具有大规模数据处理、高性能计算、资源共享和提高资源利用率的能力。与国内外其他网络研究项目相比,织女星网络的最大特点是“服务网络”。中国许多行业,如能源、交通、气象、水利、农林、教育、环保等对高性能计算网络即信息网络的需求非常巨大。预计在最近两三年内,就能看到更多的网络技术应用实例。 应用领域 网络技术的应用领域很广,主要有以下几方面。 分布式超级计算 分布式超级计算将分布在不同地点的超级计算机用高速网络连接起来,并用网络中间件软件“粘合”起来,形成比单台超级计算机强大得多的计算平台。 分布式仪器系统 分布式仪器系统使用网络管理分布在各地的贵重仪器系统,提供远程访问仪器设备的手段,提高仪器的利用率,方便用户的使用。 数据密集型计算并行计算技术往往是由一些计算密集型应用推动的,特别是一些带有巨大挑战性质的应用,大大促进了对高性能并行体系结构、编程环境、大规模可视化等领域的研究。数据密集型计算的应用比计算密集型的应用多得多,它对应的数据网络更侧重于数据的存储、传输和处理,计算网络则更侧重于计算能力的提高。在这个领域独占鳌头的项目是欧洲核子中心开展的数据网络(DataGrid)项目,其目标是处理2005年建成的大型强子对撞机源源不断产生的PB/s量级实验数据。 远程沉浸 这是一种特殊的网络化虚拟现实环境。它是对现实或历史的逼真反映,对高性能计算结果或数据库可视化。“沉浸”是指人可以完全融入其中:各地的参与者通过网络聚集在同一个虚拟空间里,既可以随意漫游,又可以相互沟通,还可以与虚拟环境交互,使之发生改变。目前,已经开发出几十个远程沉浸应用,包括虚拟历史博物馆、协同学习环境等。远程沉浸可以广泛应用于交互式科学可视化、教育、训练、艺术、娱乐、工业设计、信息可视化等许多领域。 信息集成 网络最初是以集成异构计算平台的身份出现,接着进入分布式海量数据处理领域。信息网络通过统一的信息交换架构和大量的中间件,向用户提供“信息随手可得”式的服务。网络信息集成将更多应用在商业上,分布在世界各地的应用程序和各种信息通过网络能进行无缝融合和沟通,从而形成崭新的商业机会。 信息集成如信息网络、服务网络、知识网络等,是近几年网络流行起来的应用方向。2002年,Globus联盟和IBM在全球网络论坛上发布了开放性网络服务架构及其详细规范,把Globus标准与支持商用的万维网服务标准结合起来。2004年,Globus联盟、IBM和惠普(HP)等又联合发布了新的网络标准草案,把开放性网络服务架构详细规范I转换成6个用于扩展万维网服务的规范,网络服务已与万维网服务彻底融为一体,标志着网络商用化时代的来临。 网络技术的发展,标准是关键。就像TCP/IP协议是因特网的核心一样,构建网络计算也需要对核心——标准协议和服务进行定义。目前,一些标准化团体正在积极行动。迄今为止,网络计算虽还没有正式的标准,但在核心技术上,相关机构与企业已达成一致,由美国阿贡国家实验室与南加州大学信息科学学院合作开发的Globus 计算工具软件已成为网络计算实际的标准,已有12家著名计算机和软件厂商宣布将采用Globus 计算工具软件。作为一种开放架构和开放标准基础设施,Globus 计算工具软件提供了构建网络应用所需的很多基本服务,如安全、资源发现、资源管理、数据访问等。目前所有重大的网络项目都是基于Globus 计算工具软件提供的协议与服务的。 除了标准以外,安全和可管理性、人才的缺乏也是网络计算亟待解决的一个问题,否则它将无法成为企业的商业架构。在真正实现商业应用之前,还需要解决许多问题。即便如此,构建全球网络的前景仍是无法抗拒的。 主要功能 一般来说,计算机网络可以提供以下一些主要功能: 资源共享 网络的出现使资源共享变得很简单,交流的双方可以跨越时空的障碍,随时随地传递信息。 信息传输与集中处理 数据是通过网络传递到服务器中,由服务器集中处理后再回送到终端。 负载均衡与分布处理 负载均衡同样是网络的一大特长。举个典型的例子:一个大型ICP(Internet内容提供商)为了支持更多的用户访问他的网站,在全世界多个地方放置了相同内容的>
1990年,施乐公司推出的网络可乐贩售机——Networked Coke Machine,是物联网最早的实践。
1991年,美国麻省理工学院(MIT)的Kevin Ash-ton教授首次提出物联网的概念。
1995年,比尔·盖茨在《未来之路》中,提及“物互联”这一概念。
1999年,美国麻省理工学院(MIT)建立了“自动识别中心(Auto-ID)”,提出“万物皆可通过网络互联”,阐明了物联网的基本含义。
2003年,美国《技术评论》提出传感网技术将是未来改变人们生活的十大技术之首。
2004年,日本总务省(MIC)提出u-Japan计划,该战略力求实现人与人、物与物、人与物之间的连接,希望将日本建设成一个随时、随地、任何物体、任何人均可连接的泛在网络社会。
2005年,国际电信联盟(ITU)在突尼斯举行的信息社会世界峰会(WSIS)上提出“物联网IoT”的概念,并发布《ITU互联网报告2005:物联网》。
2006年,韩国确立了u-Korea计划,该计划旨在建立无所不在的社会(ubiquitous society),在民众的生活环境里建设智能型网络(如IPv6、BcN、USN)和各种新型应用(如DMB、Telematics、RFID),让民众可以随时随地享有科技智慧服务
2009年 欧盟委员会发表《物联网:欧洲行动计划》,系统提出发展物联网的规划和行动蓝图。 温家宝总理视察无锡,提出“感知中国”计划,拉开中国物联网发展的帷幕。 韩国放送通信委员会出台了《物联网基础设施构建基本规划》,将物联网确定为新增长动力,提出到2012年实现“通过构建世界最先进的物联网基础实施,打造未来广播通信融合领域超一流信息通信技术强国”的目标。 奥巴马就任美国总统后,与美国工商业领袖举行了一次“圆桌会议”,作为仅有的两名代表之一,IBM首席执行官彭明盛首次提出“智慧地球”这一概念,建议新政府投资新一代的智慧型基础设施。同年,美国将新能源和物联网列为振兴经济的两大重点。 IBM论坛上,IBM大中华区首席执行官钱大群公布了名为“智慧的地球”的最新策略。此概念一经提出,即得到美国各界的高度关注,甚至有分析认为IBM公司的这一构想极有可能上升至美国的国家战略,并在世界范围内引起轰动。 2010年,吴邦国参观无锡物联网产业研究院,表示要培育发展物联网等新兴产业,确保我国在新一轮国际经济竞争中立于不败之地。
2011年,工业和信息化部印发《物联网“十二五”发展规划》。该《规划》分现状及形势,指导思想、发展原则、发展目标,主要任务,重点工程,保障措施5部分。
大数据时代的来临
互联网特别是移动互联网的发展,加快了信息化向社会经济各方面、大众日常生活的渗透。有资料显示,1998年全球网民平均每月使用流量是1MB(兆字节),2000年是10MB,2003年是100MB,2008年是1GB(1GB等于1024MB),2014年将是10GB。全网流量累计达到1EB(即10亿GB或1000PB)的时间在2001年是一年,在2004年是一个月,在2007年是一周,而2013年仅需一天,即一天产生的信息量可刻满188亿张DVD光盘。我国网民数居世界之首,每天产生的数据量也位于世界前列。淘宝网站每天有超过数千万笔交易,单日数据产生量超过50TB(1TB等于1000GB),存储量40PB(1PB等于1000TB)。百度公司目前数据总量接近1000PB,存储网页数量接近1万亿页,每天大约要处理60亿次搜索请求,几十PB数据。一个8Mbps(兆比特每秒)的摄像头一小时能产生36GB数据,一个城市若安装几十万个交通和安防摄像头,每月产生的数据量将达几十PB。医院也是数据产生集中的地方。现在,一个病人的CT影像数据量达几十GB,而全国每年门诊人数以数十亿计,并且他们的信息需要长时间保存。总之,大数据存在于各行各业,一个大数据时代正在到来。
信息爆炸不自今日起,但近年来人们更加感受到大数据的来势迅猛。一方面,网民数量不断增加,另一方面,以物联网和家电为代表的联网设备数量增长更快。2007年全球有5亿个设备联网,人均01个;2013年全球将有500亿个设备联网,人均70个。随着宽带化的发展,人均网络接入带宽和流量也迅速提升。全球新产生数据年增40%,即信息总量每两年就可以翻番,这一趋势还将持续。目前,单一数据集容量超过几十TB甚至数PB已不罕见,其规模大到无法在容许的时间内用常规软件工具对其内容进行抓取、管理和处理。
数据规模越大,处理的难度也越大,但对其进行挖掘可能得到的价值更大,这就是大数据热的原因。首先,大数据反映舆情和民意。网民在网上产生的海量数据,记录着他们的思想、行为乃至情感,这是信息时代现实社会与网络空间深度融合的产物,蕴含着丰富的内涵和很多规律性信息。根据中国互联网络信息中心统计,2012年底我国网民数为564亿,手机网民为42亿,通过分析相关数据,可以了解大众需求、诉求和意见。其次,企业和政府的信息系统每天源源不断产生大量数据。根据赛门铁克公司的调研报告,全球企业的信息存储总量已达22ZB(1ZB等于1000EB),年增67%。医院、学校和银行等也都会收集和存储大量信息。政府可以部署传感器等感知单元,收集环境和社会管理所需的信息。2011年,英国《自然》杂志曾出版专刊指出,倘若能够更有效地组织和使用大数据,人类将得到更多的机会发挥科学技术对社会发展的巨大推动作用。
大数据应用的领域
大数据技术可运用到各行各业。宏观经济方面,IBM日本公司建立经济指标预测系统,从互联网新闻中搜索影响制造业的480项经济数据,计算采购经理人指数的预测值。印第安纳大学利用谷歌公司提供的心情分析工具,从近千万条网民留言中归纳出六种心情,进而对道琼斯工业指数的变化进行预测,准确率达到87%。制造业方面,华尔街对冲基金依据购物网站的顾客评论,分析企业产品销售状况;一些企业利用大数据分析实现对采购和合理库存量的管理,通过分析网上数据了解客户需求、掌握市场动向。有资料显示,全球零售商因盲目进货导致的销售损失每年达1000亿美元,这方面的数据分析大有作为。
在农业领域,硅谷有个气候公司,从美国气象局等数据库中获得几十年的天气数据,将各地降雨、气温、土壤状况与历年农作物产量的相关度做成精密图表,预测农场来年产量,向农户出售个性化保险。在商业领域,沃尔玛公司通过分析销售数据,了解顾客购物习惯,得出适合搭配在一起出售的商品,还可从中细分顾客群体,提供个性化服务。在金融领域,华尔街“德温特资本市场”公司分析34亿微博账户留言,判断民众情绪,依据人们高兴时买股票、焦虑时抛售股票的规律,决定公司股票的买入或卖出。阿里公司根据在淘宝网上中小企业的交易状况筛选出财务健康和讲究诚信的企业,对他们发放无需担保的贷款。目前已放贷300多亿元,坏账率仅03%。
在医疗保健领域,“谷歌流感趋势”项目依据网民搜索内容分析全球范围内流感等病疫传播状况,与美国疾病控制和预防中心提供的报告对比,追踪疾病的精确率达到97%。社交网络为许多慢性病患者提供临床症状交流和诊治经验分享平台,医生借此可获得在医院通常得不到的临床效果统计数据。基于对人体基因的大数据分析,可以实现对症下药的个性化治疗。在社会安全管理领域,通过对手机数据的挖掘,可以分析实时动态的流动人口来源、出行,实时交通客流信息及拥堵情况。利用短信、微博、微信和搜索引擎,可以收集热点事件,挖掘舆情,还可以追踪造谣信息的源头。美国麻省理工学院通过对十万多人手机的通话、短信和空间位置等信息进行处理,提取人们行为的时空规律性,进行犯罪预测。在科学研究领域,基于密集数据分析的科学发现成为继实验科学、理论科学和计算科学之后的第四个范例,基于大数据分析的材料基因组学和合成生物学等正在兴起。
麦肯锡公司2011年报告推测,如果把大数据用于美国的医疗保健,一年产生潜在价值3000亿美元,用于欧洲的公共管理可获得年度潜在价值2500亿欧元;服务提供商利用个人位置数据可获得潜在的消费者年度盈余6000亿美元;利用大数据分析,零售商可增加运营利润60%,制造业设备装配成本会减少50%。
大数据技术的挑战和启示
目前,大数据技术的运用仍存在一些困难与挑战,体现在大数据挖掘的四个环节中。首先在数据收集方面。要对来自网络包括物联网和机构信息系统的数据附上时空标志,去伪存真,尽可能收集异源甚至是异构的数据,必要时还可与历史数据对照,多角度验证数据的全面性和可信性。其次是数据存储。要达到低成本、低能耗、高可靠性目标,通常要用到冗余配置、分布化和云计算技术,在存储时要按照一定规则对数据进行分类,通过过滤和去重,减少存储量,同时加入便于日后检索的标签。第三是数据处理。有些行业的数据涉及上百个参数,其复杂性不仅体现在数据样本本身,更体现在多源异构、多实体和多空间之间的交互动态性,难以用传统的方法描述与度量,处理的复杂度很大,需要将高维图像等多媒体数据降维后度量与处理,利用上下文关联进行语义分析,从大量动态而且可能是模棱两可的数据中综合信息,并导出可理解的内容。第四是结果的可视化呈现,使结果更直观以便于洞察。目前,尽管计算机智能化有了很大进步,但还只能针对小规模、有结构或类结构的数据进行分析,谈不上深层次的数据挖掘,现有的数据挖掘算法在不同行业中难以通用。
大数据技术的运用前景是十分光明的。当前,我国正处在全面建成小康社会征程中,工业化、信息化、城镇化、农业现代化任务很重,建设下一代信息基础设施,发展现代信息技术产业体系,健全信息安全保障体系,推进信息网络技术广泛运用,是实现四化同步发展的保证。大数据分析对我们深刻领会世情和国情,把握规律,实现科学发展,做出科学决策具有重要意义,我们必须重新认识数据的重要价值。
为了开发大数据这一金矿,我们要做的工作还很多。首先,大数据分析需要有大数据的技术与产品支持。发达国家一些信息技术(IT)企业已提前发力,通过加大开发力度和兼并等多种手段,努力向成为大数据解决方案提供商转型。国外一些企业打出免费承接大数据分析的招牌,既是为了练兵,也是为了获取情报。过分依赖国外的大数据分析技术与平台,难以回避信息泄密风险。有些日常生活信息看似无关紧要,其实从中也可摸到国家经济和社会脉搏。因此,我们需要有自主可控的大数据技术与产品。美国政府2012年3月发布《大数据研究与发展倡议》,这是继1993年宣布“信息高速公路”之后又一重大科技部署,联邦政府和一些部委已安排资金用于大数据开发。我们与发达国家有不少差距,更需要国家政策支持。
中国人口居世界首位,将会成为产生数据量最多的国家,但我们对数据保存不够重视,对存储数据的利用率也不高。此外,我国一些部门和机构拥有大量数据却不愿与其他部门共享,导致信息不完整或重复投资。政府应通过体制机制改革打破数据割据与封锁,应注重公开信息,应重视数据挖掘。美国联邦政府建立统一数据开放门户网站,为社会提供信息服务并鼓励挖掘与利用。例如,提供各地天气与航班延误的关系,推动航空公司提升正点率。
大数据的挖掘与利用应当有法可依。去年底全国人大通过的加强网络信息保护的决定是一个好的开始,当前要尽快制定“信息公开法”以适应大数据时代的到来。现在很多机构和企业拥有大量客户信息。应当既鼓励面向群体、服务社会的数据挖掘,又要防止侵犯个体隐私;既提倡数据共享,又要防止数据被滥用。此外,还需要界定数据挖掘、利用的权限和范围。大数据系统本身的安全性也是值得特别关注的,要注意技术安全性和管理制度安全性并重,防止信息被损坏、篡改、泄露或被窃,保护公民和国家的信息安全。
大数据时代呼唤创新型人才。盖特纳咨询公司预测大数据将为全球带来440万个IT新岗位和上千万个非IT岗位。麦肯锡公司预测美国到2018年需要深度数据分析人才44万—49万,缺口14万—19万人;需要既熟悉本单位需求又了解大数据技术与应用的管理者150万,这方面的人才缺口更大。中国是人才大国,但能理解与应用大数据的创新人才更是稀缺资源。
大数据是新一代信息技术的集中反映,是一个应用驱动性很强的服务领域,是具有无穷潜力的新兴产业领域;目前,其标准和产业格局尚未形成,这是我国实现跨越式发展的宝贵机会。我们要从战略上重视大数据的开发利用,将它作为转变经济增长方式的有效抓手,但要注意科学规划,切忌一哄而上。一篇文章看懂什么是NB-IoT和物联网
NB-IOT是一种物联网实现技术 同zigbee及wifi一样 属于物联网的重要分支 NB-IOT是基于基于蜂窝的窄带物联网,它拥有低功耗的特点 跟zigbee一样 但是传输速率要大于zigbee 而wifi则消耗较大的功耗 但是传输速率比它们都要大
NB-IoT是IoT领域一个新兴的技术,支援低功耗装置在广域网的蜂窝资料连线,也被叫作低功耗广域网(LPWA)。NB-IoT支援待机时间长、对网路连线要求较高装置的高效连线。据说NB-IoT装置电池寿命可以提高至至少10年,同时还能提供非常全面的室内蜂窝资料连线覆盖。
都是远距离无线传输,只是各自的应用领域不同而已。
LoRa比较适合区域网,自己管理资料,自己架设基站进行资料处理,比如一个农场、一个蔬菜基地等。
NB-IoT较适合广域网部署,应用领域比较适合广泛部署,一个特征应用比如共享单车就比较适合NB而不适合LoRa,比较像是3/4G跟WiFi的关系。
LoRa:基站需要自己管理,可以类比为自己家里WIFI路由器,手机连结WIFI上网
NB-IoT:基站运营商已经给你建好,要传输付钱即可,资料走运营商网路,可以类比为目前的手机3/4G上网
LoRa、SigFox因为出现的时间较早,且较基于授权频谱的LPWA技术更为成熟,也可以规模商用,能够满足当时部分使用者的需要,因此获得了运营商的选择。在市场上,基于非授权频谱的LPWA技术,主要是LoRa、SigFox为主。
随着技术的进步和发展,到了2016年,NB-IoT和eMTC这两项技术出现了,并且这两项技术都采用统一的3GPP标准来扩充套件物联网。这项技术具有行业标准的属性,是开放的,并且采用的技术方向是向5G进行逐步演进,标准会不断的提升和演进。
一篇文章看懂什么是工业40 这篇接地气的文章告诉你——什么叫工业40 导读:工业40到底是个啥,本来答应给他单独讲一遍,后来一想,不如整理下材料和思路,一块分享给大家,所以今天就跟大家谈谈这个神秘的工业40吧。
早年从事过工业自动化行业,后来为了赚点讲课费做零花。
工业40第一重天:智慧生产
之前我们说过,生产装置和管理资讯系统也各自连线起来,并且装置和资讯系统之间也连线起来了。你有没有觉得还缺点什么?没错,就是生产的原材料和生产装置还没有连线起来。
这个时候,我们就需要一个东西,叫做RFID,射频识别技术。估计你听不懂,简单来说,这玩意儿就相当于一个二维码,可以自带一些资讯,他比二维码牛叉的地方,在于他可以无线通讯。
我还是来描述一个场景,百事可乐的生产车间里,生产线上连续过来了三个瓶子,每个瓶子都自带一个二维码,里面记录著这是为张三、李四和王二麻子定制的可乐。
第一个瓶子走到灌装处时,通过二维码的无线通讯告诉中控室的控制器,说张三喜欢甜一点的,多放糖,然后控制器就告诉灌装机器手,“加二斤白糖!”(张三真倒霉……)。
第二个瓶子过来,说李四是糖尿病,不要糖,控制器就告诉机器手,“这货不要糖!”
第三个瓶子过来,说王二麻子要的是芬达,控制就告诉灌可乐的机械手“你歇会”,再告诉灌芬达的机械手,“你上!”
看到了,多品种、小批量、定制生产,每一灌可乐从你在网上下单的那一刻起,他就是为你定制的,他所有的特性,都是符合你的喜好的。
这就是智慧生产。
工业40第二重天:智慧产品
生产的过程智慧化了,那么作为成品的工业产品,也同样可以智慧化,这个不难理解,你们看到的什么智慧手环、智慧脚踏车、智慧跑鞋等等智慧硬体都是这个思路。就是把产品作为一个数据采集端,不断的采集使用者的资料并上传到云端去,方便使用者进行管理。
德美工业40和工业网际网路的核心分歧之一,就是先干智慧工厂,还是先搞智慧产品。德国希望前者,美国希望后者。至于中国,我们就搞加,还是加这个东西好,正加反加都行。
工业40第三重天:生产服务化
刚才说了,智慧产品会不断地采集使用者的资料和状态,并上传给厂商,这个就使一种新的商业模式成为可能,向服务收费。我好多年前在西门子的时候,西门子就提出来向服务收费,当时我觉得这是德国佬拍脑袋想出来的傻×决定,但是现在我才明白这是若干年前就已经开始为工业40的生产服务化布局了。你对西门子的印象是什么?冰箱?你个糊涂蛋,西门子这些年已经悄然并购了多家著名软体公司,成为仅次于SAP的欧洲第二大软体公司了。
这个服务是什么呢?比如西门子生产一台高铁的牵引电机,以往就是直接卖一台电机而已,现在这台电机在执行过程中,会不断的把资料传回给西门子的工厂,这样西门子就知道你的电机现在的执行状况,以及什么时候需要检修了。高铁厂商以往是怎么做的?一刀切,定一个时间,到时间了不管该不该修都去修一下,更我们汽车保养没什么差别。现在西门子可以告诉你什么时候需要修什么时候需要养护,你要想知道,对不起,给钱。
再举个例子,智慧产品实现后,每一辆汽车都会不断地采集周边的资料,来决定自己的行驶路线,整个运输系统会完全服务化,任何人都不需要再买车,有一天也许自己开车会成为严重的违法行为,因为装置是智慧的,而人确是不可控的。
在这个阶段,所有的生产厂商都会向服务商转型。
工业40第四重天:云工厂
当工厂的两化融合进一步深入的时候,另一种新的商业模式就有要孕育而生了,这就是云工厂。
工厂里的装置现在也是智慧的了,他们也在不断地采集自己的资料上传到工业网际网路上,此时我们就可以看到,哪些工厂的哪些生产线正在满负荷运转,哪些是有空闲的。那么这些存在空闲的工厂,就可以出卖自己的生产能力,为其他需要的人去进行生产。
网际网路行业为什么发展的这么快,就是因为创业者只需要专注于产品和模式创新,不需要自己去买一个伺服器,而是直接租用云端的服务就行了。而目前工业的创业者,还是要不断地纠结于找OEM代工还是自建工厂中,这个极大地限制了工业领域的创新。当云工厂实现的时候,我预言中国的工业领域将出现一个比网际网路大百倍以上的创新和创业浪潮,那个时候这个社会的一切都将被深刻的改变。
工业40第五重天:跨界打击
网际网路行业天天说降维打击传统行业,什么谷歌小米阿里巴巴乐视,可是我告诉你,当工业40进入第五重天时,工业企业的跨界打击将比这些网际网路企业猛烈百倍。这个过程将从根本上撼动现代经济学和管理学的根基,重塑整个商业社会。
举个例子,一个生产手表的厂商,这个表每天贴着你的身体,采集你身体的各项资料,这些资料对于手表厂商也许没啥用,但是对于保险公司就是个金库,这个时候,手表厂商摇身一变,就能成为最好的保险公司。
当自动化和资讯化深度融合的时候,跨界竞争将成为一种常态,所有的商业模式都将被重塑。
工业40大圆满:黑客帝国
整个工业40过程,就是自动化和资讯化不断融合的过程,也是用软体重新定义世界的过程。
在未来,多元宇宙将在虚拟世界成为现实,一个现实的世界将对应无数个虚拟世界。改变现实世界,虚拟世界会改变;改变虚拟世界,现实世界也会改变。一切都在基于资料被精确的控制当中,人类的大部分体力劳动和脑力劳动都将被机器和人工智慧所取代,所有当下的经济学原理都将不再试用,还将有可能引发道德伦理问题。但是我相信有一些东西是不会变的,人类的爱、责任、勇敢,对未来和自由的向往,以及永无止境的奋斗。生生不息!
好吧,现在大谈黑客帝国似乎有些遥远,那就谈谈科理咨询的2016年德国汉诺威工业展与工业40标杆学习之旅吧!科理咨询带着学员都学到了什么呢?请关注随后的系列报道。
nbiot和emtc应该是比较相似,因为都基于LTE技术
而其他非LTE系列的物联网就根本不同了
NB-IoT是narrowbandinterofthings,即窄带物联网技术,是LPWA技术的一种。LTECategoryM2也被称为Narrow-BandIoT(NB-IoT)没有Cat-NB的说法
物联网《NB-IoT已经来了,LTE-V还会远吗 1、实现无人驾驶,单车智慧+汽车联网,两手都要硬
当前市场忽视了通讯网路对于无人驾驶的关键作用。之前大家讨论的更多的是单车智慧,而要实现最终的无人驾驶,必需单车智慧和汽车联网相辅相成,特斯拉事故已经说明,仅仅单车智慧是不够的。实现汽车联网的通讯网路必须具备低时延、大频宽的效能,实现车与车、车与路之间的通讯,而目前包括 NB-IoT、4G 等网路均不符合要求,必须要有专用的车联网通讯标准。
2、抢夺车联网标准,中国推出 LTE-V
中国是世界第一大的汽车市场,同时中国通讯产业又具备全球竞争力,出于通讯安全的考虑,中国工信部正在积极推动自主化的车联网标准。华为、大唐等主导的车联网标准 LTE-V 预计在 2016 下半年和 2017 上半年分步冻结,2018 年商用推广,抢在美国强制推广之前(DSRC)。同时,我国 8 月份将释出“智慧网联汽车发展技术路线图”,我们判断,LTE-V 将是其中的重要内容之一。
历史悠久:贵州茅台酒独产于中国的贵州省遵义县仁怀镇,是与苏格兰威士忌、法国科涅克白兰地齐名的三大蒸馏名酒之一,是大曲酱香型白酒的鼻祖。
品质优越:被尊为“国酒”。他具有色清透明、醇香馥郁、入口柔绵、清冽甘爽、回香持久的特点,人们把茅台酒独有的香味称为“茅香”,是我国酱香型风格最完美的典型。
一张图看懂什么是物联网
物联网是网际网路的延伸,可以说是网际网路的一种应用。物联网通过各种感知装置,如射频识别、感测器、红外等,将资讯传送到接收器,再通过网际网路传送,通过高层应用进行资讯处理,达到“感知”的目的。
一篇文章弄懂什么是虹膜识别 美国智库 Acuity Market Intelligence
曾发表过一份《生物识别的未来》报告,报告显示,虹膜识别技术将在未来10—15年迅速普及,并占全球生物特征识别16%的市场份额,虹膜识别产品总产值也将达到35亿美元。毕竟无需赘言,在智慧手机之外,未来整个IOT产业的崛起理论上都可被视作虹膜技术普及的基石——你知道,当万物互联时代来临,资料安全牵一发而动全身,人们都在企盼一种与机器更安全的互动方式。
拜好莱坞所赐,如下场景早已被视作未来理所当然的一部分:某Boss级人物神色淡定或慌张地进入实验室等神秘部门,他只需要“看一眼”萤幕即可来去自如。事实上,虹膜识别并不是一个初生事物,基于虹膜扫描识别身份的理论认知可追溯到上世纪30年代,并于90年代逐渐实现商业化落地,如今也已应用在诸如金融, ,机场和军方等现实中貌似类似“神秘部门”的地方。但如你所知,人类历史的底层驱动力永远都是技术以及让技术大范围扩散的商业,遵循着与计算机,网际网路,智慧手机等颠覆性技术的相似步伐,如今虹膜识别也正在从特定领域推广至普通消费人群之中。最直观的例子当然来自三星刚释出的Galaxy
Note7,这是虹膜识别技术第一次被添置在真正意义上的主流旗舰智慧手机之上。
在不少人看来,考虑到三星之于手机产业链的掌控力和号召力,与去年富士通ARROWS NX F-04G以及微软Lumia
950XL等小众机型对虹膜识别的仓促不同(譬如识别时间过长),三星的入局有望起到某种带动之力——据报道,三星的加入甚至让与虹膜识别相关的企业股票也一度飘红。技术的成熟当然是另一方面。古往今来,人类一直对“精准识别身份”心向往之——而有理由相信,愈到未来,安全地告知机器“我是谁”这件事就愈加重要。
而在这件事上,至少看起来,虹膜识别可以做到更多。
你的唯一
大体而言,在所有常规生物特征识别(包括指纹,人脸,虹膜,声音,掌纹等)当中,由于虹膜自身的精准性,防伪性,唯一性,稳定性,主流学界通常认为虹膜是比指纹或者面部识别更“高阶”的识别方式,要知道,相比于指纹08%,人脸2%左右的误识率,虹膜识别低至百万分之一的误识率看起来几乎没有任何蛊惑性。
那到底何为虹膜人眼结构由巩膜,虹膜和瞳孔三部分构成,虹膜即是位于其他二者之间的圆环状部分,属于眼球中层,负责自动调节瞳孔大小,从而适应不同光照环境。而交叉错杂的细丝,斑点和条纹等细微之物构成虹膜大量独一无二的资讯特征,也因此具备了某种与生俱来的不可复制性(顺便一提,虹膜的唯一性同样存在于同卵双胞胎身上,后者DNA资讯重合度非常之高),其复杂度远超如今在智慧手机普及的指纹识别,有研究表明,虹膜识别准确性是指纹识别的1万倍。
可想而知,细小的动态特性让伪造虹膜变得几乎不太可能,至少目前,无论照片,假眼,乃至在隐形眼镜上列印(对了,当眼球剥离人体,虹膜也会随瞳孔放大从而失去活性),都几乎没办法欺骗机器对于主人虹膜的信赖。
而极强的稳定性是虹膜用于生物识别的另一利器。任何人在胎儿发育阶段形成之后,虹膜即终生保持不变,且几乎不会受到外部环境的干扰——在眼睑的庇护下,它不易受到外伤侵袭,更重要的是,目前看来,诸如红眼病,白内障,青光眼,沙眼结膜炎,近视眼手术这些常见的眼部侵扰都无法影响虹膜自身纹理。这意味着,虹膜不会出现指纹解锁时易磨损,灵敏度低,蜕皮或者潮溼而致使手机无法识别的困扰。
另外,最后想说,相较于指纹,虹膜中远距离的非接触式采集无疑要卫生许多。
怎么用
很好理解,虹膜识别技术能将虹膜资讯特征转为密码储存。
在具体的实现路径上,拿Note7来说,在前置镜头同侧增加了IR
LED与虹膜摄像头,在识别过程之中,前置摄像头辅助虹膜摄像头确定持机者的大体轮廓,再经由IR
LED发射红外光源(虹膜识别无法用最常见的彩色可见光感测器,要用独立的红外感测器,以保证能为暗光下使用),虹膜摄像头通过光源扫描持机者虹膜资讯,然后将虹膜资讯转为编码,与已知密码进行比对,以最终决定是否解锁。通常来说,相比录入指纹时的繁琐,初次录入虹膜要迅捷许多,大概只需要几秒钟;而当用户试图用虹膜解锁手机时,根据视讯演示,虽不比指纹,但仍谈得上灵敏。
而直觉便知,虹膜识别的应用场景可被延伸至萤幕解锁之外,譬如Note7提出的一种场景方案是新增了一个“安全资料夹”,通过虹膜解锁存放一些包括应用,照片,便签在内的私人资料或资讯(你知道,每个人都有一些“不可告人”的小秘密),让其独立于其他手机资料之外,唯有虹膜可以开启,算是上了份双保险。
在我看来,这一功能也在很大程度上回应了业界对于虹膜识别普及性的担忧——事实上,至少在现阶段,作为科技急先锋的虹膜识别与已然成熟的指纹识别并非取代关系,而更接近于不同场景中的互补或进阶,Note7的安全资料夹即是如此,你大可将其视作指纹之后的第二道安全防护,**里出入神秘部门也得布防重重关卡不是
嗯,在告知机器“我是谁”这件事上,人类经历了各种密码,数字证书,硬体KEY(譬如U盾)等多种方式,有理由相信,身份识别的下一幕很大程度上将由虹膜等生物特征识别完成。其实追溯人机互动历史,一个清晰的脉络是:主流计算装置的每次形态改变,必然伴随着人机互动难度下降,而随着虹膜等识别技术的完善,人类与机器之间的“信任关系”势必将迈向一个新篇章。
未来由现实铺就,而“未来已经来临”。在科技领域,未来十年将会令过去的十年黯然失色,但愿这其中会有生物识别技术很大的功劳。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)