6.简答题-|||-简述物联网架构中智能公交实例中的四个层次-|||-分别指什么?(感

6.简答题-|||-简述物联网架构中智能公交实例中的四个层次-|||-分别指什么?(感,第1张

物联网架构中智能公交实例中的四个层次分别是感知层、网络层、数据处理层和应用层。

感知层:感知层是物联网架构的最底层,包括传感器、执行器等各类物联网设备,用于采集各种物理量、环境数据和状态信息等。在智能公交实例中,感知层包括GPS定位、车载摄像头、气象传感器、车载计算机等设备,用于实时采集公交车运行的位置、状态、路况、天气等信息。

网络层:网络层是物联网的中间层,主要负责数据的传输和处理,将感知层采集到的数据传输到数据处理层进行分析和处理。在智能公交实例中,网络层包括无线通信网络和互联网,用于连接各个公交车辆和数据处理中心。

数据处理层:数据处理层是物联网实现数据智能分析和决策的核心层次,主要由数据存储、数据分析、数据挖掘等组成,用于对感知层采集到的海量数据进行处理和分析。在智能公交实例中,数据处理层包括云端服务器、物联网平台等设施,用于对公交车的实时位置、车速、路况等信息进行处理、分析和预测。

应用层:应用层是物联网架构的最高层,主要是由各种智能应用程序组成,用于实现物联网数据的应用和展示。在智能公交实例中,应用层包括公交车调度和管理系统、智能导航系统、乘客安全监控系统等应用程序,用于指导公交车的运行、改善乘客出行体验等。

总之,物联网架构中智能公交实例的四个层次,构成了一个完整的物联网生态系统,涵盖了物联网系统的各个方面,为智慧城市的建设和公共交通业的发展提供了有力的支持。

可以这样说,也可以这样理解,因为现在我们生活在数据的信息时代,一切都以数据为准,随着物联网技术的逐步发展和应用,大量传感器和RFID被广泛应用于生活中的各种文章中,给现实世界带来的最大变化是一切都可以数字化,这使人们意识到世界的本质是数据,数据将逐渐彻底地改变世界,大数据是分析和利用物联网海量数据的必要技术。


在物联网时代,一切都可以数字化,数据就是资源和财富,大数据分析已成为业务中的关键要素。基于数据的分析、监控和信息服务变得越来越普遍,在各行各业中,越来越多的数据驱动型企业需要对数据进行实时吸收和分析,以形成正确的判断和决策,大数据正在成为IT行业的主导地位,基于应用和服务的物联网将促进大数据的更广泛使用。

由于物联网数据是非结构化,分段和时空的,因此需要新的数据存储和处理技术,大数据技术可以支持上海数据在物联网中的更深入应用。物联网帮助从感知层,传输层,平台层和应用层收集大量数据,然后将这些海量数据传输到云计算平台进行分析和处理,物联网产生的大数据处理过程可以概括为三个基本步骤。

数据收集,数据存储和数据分析,数据收集和存储是基本功能,大数据时代的真正价值在于数据分析。物联网数据分析的挑战是将新的物联网数据与现有数据库集成,物联网的大数据应用空间广阔,大数据和物联网的结合充满了无限的可能性。随着物联网,互联网,云计算平台等的联合应用,物联网上的大数据可以帮助人们构建智能监控模型,智能分析模型。

物联网的关键技术包括有识别和感知技术,网络与通信技术,数据挖掘与融合技术。细分一点还包括设备兼容技术、网络技术、信息处理技术、安全技术等。
1识别和感知技术
最常见的就是生活的的二维码了,通过二维码,我们可以和,网址,软件,整个世界联系起来。
2网络与通信技术
包括短距离无线通信技术和远程通信技术。短距离无线通信技术包括 NFC(手机给公交卡充值),蓝牙,WiFi,RFID(公交卡)等。远程通信技术包括互联网,2G/3G/4G 移动通信网络,卫星通信网络等。
3数据挖掘与融合技术
物联网中存在的大量数据需要整合,处理和挖掘,需要与云计算和大数据结合。

1高效分布式
必须是高效的分布式系统。物联网产生的数据量巨大,仅中国而言,就有5亿多台智能电表,每台电表每隔15分钟采集一次数据,一天全国智能电表就会产生500多亿条记录。这么大的数据量,任何一台服务器都无能力处理,因此处理系统必须是分布式的,水平扩展的。为降低成本,一个节点的处理性能必须是高效的,需要支持数据的快速写入和快速查询。
2实时处理
必须是实时处理的系统。互联网大数据处理,大家所熟悉的场景是用户画像、推荐系统、舆情分析等等,这些场景并不需要什么实时性,批处理即可。但是对于物联网场景,需要基于采集的数据做实时预警、决策,延时要控制在秒级以内。如果计算没有实时性,物联网的商业价值就大打折扣。
3高可靠性
需要运营商级别的高可靠服务。物联网系统对接的往往是生产、经营系统,如果数据处理系统宕机,直接导致停产,产生经济有损失、导致对终端消费者的服务无法正常提供。比如智能电表,如果系统出问题,直接导致的是千家万户无法正常用电。因此物联网大数据系统必须是高可靠的,必须支持数据实时备份,必须支持异地容灾,必须支持软件、硬件在线升级,必须支持在线IDC机房迁移,否则服务一定有被中断的可能。
4高效缓存
需要高效的缓存功能。绝大部分场景,都需要能快速获取设备当前状态或其他信息,用以报警、大屏展示或其他。系统需要提供一高效机制,让用户可以获取全部、或符合过滤条件的部分设备的最新状态。
5实时流式计算
需要实时流式计算。各种实时预警或预测已经不是简单的基于某一个阈值进行,而是需要通过将一个或多个设备产生的数据流进行实时聚合计算,不只是基于一个时间点、而是基于一个时间窗口进行计算。不仅如此,计算的需求也相当复杂,因场景而异,应容许用户自定义函数进行计算。
6数据订阅
需要支持数据订阅。与通用大数据平台比较一致,同一组数据往往有很多应用都需要,因此系统应该提供订阅功能,只要有新的数据更新,就应该实时提醒应用。而且这个订阅也应该是个性化的,容许应用设置过滤条件,比如只订阅某个物理量五分钟的平均值。
7和历史数据处理合二为一
实时数据和历史数据的处理要合二为一。实时数据在缓存里,历史数据在持久化存储介质里,而且可能依据时长,保留在不同存储介质里。系统应该隐藏背后的存储,给用户和应用呈现的是同一个接口和界面。无论是访问新采集的数据还是十年前的老数据,除输入的时间参数不同之外,其余应该是一样的。
8数据持续稳定写入
需要保证数据能持续稳定写入。对于物联网系统,数据流量往往是平稳的,因此数据写入所需要的资源往往是可以估算的。但是变化的是查询、分析,特别是即席查询,有可能耗费很大的系统资源,不可控。因此系统必须保证分配足够的资源以确保数据能够写入系统而不被丢失。准确的说,系统必须是一个写优先系统。
9数据多维度分析
需要对数据支持灵活的多维度分析。对于联网设备产生的数据,需要进行各种维度的统计分析,比如从设备所处的地域进行分析,从设备的型号、供应商进行分析,从设备所使用的人员进行分析等等。而且这些维度的分析是无法事先想好的,而是在实际运营过程中,根据业务发展的需求定下来的。因此物联网大数据系统需要一个灵活的机制增加某个维度的分析。
10支持数据计算
需要支持数据降频、插值、特殊函数计算等 *** 作。原始数据的采集可能频次挺高,但具体分析时,往往不需要对原始收据进行,而是数据降频之后。系统需要提供高效的数据降频 *** 作。设备是很难同步的,不同设备采集数据的时间点是很难对齐的,因此分析一个特定时间点的值,往往需要插值才能解决,系统需要提供线性插值、设置固定值等多种插值策略才行。工业互联网里,除通用的统计 *** 作之外,往往还需要支持一些特殊函数,比如时间加权平均。
11即席分析和查询
需要支持即席分析和查询。为提高大数据分析师的工作效率,系统应该提供一命令行工具或容许用户通过其他工具,执行SQL查询,而不是非要通过编程接口。查询分析的结果可以很方便的导出,再制作成各种图标。
12灵活数据管理策略
需要提供灵活的数据管理策略。一个大的系统,采集的数据种类繁多,而且除采集的原始数据外,还有大量的衍生数据。这些数据各自有不同的特点,有的采集频次高,有的要求保留时间长,有的需要多个副本以保证更高的安全性,有的需要能快速访问。因此物联网大数据平台必须提供多种策略,让用户可以根据特点进行选择和配置,而且各种策略并存。
13开放的系统
必须是开放的。系统需要支持业界流行的标准SQL,提供各种语言开发接口,包括C/C++,Java,Go,Python,RESTful等等,也需要支持Spark,R,Matlab等等,方便集成各种机器学习、人工智能算法或其他应用,让大数据处理平台能够不断扩展,而不是成为一个孤岛。
14支持异构环境
系统必须支持异构环境。大数据平台的搭建是一个长期的工作,每个批次采购的服务器和存储设备都会不一样,系统必须支持各种档次、各种不同配置的服务器和存储设备并存。
15支持边云协同
需要支持边云协同。要有一套灵活的机制将边缘计算节点的数据上传到云端,根据具体需要,可以将原始数据,或加工计算后的数据,或仅仅符合过滤条件的数据同步到云端,而且随时可以取消,更改策略。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/10697219.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-10
下一篇 2023-05-10

发表评论

登录后才能评论

评论列表(0条)

保存