“智慧农业”——农业发展的新时代

“智慧农业”——农业发展的新时代,第1张

随着第四次工业革命的快速发展,信息科学技术和多领域科学技术深度融合,诱发新的产业技术革命。新一代信息 科技 与农业的深度融合发展,孕育了第三次农业绿色革命——农业的数字革命,使农业进入了网络化、数字化、智能化发展的新时代。

在农业数字革命的推动下,世界农业产生了两大变革:一是产生了以 智慧农业 为代表的新型农业生产方式,让农业生产更加“智慧”、更加“聪明”;二是促进了 农业数字经济 发展,激活了“数据要素”的价值潜能,赋能数字农业农村新发展。

2020 年中央一号文件《中共中央国务院关于抓好“三农”领域重点工作确保如期实现全面小康的意见》再次对智慧农业的发展给出了指导:“依托现有资源建设农业农村大数据中心,加快物联网、大数据、区块链、人工智能(AI)、第五代移动通信网络(5G)、智慧气象等现代信息技术在农业领域的应用”

智慧农业是依托互联网技术、大数据以及远程监控等现代高 科技 对传统农业进行科学化管理,在农业经营与管理的过程中实现资源消耗最低、环境破坏最少,进而实现农业生产成本的降低,实现农业现代化、智能化发展。智慧农业是农业发展的高级阶段,也是农业发展的必然趋势,从管理学角度而言,智慧农业的生产率及能源使用效率更高。

近10来,美国、英国、德国、加拿大、日本、韩国等农业发达国家高度关注智慧农业的发展,从国家层面进行战略部署,积极推进 农业物联网、农业传感器、农业大数据、农业机器人、农业区块链 等智慧农业关键技术的创新发展。

2015年,加拿大联邦政府预测与策划组织发布了《MetaScan3:新兴技术与相关信息图》,指出土壤与作物感应器(传感器)、家畜生物识别技术、农业机器人在未来5-10年将颠覆传统农业生产方式。日本2015年启动了“基于智能机械+智能IT的下一代农林水产业创造技术”项目,核心内容是“信息化技术+智能化装备”。

2017年,欧洲农机工业学会提出了“农业40(Farming40)”计划,强调智慧农业是未来欧洲农业发展的方向。

2018年,美国科学院、美国工程院和美国医学科学院联合发布《面向2030年的食品和农业科学突破》报告,重点突出了传感器、数据科学、人工智能、区块链等技术发展方向,积极推进农业与食品信息化。美国NSTC“国家人工智能研发战略计划”中,将农业作为人工智能优先应用发展的第10个领域,资助农业人工智能 科技 的中长期研发;美国农业部“2018-2022年战略规划”中,突出了农业人工智能、自动化与遥感技术的应用。

根据国际咨询机构(Research andmarket)分析,2019年全球智慧农业市值167亿美元,2027年将达到292亿美元,2021-2027年全球智慧农业市值年复合增长率(Compound annual growthrate,CAGR)将达到97%。

目前,国际上以美国为代表的大田智慧农业、以德国为代表的智慧养殖业、以荷兰为代表的智能温室生产以及以日本为代表的小型智能装备业,均取得巨大进步,形成了相对成熟的技术与产品,而且还形成了商业化的发展模式,为我国发展智慧农业提供了可借鉴的经验。

我国2014年提出“智慧农业”的概念,与美国相比落后大约30年。我国农业上应用信息技术起步较晚但发展较快。由于我国区域间经济发展不均衡,智慧农业在不同地区发展差异较大,东部地区因地理优势和经济因素在智慧农业发展上取得了显著成果,西部地区山区多,发展相对较慢,并且还存在原始的传统农业。我国智慧农业的发展在2009-2015年进入缓慢增长期,2016-2020年进入快速增长期。

我国智慧农业科学研究在实验室中的进展迅速,但在实际应用中进展缓慢,并且依托现代化农业设施的发展,主要集中在农田改造、水利设施、电力设施等方面。部分地区发挥其独特优势,尽管总体经济落后。

2016 年,新疆地方政府大力倡导智慧农业概念,新疆生产建设兵团利用智能专家系统与专家智慧库等技术在呼图壁县红柳塘示范园区进行棉花种植生产布局,并重点建设了“123工程”,因地制宜,大大推进了当地棉花产业体系的快速发展。

近年来,浦东新区在智慧农业发展中成果显著。第一,初步建立了智慧农业发展体系,建立了大数据中心、智慧农业工作机制和研发平台;第二,建立“农民一点通”和“惠农通”等服务平台,加强对农民生产技术上的指导;第三,建立了田间档案记录及二维码管理的农产品监控与追溯系统,及时记录农产品生产过程中的播种、施肥、施药等各种数据,为农产品的质量安全提供保障;第四,物联网建设试点初步建立,现有19家智慧农业示范基地,主要利用传感器在大棚中运用“水肥一体化”技术进行生产;第五,推动智慧农业发展的同时带动了一批高 科技 企业,例如:上海孙桥农业园区、多利农庄等。

2020年,广东建立了以政府为引的投资引入民间资本,通过“1+4+N”模式发展智慧农业,即以“基础设施、平台载体、龙头企业和新型农民”为核心要素,优先在农业生产经营管理及农产品质量安全等N个场景和领域进行推广应用,获得了良好的效果。

目前,从我国农业生产模式及农民文化素质角度来看,智慧农业存在应用难题。由于我国农村人均占地少且文化素质不高,大部分农业生产采用包干到户及分散经营的小农生产,因此在模式上和技术上存在推广难题。

比如,想要实现农业生产转型发展智慧农业的农户只能自己出资购买相应的设备及软件服务,这一方面将给农民带来较大的经济压力,另一方面也会提升农民的生产经营风险。同时,对于新兴互联网技术而言,我国在应用方面还未实现标准规范化发展,许多传感器、智能设备及机械设备之间无法形成数据信息共享,致使不同厂家的产品只能独立化运营,无法形成规模化发展,同样不利于智慧农业的发展。

其次,在农业数据共享方面,不仅我国农村地区信息化建设成熟度不同,导致无法建成健全的农业信息数据共享平台。同时,由于我国农业统计数据部门较为且各部门的信息化发展程度与技术也存在差异性,进一步加剧了农业数据共享体系建设。具体发展问题包括:不同农业数据统计部门根据自身需求搜集和计算数据,缺乏统一的体系规划,致使农业数据重复获取或者存在数据空白问题;农业数据平台网站较多,但是每个平台之间界限不清,底层架构的不同导致数据无法实现共享。

随着新技术和新方法的进步,智慧农业所涉及的元件更加微型化、功能也更加多样化,为智慧农业的发展打下了良好的基础;传感器等微型元件的低廉化,使智慧农业的发展更为迅速。智慧农业不是简单的把智能农机搬运到农村作业,还需要一个“智慧乡村”及其完善系统的基础设施和服务保障。在国家政策的支持下农村地区信息化程度越来越高,农民重视文化的观念越来越强烈,相信智慧农业将会迎来更好的发展期

当前,我国正处于向第二个一百年奋斗目标迈进入 历史 关口,大力发展智慧农业,对变革传统农业生产方式,大幅度提高农业资源利用率和生产效率,实现农业高质量发展具有重要作用,对“全面推进乡村振兴,加快农业农村现代化”具有重大意义。

参考资料

百度百科——智慧农业

《 中国农业文摘·农业工程 2021年第6期 —— 智慧农业的发展现状与未来展望 》

《 农业经济  2021/10 —— 我国智慧农业的发展困境与战略对策 》

《 现代农业研究26卷 —— 智慧农业发展现状及前景分析 》



想要了解更多有关农业、养殖方面的知识,赶快关注我们!带你走进更专业的技术领域。喜欢就点个关注呗!我们致力于传播农业知识,服务三农;提供农业 科技 咨询服务;生物技术的研究和推广; 科技 项目编制;农场畜牧场规划设计。


系统简介

水肥一体化智能控制系统通过与灌溉系统相结合,实现智能化控制。系统由物联网监控平台、气象数据采集终端、视屏监控、施肥一体机、过滤系统、阀门控制器、电磁阀、田间水管线等组成。


图为河南益民控股5G+智慧辣椒种植基地水肥一体化系统控制中心

概述

水肥一体化技术是将灌溉与施肥融为一体的农业新技术。水肥一体化是借助压力系统(或地形自然落差),将可溶性固体或液体肥料,按土壤养分含量和作物种类的需肥规律和特点,配兑成的肥液与灌溉水一起,通过可控管道系统供水、供肥,使水肥相融后,通过管道、喷q或喷头形成喷灌、均匀、定时、定量,喷洒在作物发育生长区域,使主要发育生长区域土壤始终保持疏松和适宜的含水量,同时根据不同的作物的需肥特点,土壤环境和养分含量状况,需肥规律情况进行不同生育期的需求设计,把水分、养分定时定量,按比例直接提供给作物。

系统原理图

水肥一体化系统通常包括水源工程、首部枢纽、田间输配水管网系统和灌水器等四部分,实际生产中由于供水条件和灌溉要求不同,施肥系统可能仅由部分设备组成。

水肥一体机

水肥一体机系统结构包括:控制柜、触摸屏控制系统、混肥硬件设备系统、无线采集控制系统。支持pc端以及微信端实施查看数据以及控制前端设备;水肥一体化智能灌溉系统可以帮助生产者很方便的实现自动的水肥一体化管理。系统由上位机软件系统、区域控制柜、分路控制器、变送器、数据采集终端组成。通过与供水系统有机结合,实现智能化控制。可实现智能化监测、控制灌溉中的供水时间、施肥浓度以及供水量。变送器(土壤水分变送器、流量变送器等)将实时监测的灌溉状况,当灌区土壤湿度达到预先设定的下限值时,电磁阀可以自动开启,当监测的土壤含水量及液位达到预设的灌水定额后,可以自动关闭电磁阀系统。可根据时间段调度整个灌区电磁阀的轮流工作,并手动控制灌溉和采集墒情。整个系统可协调工作实施轮灌,充分提高灌溉用水效率,实现节水、节电,减少劳动强度,降低人力投入成本。

施肥系统

水肥一体化施肥系统原理由灌溉系统和肥料溶液混合系统两部分组成。灌溉系统主要由灌溉泵、稳压阀、控制器、过滤器、田间灌溉管网以及灌溉电磁阀构成。肥料溶液混合系统由控制器、肥料灌、施肥器、电磁阀、传感器以及混合罐、混合泵组成。

41:输配水管网系统

由干管、支管、毛管组成。干管一般采用PVC管材,支管一般采用PE管材或PVC管材,管径根据流量分级配置,毛管目前多选用内镶式滴灌带或边缝迷宫式滴灌带;首部及大口径阀门多采用铁件。干管或分干管的首端进水口设闸阀,支管和辅管进水口处设球阀。

输配水管网的作用是将首部处理过的水, 按照要求输送到灌水单元和灌水器,毛管是微灌系统的最末一级管道,在滴灌系统中,即为滴灌管,在微喷系统中,毛管上安装微喷头。


42:环境数据采集器

421气象信息采集

环境数据采集器由低功耗气象传感器、低功耗气象数据采集控制器和计算机气象软件三部分组成。可同时监测大气温度、大气湿度、土壤温度、土壤湿度、雨量、风速、风向、气压、辐射、照度等诸多气象要素;具有高精度高可靠性的特点,可实现定时气象数据采集、实时时间显示、气象数据定时存储、气象数据定时上报、参数设定等功能。

422土壤墒情采集

土壤检测仪可实现对土壤不同深度的温度、湿度、EC、 PH等数据监控,通过5G信号传输至AI农大数据平台,借助于大数据平台的综合建模分析,从而给出土壤土质的综合评级,并语音播报。


43:无线阀门控制器


阀门控制器是接收由田间工作站传来的指令并实施指令的下端。阀门控制器直接与管网布置的电磁阀相连接,接收到田间工作站的指令后对电磁阀的开闭进行控制,同时也能够采集田间信息,并上传信息至田间工作站,一个阀门控制器可控制多个电磁阀。

电磁阀是控制田间灌溉的阀门,电磁阀由田间节水灌溉设计轮灌组的划分来确定安装位置及个数。

44:灌水器系统

微灌按微灌灌水流量小,一次灌水延续时间较长,灌水周期短,需要的工作压力较低,能够较精确的控制灌水量,能把水和养分直接地输送到作物根部附近的土壤中去。

系统功能

51:用水量控制管理

实现两级用水计量,通过出口流量监测作为本区域内用水总量计量,通过每个支管压力传感采集数据实时计算各支管的轮灌水量,与阀门自动控制功能结合,实现每一个阀门控制单元的用水量统计。同时水泵引入流量控制,当超过用水总量将通过远程控制,限制区域用水。


52:运行状态实时监控

通过水位和视频监控能够实时监测滴灌系统水源状况,及时发布缺水预警;

通过水泵电流和电压监测、出水口压力和流量监测、管网分干管流量和压力监测,能够及时发现滴灌系统爆管、漏水、低压运行等不合理灌溉事件,及时通知系统维护人员,保障滴灌系统高效。

53:阀门自动控制功能

通过对农田土壤墒情信息、小气候信息和作物长势信息的实时监测,采用无线或有线技术,实现阀门的遥控启闭和定时轮灌启闭。根据采集到的信息,结合当地作物的需水和灌溉轮灌情况制定自动开启水泵、阀门,实现无人职守自动灌溉,分片控制,预防人为误 *** 作。

54:PC展示平台

通过物联网水肥一体化智能监测平台,能够为用户提供传感器数据、远程、采集、传输、储存、处理及报警信息发送等服务。该平台以集中式分区化的方式为用户提供便捷、经济、有效的远程监控整体解决方案。通过物联网智能监测平台,用户可以不受时间、地点限制对监控目标进行实时监控、管理、观看和接收报警信息。

55:移动终端

建立手机系统,客户直接采用微信客户端就可以控制和查看实时数据,手机端具有手动启动、关闭电磁阀,水泵等设备功能。

56:运维管理功能

包括系统维护、状态监测和系统运行的现场管理;实现区域用水量计量管理、旱情和灌溉预报专家决策、信息发布等功能的远程决策管理;以及对用水、耗电、灌水量、维护、材料消耗等进行统计和成本核算,对灌溉设施设备生成定期维护计划,记录维护情况,实现灌溉工程的精细化维护运行管理。

节水灌溉自动化控制系统能够充分发挥现有的节水设备作用,优化调度,提高效益,通过自动控制技术的应用,更加节水节能,降低灌溉成本,提高灌溉质量,将使灌溉更加科学、方便,提高管理水平。

物联网下现代农业发展的重点
随着科技的迅速发展,物联网在农业上的应用会越来越广泛,一批关键农业信息感知技术和新兴产业培育问题也期待科技突破。物联网在农业上的应用会朝着微小型、可靠性、节能型、环境适应性、低成本、智能化方向发展。一是以农业专用传感器、网络互联和智能信息处理等农业物联网共性关键技术研究为重点,突出自主知识产权,强化自主创新。二是以利用物联网技术探测农业资源和环境变化,感知动植物生命活动,农业机械装备作业调度与远程监控,农产品与食品质量安全可追溯系统等为重点,强化集成应用。三是以农用传感器和移动信息装备制产业、农业信息网络服务产业、农业自动识别技术与设备产业、农业精细作业机具产业、农产品物流产业等为重点,培育新兴产业。此外,农业资源的发展重点是对土地、水源、生产资料等的管理;农业生态环境的发展重点是对土壤、大气、水质、气象、灾害的监测;在生产过程管理的发展上,重点是农田精耕细作、设施农业、健康养殖等;在农产品质量安全管理的发展上,重点将是产地环境、产后、贮藏加工、物流运输、供应链可追溯系统;在农业装备与设施的发展上,重点是工况监测、远程诊断、服务调度等方面

智慧农业监控系统的用途
1、全方位监控
智慧农业监控系统综合运用传感器,控制器,智能相机,智能摄像头等高端物联网设备,对农业生产现场的气象、土壤等环境变化趋势,农作物生长情况,农业设施运行状态进行 360 度全方位监控,并根据设定条件,对各种异常情况进行自动预警与远程自动化控制,可广泛适用于各类型的农业科研机构与农业企业。
2、精准智能
智慧农业监控系统可完全自动化运行,不需要人工干预。最大程度避免人工 *** 作的随意性,同时明显降低现场劳动力占用,帮助用户实现对农业设施的精准控制,与生产流程的标准化管理。
3、实时监控
智慧农业监控系统可以将生产现场采集到的传感数据及图像信息,通过手机网络实时传送到数据中心。一方面改变了传统的人工现场采集数据的方式;另一方面也全面实现农业讯息的即时传输与实时共享,帮助生产管理人员随时随地可以通过手机查看监控数据。
4、简单易用
智慧农业监控系统强调易用性与实用性的完美结合。
农业作为关系着国计民生的基本产业,其信息化、智慧化的程度则尤为重要。像智慧农业监控系统这样的物联网技术在农业发展中将会面临新的机会与飞跃,同时也将在农业应用中发挥前所未有的重要作用。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/10569531.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-09
下一篇 2023-05-09

发表评论

登录后才能评论

评论列表(0条)

保存