物联网技术主要学什么?

物联网技术主要学什么?,第1张

主要学科有:
“主要学物联网概论、物联网硬件基础、无线传感网应用技术、RFID应用技术、M2M应用技术、物联网应用软件开发、Android移动开发等。物联网应用技术培养具有从事WSN、RFID系统、局域网、安防监控系统等工程设计、施工、安装、调试、维护等工作能力的高端技能型人才。”

本教程 *** 作环境:windows7系统、Dell G3电脑。
物联网就是物物相连的互联网。
这有两层意思:
其一,物联网的核心和基础仍然是互联网,是在互联网基础上的延伸和扩展的网络;
其二,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通信,也就是物物相息。
物联网通过智能感知、识别技术与普适计算等通信感知技术,广泛应用于网络的融合中,也因此被称为继计算机、互联网之后世界信息产业发展的第三次浪潮。
物联网的应用:

1、智能交通。物联网技术在道路交通方面的应用比较成熟。随着社会车辆越来越普及,交通拥堵甚至瘫痪已成为城市的一大问题。对道路交通状况实时监控并将信息及时传递给驾驶人,让驾驶人及时作出出行调整,有效缓解了交通压力。
2、智能家居。智能家居就是物联网在家庭中的基础应用,随着宽带业务的普及,智能家居产品涉及到方方面面。 家中无人,可利用手机等产品客户端远程 *** 作智能空调,调节室温。
3、公共安全。近年来全球气候异常情况频发,灾害的突发性和危害性进一步加大,网可以实时监测环境的不安全性,情况提前预防、实时预警、及时采取应对措施,降低灾害对人类生命财产的威胁。

扩展资料:


物联网和互联网区别是什么
物联网的意思是新一代信息技术的重要组成部分,也是“信息化”时代的重要发展阶段。其英文名称是:“Internet of things (IoT) ”。顾名思义,物联网就是物物相连的互联网。
这有两层意思:其一,物联网的核心和基础仍然是互联网,是在互联网基础上的延伸和扩展的网络;其二,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通信,也就是物物相息。
物联网通过智能感知、识别技术与普适计算等通信感知技术,广泛应用于网络的融合中,也因此被称为继计算机、互联网之后世界信息产业发展的第三次浪潮。
物联网是互联网的应用拓展,与其说物联网是网络,不如说物联网是业务和应用。因此,应用创新是物联网发展的核心,以用户体验为核心的创新20是物联网发展的灵魂。
更多计算机相关知识,请访问常见问题栏目!

认知无线网络的频谱感知技术
认知无线电/认知无线网络起源于Joseph Mitola攻读博士期间的研究工作,在其博士论文中,Mitola将认知无线电定义为“the integration of model-based reasoning with software radio technologies”,认为认知无线电是智能计算和无线通信这两个学科交叉融合的产物[1] 。随后,美国的FCC和DARPA分别启动了多项计划,对认知无线电和动态频谱接入问题进行深入研究;欧盟的端到端重配置计划(E2R: End to End Reconfigurability Project)也启动了对认知概念在技术和经济领域等各方面问题的研究。Simon Hakin在2005年发表了关于认知无线电的著名文章“Cognitive radio: brain-empowered wireless communications”[2] ,主要从信号处理和自适应过程的角度对认知无线电技术的框架结构进行了较为完善的分析。此后,许多有名的大学和研究机构也展开了相关技术的研究和实验平台的开发,认知无线电的概念也被扩展为认知无线网络,指利用认知原理来提高各种资源(频谱、功率等)使用效率的无线网络[3] 。在频谱管理部门的带动下,一些标准化组织也先后开展了一系列标准制定工作以推动该技术的发展。目前涉及认知无线电/认知无线网络标准制订的组织和行业联盟主要是美国电气电子工程师学会(IEEE)、国际电信联盟(ITU)和软件无线电论坛(SDR Forum)等。
认知无线网络中,主(授权)用户指那些对某段频谱的使用具有高优先级或合法授权的用户,次级用户是指那些低优先级的用户。次级用户对频谱的使用不得对主用户造成干扰,因此要求其能快速、可靠地感知主用户使用授权频谱的情况。次级用户必须具备认知能力,因而称其为认知用户,在网络结构中则表示为认知节点。认知用户的频谱感知主要包括在某个频段上检测主用户存在与否(主用户信号检测)和估计认知用户对主用户接收机可能造成的附加干扰(干扰温度估计)两个任务[4] 。更进一步的可能要求是频谱感知还应区分主用户信号的种类(空中接口分类)[5] 。目前大部分频谱感知的研究都集中在最重要的主用户信号检测上。
1 频谱感知的基本方法
主用户信号检测的单节点频谱感知基本方法通常分为三类:
第一类为相干检测。如果知道主用户信号的结构特征(如导频、前导或同步消息等),匹配滤波器加门限检测的方法是最优的主用户信号检测方法。相干检测可获得精确的频谱感知结果,但其缺点也很明显,必须知道主用户信号的先验知识,而且当认知无线网络运行在很宽的频段上时,实现许多类型的授权信号的相干检测成本太高,几乎不可实现。
第二类为能量检测。在感兴趣频段上测量某段观测时间内接收信号的总能量,如果能量低于某个设定门限则声明该频段为白空间。与相干检测相比,能量检测需要更长的感知时间以达到同样的感知效果,但低成本、易实现的特性使其受到认知无线网络中频谱感知技术的青睐。
以上基于信号检测技术的两种频谱感知方法,有很好的理论基础[6] ,性能分析已比较完善。
第三类为特征检测[7] 。能量检测的最大缺点是它不能区分接收到的能量是来自主用户信号还是噪声,在低信噪比环境中的频谱感知结果尤其不可靠。在主用户信号的载波频率、调制类型或循环前缀等某些特征已知时,利用信号的期望和自相关函数呈现出来的周期性(循环平稳谱相关特性),可将信号能量与噪声能量区分开来,突破能量检测的瓶颈。文献[8] 还分析实际情况下有限的数据长度对循环谱特征检测的影响。实现复杂度远高于能量检测是制约特征检测在频谱感知中应用的最主要缺点。
此外,2003年底FCC频谱政策工作组提出了干扰温度模型[9] ,意在对无线环境中的干扰源进行量化和管理。干扰温度限提供了特定地理位置在某一感兴趣频段上接收机能够顺利工作的最差环境的特征描述。根据干扰温度模型,认知用户若能确定其对主用户接收机造成的附加干扰量并加以限制,使主用户接收机所受的总干扰(含噪声)不超过干扰温度限,则认知用户可与主用户运行在同一频段上。可以看出,基于主用户信号检测的频谱感知意在避开主用户,而基于干扰温度模型的频谱感知则试图与主用户同时并存于同一个频段,这是两者最大的区别。文献[10] 定义了已知和未知主用户信号参数时干扰温度的理想模型和一般模型,并从通信容量的角度分析了如何来最优地选择认知系统的工作带宽和发送功率。但干扰温度模型存在两个需要解决的难题:其一为在主用户发送信号存在的情况下如何测定其接收机的噪声水平,其二为在主用户接收机位置未知的情况下如何估计认知用户对它可能产生的干扰。降低问题难度的一种可能办法是让主用户系统来辅助认知系统的频谱感知,如文献[11] 中要求主用户接收机在工作过程中持续发送指示信号。另一个需要考虑到的是,认知用户和主用户共存于同一个频段时,认知系统的通信过程中也会受到授权系统的干扰,所以认知系统能获得的通信容量可能非常有限[10] 。
2 协同频谱感知
认知无线网络可通过对多节点感知信息的协同处理来提高频谱感知的效果,这被称为协同(协作、合作)频谱感知。频谱感知性能主要由感知范围、检测时间、检测概率、虚警概率等几个相互关联的指标来衡量,协同频谱感知可利用空间分集增益改善上述指标,解决单节点感知中难以克服的多径深衰落、阴影衰落和隐终端等难题[4] ,同时也可减轻对单个节点感知灵敏度的要求,降低实现成本[12] 。
实现协同频谱感知的方式有两种,即中心式和分布式。
中心式感知:中心单元收集各认知节点的感知信息,负责识别可用频谱,并将频谱可用信息广播给各认知节点或直接控制认知节点的通信参数。文献[13] 中以AP为中心收集、处理各感知节点的硬判决(二进制)结果,通过克服信道衰落效应来提高感知性能,其检测概率和虚警概率的计算在文献[14] 中给出。文献[15] 以主节点(master node)为中心节点合并各感知结果来检测TV信道。文献[16] 则由融合中心(fusion center)根据各认知节点能量检测的结果最终判断主用户在某个频段上的存在与否。
分布式感知:认知节点彼此之间共享感知信息,但独立判断各自的可用频谱。与中心式感知相比,分布式感知的优点是不需要基础结构网络,部署更灵活些。文献[17] 显示一个用户作为另一个用户中继的两用户协同频谱感知可带来35%的捷变增益(所需感知时间减少35%)。文献[18] 进一步将这种分布式感知协议推广到多用户环境中。
无论中心式还是分布式感知,就协同频谱感知的研究内容而言,主要包含以下两个方面:
1)认知节点感知信息的合并处理,即考虑信息融合(fusion)问题。
2)感知信息传递过程的合作,即考虑中继传输问题。

什么是物联网?
物联网指的是全球数十亿的物理设备都连接到了互联网上,都可以进行数据的收集与共享。物联网的终极目标,就是让万物都成为网络的一部分。
将所有这些不同的物体连接起来,并给它们添加传感器,使原本笨笨的设备增加了一个数字智能的层次,使它们能够在不涉及人类的情况下进行实时数据通信。物联网正在让我们周围的世界结构变得更加智能,反应更加灵敏,将数字世界和物理世界融合在一起。
举个物联网的例子

几乎任何物理物体都可以转化为物联网设备,只要把它们连接到互联网上进行控制或通信信息。
一个可以使用智能手机应用程序打开的灯泡就是物联网设备,一个运动传感器或办公室里的智能恒温器也是物联网设备。物联网设备可能像儿童玩具一样毛茸茸,也可能像无人驾驶卡车一样硬核。
一些较大的物体本身可能充满了许多较小的物联网组件,比如现在的喷气式发动机,里面装满了成千上万的传感器,收集并传输数据,以确保其高效运行。在更大的范围内,智慧城市项目正在用传感器填充整个区域,帮助我们理解和控制环境。
物联网这个词主要是指那些通常并不会有互联网连接的设备,而且可以不受人类行动的影响而与网络通信。出于这个原因,电脑一般不被认为是物联网设备,智能手机也不属于物联网设备,尽管后者装满了传感器。不过,智能手表或健身环或其他可穿戴设备可能会被算作物联网设备。

物联网,英文名称叫“The Internetofthings”(简称IOT),在我国也称为传感网。通俗地讲,物联网就是“物物相连的互联网”,是将各种信息传感设备通过互联网把物品与物品结合起来而形成的一个巨大网络。其中两层意思,第一,物联网是互联网的延伸和扩展,其核心和基础仍然是互联网,第二,其用户端不仅仅是个人,还包括任何物品。
“物联网”概念的问世,打破了人类之前的思维方式。过去,人们一直是将物理基础设施和IT基础设施分开:一方面是机场、公路、建筑物,而另一方面是数据中心、个人电脑、宽带等。
而在物联网时代,钢筋混凝土、电缆将与芯片、宽带融合为统一的基础设施,实现人类社会与物理系统的整合。在此意义上,基础设施更像是一块新的地球工地,世界的运转就在它上面进行,并达到“智慧”状态,从而提高资源利用率和生产力水平,实现人与自然和谐统一。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/10582909.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-09
下一篇 2023-05-09

发表评论

登录后才能评论

评论列表(0条)

保存