在大型工业系统中,集成是一项越来越大的挑战。过去,工业系统集成主要集中在设备,网络和其他硬件物理层。大多数情况下,软件已配置并包含在特定设备中。
利用工业物联网及其无处不在的网络连接和虚拟化,系统集成挑战现在包括在物理层上运行的软件。
DDS是一种工业物联网连接标准,专门解决工业系统中不断增长的软件集成挑战。例如,DDS用于石油钻井平台自动化平台。这些平台的开发旨在通过集成钻机上的所有子系统并使用软件来驱动钻井过程,从而大大简化钻井过程。
自动化平台需要在控制和流程级别上增加分布式软件。一旦技术人员监控并控制了钻机上的泥浆泵子系统,并与运行其他子系统(如钻头)的其他技术人员协调。使用自动化平台,有一些计算节点运行管理两个子系统的软件应用程序。
这些应用程序需要以安全且可扩展的方式在数十个到数百个软件应用程序之间以高速率共享数据。这就是使用DDS(工业互联网联盟(IIC)建议的核心IIoT连接标准之一)已证明其价值的地方。
OPC UA是工业自动化中用于解决器件集成挑战的另一种IIC核心连接标准。OPC UA简化了需要在制造系统中连接的设备和控制器的配置。它还提供有助于解决应用程序和设备之间语义互 *** 作性的信息模型(如机床的MTConnext)。
未来的过程控制,楼宇自动化,石油钻井平台自动化等工业自动化系统将集成在软件和设备级别。集成DDS和OPC UA以支持这些需求是有意义的。
一种集成方法是基于对象管理组的标准使用OPC UA-DDS网关。DDS扮演核心总线的角色,简化了分布式软件应用程序的集成以及它们之间的数据和服务调用共享。
OPC UA设备和应用程序使用新标准化的OPC UA-DDS网关桥接到DDS数据总线。通过这种方法,可以在软件和设备级别集成具有OPC UA设备和应用程序的软件密集型工业自动化系统。
将来,通过将OPC UA的客户端 、服务器模型和域信息模型与DDS经过验证的发布与技术相结合,可以使用更紧密的集成,将DDS和OPC UA结合在一起。这种方法在DDS和OPC UA之上提供了一个API层,以更好地解决集成挑战。
它将扩展到数千个节点,消除对服务器的依赖,提供灵活的物理层实现并实现细粒度的安全性。
这两种集成方法中哪一种对特定的工业系统有意义取决于用例和整体系统要求。实际上,这两种方法可以根据需要在同一系统中使用。无论如何,将DDS的软件集成强度与OPC UA的设备集成强度相结合是一条充满希望的前进道路。
1、工业物联网设备基于工业环境制造,要求比消费物联网高。
工业物联网的设备位于工业环境中,或许是在工厂车间内,也有可能在高速运行的铁路系统里,或者在酒店餐厅里,或市政照明系统里面,也有可能在电网里面。相比消费级物联网,工业物联网有着更加严格的要求,包括无时无刻的控制,坚如磐石的安全性能,复杂环境下(无论是极热或极冷,多尘,潮湿,嘈杂,不方便)运行的能力,以及无人自动化的 *** 作能力。不像大多数近期设计的消费者级别的设备,现有的很多工业设备已经运行了很长一段时间,通常以几十年衡量。
2、工业物联网系统必须具有可扩展性。
由于工业物联网应用环境更为复杂,使得工业物联网对扩展性的要求较高,比消费者家庭自动化项目复杂得多。工业物联网系统会产生数十亿个数据点,必须考虑将信息从传感器传输到最终目的地的方式 ——通常是工业控制系统,如SCADA(监控和数据采集) 平台。而消费者物联网应用涉及较少的设备和数据点,如何最大限度地减少中央服务器的吞吐量,并不算什么大问题。
3、工业物联网安全要求更高。
根据Hewlett Packard研究,有70%的物联网设备存在安全漏洞。如攻击者获得了客户财产相关的实时视频资料,那么对智能家居进行黑客攻击可能会对个人隐私造成重大影响,但网络入侵的影响是局部的。而工业物联网中就不同,这些系统通常要将传感器连接到关键的基础设施资源,如发电厂和水资源管理设施,那么其潜在的影响要严重得多。因此,工业物联网必须满足更严苛的网络安全要求,才能获得批准使用。
随着工业互联网的不断深化,必然会造成MOM/MES、ERP等传统工业应用和系统的形态发生天翻地覆的改变。而制造业分析、生产分析正在成为发达国家争相进入的一个热门领域,当然,这里的“分析”是完全不同于传统工业场景下的“统计分析”、“故障分析”等,这是一种结合了物联网、大数据和人工智能等先进技术的新型的“大数据分析”。(内容转载自寄云科技)工业大数据分析应用的独特之处如果细究其实是很多的,通过提供更具针对性和可 *** 作性的见解,数据分析可以简化制造运营,从而帮助企业持续优化生产线。以下是在制造业中使用数据分析的六种场景,它们可以显著改善整个运营!
一、从被动式到主动式维修
制造系统往往在超负荷状态下运行,任何工作中断都可能导致螺旋式上升的损失。即便如此,大部分公司采用的解决停机问题的最佳方案只不过是等故障发生后再解决的方式。到目前为止,这种反应性系统还在被采用,是因为显然缺少更好的替代方案。通过整合大数据分析,企业可以开发能够持续衡量自身维修需求的制造系统。这种特性赋予了制造系统在许多情况下进行自我修复的能力,并为不太容易解决的情况提供早期警报。更重要的是,数据分析可以洞悉哪些组件最常发生故障,从而帮您从被动式维修提升为主动式维修。
二、提高机器利用率和有效性
制造商遇到的最大问题之一是进入低效运转的境况。虽然主观上他们希望构建高效的制造链,但由于安装不当、使用不当或仅缺乏停机时间协调,各种不同的因素都可能会成为降低生产线整体效率中的关键。
通过将现有的物联网系统与强大的制造业预测分析相结合,企业可以实时洞察其生产线在微观和宏观上的运行状况。追踪单台机器的停机时间如何影响整个制造链,或者探索不同的配置如何提高整体效率,这不是“痴人说梦”,而是必须要做到的。生成可 *** 作的数据以使企业在整个制造过程中实现真正的改进,是将分析应用于制造业的主要优势。
三、更好地产品需求预测
每个制造商都知道他们不仅在为当前已有的订单生产产品,而且还在为不久的将来可能出现的需求订单生产产品。需求预测很重要,因为它们能够指导生产链,如果预测失误,可能产生“一边是强劲的销售量”,而“另一边却是工厂缺乏大量的相应配件库存,无法满足需求”。对于大多数公司而言,预测是基于前几年的历史数据价值,而不是基于更具可行性的前瞻性数据。但是,制造商可以将现有数据与预测分析相结合,以更精确地预测购买趋势。这些预测性见解不仅基于先前的销售,还基于流程以及生产线的运行状况,从而可以更明智地进行风险管理并减少生产浪费。
四质量预测提高良率
质检是对已经生产出来的产品的质量检测,一方面可以保障企业能够对外提供合格产品,另一方面也能通过质检反映生产过程的疏漏。质检出的残次品无论多少对企业都是损失,如果能够在产品产出之前就通过产线状态及相关生产数据分析预测出产品质量,并将生产流程调整为最佳产出状态以避免残次品,这就是质量预测。质量预测的场景在半导体等高端制造领域是刚需,属于虚拟量测的范畴。
虚拟量测依赖于完善的物联网系统及强大的数据接入、存储和分析等能力,以往囿于技术水平虚拟量测只能基于有限的统计分析手段,而现在有了大数据、物联网等先进技术的支持,基于大数据分析的虚拟量测已经成为现实。
五、全面掌控制造供应链
采购是大多数公司供应链的标准组成部分,但同时它也是一个很容易被忽略的地方,尤其当企业忙于改善其他方面时。从一个有问题的供应商或者每个配件贵几分钱的供应商开始检查,当然一个配件几分钱的差额可能看起来无足轻重,但是,如果企业每天生产数千种产品,那么这里或那里的一分钱可能在总账簿上积少成多会变成数千元。数据分析可以帮助制造企业了解生产生命周期中每个组件的成本和效率,甚至可以追溯到企业供应商的运输车辆。通过可视化各种因素如何影响最终结果,高级分析可以帮助企业做出更好的决策。如果某些配件经常出现故障,或者没有完全满足生产需求,那么在这些不起眼的问题酿成严重后果之前,制造数据分析将能够帮助企业发现它们。
六、更好地物流仓储管理
制造过程中另一个经常被忽视的方面是仓储。一旦产品准备好运输后,必须先放入仓库,然后再出发前往目的地。在这一阶段,可谓是分秒必争。尤其是在这个日益接受“刚刚好”和零库存模型的世界中。
管理仓库可不是简单地为等待运输的产品寻找空间。建立有效的仓储结构,更好的产品流程管理和最有效的补货程序可以改善运营效率实现盈利。先进的分析功能可以让企业更容易领会改善库存的方法进而更好地管理仓库。
生产分析软件的本质是收集和处理海量数据,并从中发现可用的见解。其通过自动化的手段对制造企业内外部各类数据进行采集、处理,同时,它的分析结果、可视化产出也是可以跨越多种企业架构,为上至公司首席执行官、下至车间经理提供符合各自权限的服务。而亿信华辰的数据分析软件ABI正好可以完美解决各种数据分析问题。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)