物联网时代的大数据策略

物联网时代的大数据策略,第1张

物联网时代的大数据策略

互联网时代,PC、Pad、智能手机等设备无处不在,数以亿计的用户通过微博、微信、SNS、博客等途径产生大量的自媒体数据,电商、新闻类网站、搜索引擎每时每刻都在记录着丰富的用户行为信息,海量的数据促进了云计算,分布式技术的发展,而这些技术反过来不仅推动了Web和移动互联网的革新,也推动了物联网的飞速前进。现在,我们正逐渐迈入物联网时代,实现万物互联的愿景,如果说之前人是信息生产的主体,那么或许不久的将来设备将成为主角,它们将源源不断地产生与人相关的衣食住行信息,这些信息会通过云计算、数据挖掘等技术实现价值的升华从而为用户提供更优质、贴心的服务。那么物联网时代会产生什么样的数据,应该采用什么样的大数据策略呢?
THINKstrategies 的总经理 Jeff Kaplan 在自己的博文《 当物联网遇见大数据 》中写道:
“你不能使用现在的策略,因为可以被捕获、管理并利用的数据将更加多样化,同时用例也会更加丰富。附加到各种设备和对象上的传感器会产生各种类型的数据。这些数据将会用于各种响应式的、主动的或者 创造性的目的 。IT部门的任务就是与业务部门一起工作,完全理解物联网方面的用例,然后寻找满足业务需求的技术。特别是,IT部门必须识别出最优的分析平台和工具,让业务用户能够获取到需要的数据,分析数据的含义并快速地做出响应。”
Gartner公司的副总裁、著名分析师 Joe Skorupa 认为:
“分布在世界各地的物联网设备将产生大量的输入数据,将所有的数据传送到一个位置进行处理无论从技术上还是从经济上都是无法实现的。最近的趋势——将应用程序集中起来以便于降低成本并增强安全性——并不适合物联网。组织必须将数据集中到多个分布式的小型数据中心中,在此对数据进行初步的处理并发送到一个中心站点进行额外的处理。数据中心管理员需要在这些区域部署更加具有前瞻性的容量以满足业务发展的需要。”
Patrick McFadin则在自己的博文《 物联网:数据都去了哪里? 》中阐述了一个具体的数据策略解决方案。他认为整个过程可以分为三个阶段:产生数据并通过Internet传递、中央系统收集并组织数据、持续的数据分析与使用。
第一阶段需要决定数据创建的标准以及如何通过网络进行传递。Patrick McFadin认为可以通过>

以上是小编为大家分享的关于物联网时代的大数据策略的相关内容,更多信息可以关注环球青藤分享更多干货

物联网发展的主要前景和趋势包括以下4个方面:
趋势1:人机交互性增强的数据和设备增长 到2019年底,将有约36亿台设备主动连接到Internet并用于日常任务。随着5G的推出,将为更多设备和数据流量打开大门。
趋势2:人工智能再次成为物联网的重要参与者 充分利用数据,需要通过人工智能提供计算机帮助。人工智能是理解收集的大量数据并提高其业务价值所必需的基本要素。人工智能将在以下领域帮助物联网数据分析:数据准备,数据发现,流数据的可视化,数据的时间序列准确性,预测和高级分析以及实时地理空间和位置(后勤数据)。 包括亚马逊,微软和谷歌在内的主要云供应商越来越多地希望基于其AI功能进行竞争。各种初创企业希望通过能够利用机器学习和深度学习的AI算法使企业能够从不断增长的数据量中提取更多的价值。
趋势3:VUI:语音用户界面将成为现实
语音占了我们日常通讯的80%,就像科幻中一样,与机器人交谈应该是常见的通讯方式,例如R2D2,C-3PO和Jarvis。在设置设备、更改设置、发出命令和接收结果中使用语音不仅在智能房屋,工厂中,而且在诸如汽车,可穿戴设备之类的设备之间都是常见的。
趋势4:在物联网上的更多投资
物联网是少数新兴和传统风险投资家都感兴趣的市场之一。智能设备的普及以及客户越来越依赖于使用它们执行许多日常任务,将增加对物联网初创企业投资的兴趣。客户将等待物联网的下一个重大创新,例如可以对您的面部进行分析的智能镜,如果您生病了,可以打电话给您的医生;将结合智能监控摄像头的智能ATM机;可以告诉您如何进食和饮食的智能叉子。吃什么,以及每个人都在睡觉时会关灯的智能床。

经历了互联网、移动互联网,人类正在迈入万物互联、万物智能的世界。5G、IoT、云计算、人工智能成为 社会 关注的对象,数字经济成为政策宣传的重点,各种概念和解释产生,使得当下有很多话题可以讨论。

数字经济背景下,企业竞争最核心的能力是什么。

不同行业发展数据智能的潜力有何不同?

企业如何高效进行物联网应用开发?

企业对云平台的使用体验如何

对于类似问题,阿里云IoT、ICA联盟一直希望与行业人士进行对话。上周,ICA联盟物联网万亿生态伙伴聚合沙龙在杭州举办,活动以“粘合行业碎片,共创IoT基石”为主题,以阿里云IoT云产品为话题,吸引近200名行业人士到场交流。

4位嘉宾依次上台分享

物联网需要化繁为简

物联网产业链很长,覆盖了感知层、网络层、应用层三大层次。它改变了传统的商业运作方式,让商业 社会 变得更加复杂。

首先,物联网让产品变得复杂。增加了传感器、模块等部件,需要进行更多的开发管理。

其次,物联网让需求变得复杂。企业从生产产品变成了提供个性化的服务。

就是这两个变化,让产业体会到很多新的发展痛点。

1 物联网开发过程链路极长,从获客到交付典型过程常常要经历十几个环节。

2 将软件研发、硬件研发、嵌入式研发,云产品的购买,施工/安装/维修费用计算在内,物联网开发成本极高。

3 调查表示目前78%的用户需求为定制化需求,65%的物联网软件需要定制化开发,这导致软件复用性较低。

4 设备联网、用户交互产生海量数据,众多场景亟需数据实时分析、可视化的能力,提升使用效率及用户体验。

新的形势促进了变化的发生,计算力的进步预示着满足更大的信息处理能力,更强的灵活性。

物联网平台在整个产业链中地位,也从当年行业所关注的“要不要上云”,随着企业自身数据资源日渐丰富,应用数据意愿的显著增强,过渡到了“如何高效地上云”。

物联网云平台,由此更直接地承担起IoT产业“基础设施”的角色,为物联网项目的规模化落地减负降压。

阿里云IoT 产品结构

阿里云 IoT 资深产品专家JASON CHEN从各个原子化产品角度,描绘了阿里云IoT的全局样貌。包含物联网 *** 作系统AliOS Things、边缘计算Link Edge、网络管理平台Link WAN、开发平台IoT Studio、物联网设备接入与管理、物联网数据分析、物联网市场Link Market、物联网安全Link Security等功能在内,展现阿里云为各类IoT场景和行业开发者赋能的能力。

将各个基础产品分别阐述,体现出阿里云IoT强化基础设施角色,希望阿里云的产品技术变成合作伙伴解决方案一部分的心态。再次印证阿里云智能总裁张建锋在3月阿里云峰会上所提出的“被集成”口号,阿里云的重要转变已经发生。

以下,我们就将重新认识阿里云IoT云产品。

物模型

阿里云 IoT 技术运营专家薛圆在交流中表示,ICA联盟推出物模型,定义物联网设备模型与属性。通过对任意物联网设备建模,合作伙伴共创设备数据标准模型,确保数据标准的准确性、合理性,实现设备间的互联互通互懂。

类似将拼图碎片整理成更完整的拼图模块,物模型将实现碎片数据结构化、差异模型统一化、烟囱场景联动化、软硬一体标准化的目标,帮助用户缩短开发时间、标准化开发工具。

物联网数据分析

在任何商业活动中,数据都是一种资本,数据分析是可以产生创新收益的手段。

阿里云 IoT 高级产品经理腾春艳在对物联网数据分析产品介绍时表示,阿里云为物联网开发者提供数据分析服务,覆盖了数据存储、清洗、分析及可视化等环节,有效降低数据分析门槛,助力物联网开发。

在空间数据可视化方面,阿里云IoT提供二维、三维空间数据的可视化功能,致力用数据连接真实世界。比如对智能停车场的车场现状、排队数据、收入进行分析;比如定义电子围栏,当物品超出围栏范围时,配置报警;比如在物流追踪、设备管理等物联网低频定位场景下,展示设备轨迹;比如在三维空间可视化需求下,基于阿里云物联网平台构建监控、展示、控制为重点的BIM可视化系统,实现园区、建筑、楼层、房间、设备的逐级可视化。

图:阿里云IoT数据分析产品架构

IoT Studio 物联网应用开发

如前文所述,物联网产业的痛点很多都落在了开发上。阿里云 IoT 产品专家曲文政在演讲中再次阐明IoT Studio作为物联网开发者生产力工具的产品定位与功能。

1 一站式完成云端SaaS 搭建 :用户可以通过IoT Studio轻松搭建出简单IoT SaaS系统,或构建出部分功能集成在原有的SaaS系统中

2 可视化搭建,降低定制化成本 :通过可视化搭建、服务编排的方式让一般嵌入式开发者经过简单培训也可以快速搭建出各种物联网应用;

3 提供AI 等高阶能力: 将高阶能力输出给开发者,增加营收,扩展业务边界;

4 后续提供更多解决方案模版: 通过模版的方式给用户提供即刻可用的IoT SaaS解决方案(包含硬件、嵌入式代码、页面/APP、服务)。

整体而言,IoT Studio作为开发工具,向上承接业务需求帮助用户快速搭建SaaS,向下汇聚能力将阿里体系的能力更快更好地输出给用户,是阿里云IoT产品中承上启下的关键一环。

图:IoT Studio 产品架构

结语

在 汽车 行业,定制化需求增多,产品的敏捷规划、全生命周期运维是厂商的关注焦点;在零售行业,企业追求着精准化营销的目标;在农业,看天吃饭需要向精准化种植转变……

未来的各行各业,在面对各种不确定的因素之时,都希望用数据说话,用数据管理、用数据决策。

在这样的产业愿景之中,阿里云IoT将继续践行技术和商业基础设施的角色,覆盖物联网云管边端开发环节,提供满足各类开发者需要的基础产品,助力合作伙伴创新模式,发展商机。

一、设备监控
像监控或者调节建筑物恒温器这样的事情可以远程完成,甚至可以做到节约能源和简化设施维修程序。公路施工— 拌合站生产质量监控,可以远程监控生产数据,实时生产质量监控
这种物联网应用的美妙之处在于,它很容易实施,容易梳理性能基准,并得到所需的改进。
二、机器和基础设施维护
传感器可以放置在设备和基础设施材料上,例如公路施工,摊铺机和压路机上安装,实现物联网数字化施工,能够实时监测施工质量,减少施工成本。例如:ENH 公路施工质量监测系统,智能压实系统、铁路连续压实系统等等,都属于物联网在基础设施建设中的实例。
三、物流和追踪
运输业现在把传感器安装在移动的卡车和正在运输的各个独立部件上。从一开始中央系统就追踪这些货物直到结束。这么做可以防止货物在边远地区被盗窃,让企业供应链可以保持追踪,因为管理层可以在任何时间点清楚地看到车辆的位置(以及车辆应该在的位置)。
四、集装箱环境
同样是在物流和运输行业,运送装着易腐货物的集装箱是对周围环境条件进行监控的,如果超出温度或者湿度范围传感器会发出警报。此外,当集装箱被弄乱或者密封被破坏的时候,传感器也会发出警报。这个信息是实时通过中央系统直接发送给决策者的,这样情况可以得到补救——即使这些货物是在全球各地的运输途中。
五、机器管理库存
向消费者提供了各种商品的自助服务售卖机和便携式商店,现在可以在特定商品低于再订购水平的时候发送自动补充库存警报。这种做法可以为零售商节约成本,因为他们只需要在机器告诉他们需要补充库存的时候让现场工作人员进行补货。
六、网络数据用于营销
企业可以选择利用自己的分析,追踪客户在网络中的行为,或者他们可以将这个任务外包给在这个领域内有声誉的营销公司。在网站的导航模式中,访客来到或者来自你的网站,访客所使用的设备类型,以及其他关于访客的相关数据,可以聚合起来以更全面地了解。交易数据和物联网数据的结合,将会丰富你的营销分析及预测,可以快速实施。
七、识别危险网站
商业公司提供的安全服务,可以让网络管理员追踪机器对机器的交流,追踪来自公司计算机的互联网网站访问,揭示公司计算机定期访问的“危险”网站和IT地址。实践会降低网络遭受恶意软件和病du入侵的风险。因为这种“观察”服务是从云厂商那里提供的,所以实施简单,企业可以马上开始。
八、无人驾驶卡车
在气候条件恶劣和没有道路基础设施的边远地区,石油和天然气开采行业的企业正在使用无人驾驶卡车,这种卡车可以远程控制和远程通信。这降低了运营费用,因为你不用派人进入该领域,还可以避免在已知极其危险的区域发生事故。
九、WAN监控
企业可以很好地监控和修改他们的网络流量,但是当这个流量通过广域网或者互联网路由的时候,有时候似乎是在他们控制范围之外的。现在位于全球不同地点的办公室的边缘路由器,会显示出显著不同的服务质量,这取决于这个办公室是在新加坡或者里约热内卢。如果IT希望更好地监控互联网流量,那么可以购买商业服务,实时显示哪些地方放缓了,甚至可以重新路由流量以保持通信畅通。
十、GPS数据聚合
GPS数据聚合是应用最广泛的物联网数据收集方法之一。企业喜欢它是因为可以让他们统计人口数据、天气数据、基础结构数据、图形数据和任何可以并定位到特定地理位置的数据类型。很多厂商可以帮助你,以对业务有意义的方式聚合GPS数据。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/10691941.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-10
下一篇 2023-05-10

发表评论

登录后才能评论

评论列表(0条)

保存