数据采集位于工业互联网体系架构中的哪一模块?

数据采集位于工业互联网体系架构中的哪一模块?,第1张

工业互联网体系架构。根据查询相关资料信息显示,在工业互联网体系架构中,数据采集属于工业物联网的范畴,是工业互联网体系架构的一个重要模块。工业物联网是指基于物联网技术,将工业设备、工业数据、工业控制等资源进行互联互通和数据共享,实现生产过程全面数字化、智能化和自动化的一种新型工业模式。在工业物联网中,数据采集是指通过各种传感器、监测设备等实现对生产过程中各种物理量、参数、状态等信息的获取和采集,并将这些数据传输到云平台或数据中心进行处理和分析。

物联网是新一代信息技术的重要组成部分,也是"信息化"时代的重要发展阶段。其英文名称是:"Internet of things(IoT)"。顾名思义,物联网就是物物相连的互联网。这有两层意思:其一,物联网的核心和基础仍然是互联网,是在互联网基础上的延伸和扩展的网络;其二,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通信,也就是物物相息。物联网通过智能感知、识别技术与普适计算等通信感知技术,广泛应用于网络的融合中,也因此被称为继计算机、互联网之后世界信息产业发展的第三次浪潮。物联网是互联网的应用拓展,与其说物联网是网络,不如说物联网是业务和应用。因此,应用创新是物联网发展的核心,以用户体验为核心的创新20是物联网发展的灵魂。
活点定义:利用局部网络或互联网等通信技术把传感器、控制器、机器、人员和物等通过新的方式联在一起,形成人与物、物与物相联,实现信息化、远程管理控制和智能化的网络。物联网是互联网的延伸,它包括互联网及互联网上所有的资源,兼容互联网所有的应用,但物联网中所有的元素(所有的设备、资源及通信等)都是个性化和私有化。
百度搜索更详细

工业物联网,通俗来讲就是智能工业,将具有感知、监控能力的各类采集、控制传感器,以及移动通信、智能分析等技术不断融入到工业生产过程中的各环节,从而大幅提高制造效‎率,改善产品质量,降低产品成本和资‎源消耗,最终取代传统工‎业。国内也有主攻这一块的企业——成‎都万创‎科‎技。万创多年来持续专注于工业物联整体解决方案和智慧化工业场景打造,提供从边缘智能硬件、传感器(设备层)、工业通讯设备(网关层)、到云平台Pa‎aS(云服务层)等多种物联产品及相应服务,实现了对工业物联网基础架构的全面覆盖。

顾名思义,物联网就是物物相连的互联网。这有两层意思:其一,物联网的核心和基础仍然是互联网,是在互联网基础上的延伸和扩展的网络;其二,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通信,也就是物物相息。

在物联网应用中有三项关键技术

1、传感器技术:这也是计算机应用中的关键技术。大家都知道,到目前为止绝大部分计算机处理的都是数字信号。自从有计算机以来就需要传感器把模拟信号转换成数字信号计算机才能处理。

2、RFID标签:也是一种传感器技术,RFID技术是融合了无线射频技术和嵌入式技术为一体的综合技术,RFID在自动识别、物品物流管理有着广阔的应用前景。

3、嵌入式系统技术:是综合了计算机软硬件、传感器技术、集成电路技术、电子应用技术为一体的复杂技术。经过几十年的演变,以嵌入式系统为特征的智能终端产品随处可见;小到人们身边的MP3,大到航天航空的卫星系统。嵌入式系统正在改变着人们的生活,推动着工业生产以及国防工业的发展。如果把物联网用人体做一个简单比喻,传感器相当于人的眼睛、鼻子、皮肤等感官,网络就是神经系统用来传递信息,嵌入式系统则是人的大脑,在接收到信息后要进行分类处理。这个例子很形象的描述了传感器、嵌入式系统在物联网中的位置与作用。

关键领域

RFID;

传感网;

M2M;

两化融合。

用途范围

物联网用途广泛,遍及智能交通、环境保护、政府工作、公共安全、平安家居、智能消防、工业监测、环境监测、路灯照明管控、景观照明管控、楼宇照明管控、广场照明管控、老人护理、个人健康、花卉栽培、水系监测、食品溯源、敌情侦查和情报搜集等多个领域。

工业物联网起源:
工业领域的生产设备在以往是没有主动联网功能的,导致生产数据、物料消耗、产品跟踪全部由人工来完成,效率低、错漏多,而且随着产品迭代速度越来越快,需要制造企业拥有极强的敏捷性(例如商家插单生产,可以随时调整生产计划)
物联网的作用就在于能通过硬件技术将设备的生产数据实时获取(这在之前是不可能的),最后经过大数据分析呈现在用户的手机端(例如物料消耗了多少,库存还有多少,每条生产线的生产进度是多少),一旦客户调整需求/插单,就可以通过实时获得的数据合理调整生产计划,达到柔性生产。
工业物联网由大量相连的工业系统所组成,这些系统会相互通讯,并协调数据分析与行动,有助于提升工业效能、有利于整个社会。透过传感器与致动器衔接数字世界与实体世界的工业级系统,可解决更为复杂的控制问题。目前各种系统,正在结合巨量模拟数据,解决方案,希望能透过资料与分析取得更深入的知识。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/10693524.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-10
下一篇 2023-05-10

发表评论

登录后才能评论

评论列表(0条)

保存