区域 | 加快推动江苏省物联网产业高质量发展

区域 | 加快推动江苏省物联网产业高质量发展,第1张

作者:郑琼洁 刘 勇

近年来江苏省物联网产业规模保持25%以上的增长率,物联网产业整体规模位居全国前列。截至2019年,全省物联网相关产业规模近7000亿元,形成了以支撑层、感知层、传输层、平台层和应用层为代表的物联网产业结构。其中,应用层的占比不断增加,涌现出一批有技术、有市场、上规模的物联网企业,全省物联网企业已超3000家,年销售收入10亿元以上的企业达到40余家,从业人员达到30余万人。江苏物联网产业发展先发优势不断凸显、规模效应与集聚效应不断凸显、产业布局持续优化、产业链条不断延展、骨干企业的龙头效应不断显现,自主创新能力不断增强,尤其是在国际物联网产业标准制定中占据了重要的地位,已成为江苏产业发展的高地和区域名片。

与此同时,有三大因素制约江苏物联网产业的发展。

(一)技术与市场对接不畅,骨干企业创新带动力不强

近年来,江苏物联网企业数量迅速攀升,物联网技术研发能力也大幅提升,但从企业的盈利情况看,有近五成的中小企业处于亏损或不盈利状态,这些企业的可持续发展能力较弱,主要原因是这些企业的技术与市场无法实现有效对接,存在技术市场化和应用推广难的问题。从江苏物联网产业的总体来看,其产业总体规模和企业的规模较小,缺少产业发展带动力强的上游骨干企业,尤其缺少“专尖特精”的物联网企业。骨干企业带动作用不强。在传感器环节,缺乏具有自主知识产权的创新型骨干企业,在系统集成环节,缺乏具有软硬件、网络、平台、应用流程耦合的一体化高端综合集成服务能力的龙头企业和大型服务商。同时龙头和骨干企业与产业链相关企业合作不够紧密,技术与市场对接不畅,许多物联网产品和技术处于产业链的低端,核心技术链和产业链尚未形成,整体核心竞争力不强。

(二)核心技术亟待突破,标准化建设有待加强

江苏虽然是我国物联网产业发展的先行区和物联网产业发展的重要示范区,但与国外发达国家相比仍存在一定的差距,主要表现在:规模化产能较小、核心技术不强、处于产业链的低端,感知与智能处理产业与国外差距较大。核心芯片、基础性系统、基础性架构等关键领域与国外相比存在较大差距,中高端传感器依赖进口,智能处理和云计算的基础架构由发达国家主导,缺乏能实现硬件、物联网、网络、平台、应用和业务流程端到端大系统综合集成企业,智能和微型传感器、超高频和微波射频识别(RFID)、地理位置感知等感知技术,以及近距离无线通信、低功耗传感网节点、人机/机器智能交互(M2M)终端、异构网络融合、网络管理等传输技术、基于MEMS 工艺、薄膜工艺技术形成的敏感芯片等相关技术研发水平和标准制定工作落后。物联网的整体研发能力不强,大多数领域的核心技术尚处在研发阶段,从物联网核心架构到各层的技术体制与产品接口大多未实现标准化,物联网标准化工作尚处于起步阶段,标准化建设有待于进一步加强。

(三)研发投入力度不够,创新人才不足

物联网产业技术研发需要投资大量的资金和人才。在研发资金投入方面,与广东(深圳市、广州市)相比,江苏每年对物联网产业发展资金投入力度不大,对物联网企业研发支撑不足,同时与广东企业(腾讯、华为、中兴等企业)相比,江苏物联网企业研发经费投入占比整体较小。在创新人才支持方面,与广东相比,江苏物联网产业发展人才引培力度较小,同时也存在着人才引培政策制度不完善和不够落地、对稀缺高端人才的招引和需求量最大的中端人才的引流不足、一流的人才梯队缺失等问题。

为此,建议从以下三方面入手推动江苏省物联网产业高质量发展。

(一)增强龙头效应,打造产业核心技术创新高地

一是打造一流物联网创新企业。大力支持引进国内外龙头企业,鼓励支持企业进行产业前瞻性与共性关键技术创新和应用试点创新,鼓励企业树立品牌意识,打造一批物联网行业的龙头和骨干企业,突出龙头骨干引领作用,建设一流创新企业。通过“以评促建”和“以评促改”,完善企业的评价考核体系,加大核心技术自主可控程度、研发成果质量、创新辐射带动作用等指标的权重,引导龙头骨干企业加大研发投入,优化研发支出结构,联合高校院所加强“卡脖子”技术相关的基础研究和应用基础研究,加快提升攻关引领能力。二是建设物联网产业重大创新平台。强化企业主体创新地位,鼓励重点领域龙头企业联合产业链企业开展协同创新,重点在物联网领域突破一批“卡脖子”技术和“杀手锏”技术。加快建设江苏物联网创新促进中心、国家高性能计算应用技术创新中心、江苏省先进封装与系统集成制造业创新中心、国家传感网工程技术研究中心等一批国家级、省部级重大创新平台。加强与高校院所合作对接,协同开展基础研究和技术攻关。三是提升物联网产业链协同能力。壮大产业集群,带动民营企业创新能力建设。推动产业集群式发展,强化企业专业化协作和配套能力。围绕“卡脖子”技术攻关,支持民企广泛参与龙头、骨干企业和高校院所等牵头的项目,组建创新联合体,加快形成强协同、弱耦合的创新生态。根据任务体量和条件要求,鼓励民企牵头申报。同时,通过完善 科技 创新政策,加强创新服务供给,激发创新创业活力,引导民企加大研发投入,完善技术创新体系,推动“小而美、小而精”的 科技 型中小企业蓬勃发展,与“国家队”之间形成优势互补的局面。


(二)强化技术与市场协同,搭建 科技 创新协同攻关体系

攻破物联网关键技术,提升物联网产业核心能力需要政府、企业、高校、科研机构、 社会 中介服务机构和个人等的创新行为主体,以及创新资源和创新环境协同实现。一是提升技术体系化能力,实施锻“长板”、补“短板”相结合的系统性战略布局。面对日益严峻的外部环境挑战,在推进物联网技术跨界创新时,应从战略高度、以战略思维系统谋划 科技 创新布局,优化 科技 计划,形成锻“长板”、补“短板”相结合的系统性战略部署路径规划,形成多维度、多循环的关键技术供给体系和对内对外开放合作格局。二是提高组织体系化能力,打通知识突破与商业实现的价值链接。对于物联网产业关键核心技术的攻关,要 探索 大纵深、跨学科的研发模式,打通产学研创新链、产业链、价值链,拓展包括产业大基金在内的各类创新投资渠道,实现集科学发现、技术跃升和产业化方向于一体的突破,实现知识突破与未来面向商用生态的有效衔接。聚焦全球竞争的源头技术供给,不仅是追逐“国际发表热点”,更需要形成核心技术突破后的持续改良机制,及时跨越技术商用的成熟度阈值。实现知识突破与商业实现的价值衔接,需要改革当前重大 科技 创新工程的组织实施方式。三是鼓励重大攻关计划的创新单元之间的知识共享。鼓励物联网创新能力强的创新型领军企业,与其他创新主体形成协同互动。在核心技术攻关上,借鉴重大公共创新平台的成功经验,制定权责分明的知识产权共享和保护机制,鼓励各类战略 科技 力量形成优势资源平台的吸引力和合作凝聚力,引领对领域的核心科学问题和共性技术的持续攻关。

(三)加大要素投入,优化物联网产业发展政策环境

一是加大资金投入,创新财政资金支持政策。统筹利用现有资金资源,加大对物联网产业发展的支持。采用政府引导、市场化运作方式, 探索 建立国家物联网产业专项投资基金。鼓励运用政府和 社会 资本合作模式,引导 社会 资本参与重大项目建设。深化产融合作,在风险可控的前提下,推动商业银行创新信贷产品和金融服务,推动政策性银行在国家规定的业务范围内,根据自身职能定位为符合条件的企业提供信贷支持。健全融资担保体系,完善风险补偿机制,鼓励金融机构开展股权抵押、知识产权质押业务,试点信用保险、 科技 保险,研究合同质押、资质抵押的法律地位和可行性。二是完善人才引育体系,打造人才技术梯队。鼓励高校面向产业发展需求,优化专业设置和人才培养方案,培育物联网和信息技术人才力量和后备干部。支持高校院所高层次人才到企业任职或兼职,选聘优秀 科技 企业家到高校担任“产业教授”,实现人才双向流动。鼓励产业园区、企业、实训(实习)机构,以及江苏高校、职业(技工)院校,联合或独立开展江苏物联网集群产才融合示范基地评估,打造一批特色化示范性物联网学院、物联网实训(实习)基地。三是加大对外宣传,提升政策效度。通过举办展会、大赛等多种形式搭建企业技术交流平台为本地企业营造良好的发展氛围。力争更多国家级、省级改革试点、创新平台落户江苏,进一步强化产业发展和企业需求导向,进一步加大宣传力度,对外推广重点项目、产品,帮助企业快速发展,进一步彰显全链扶持和分类施策原则,不断提升新政策的覆盖面、含金量、精准度。

作者单位:南京市 社会 科学院、江苏省扬子江创新型城市研究院/江南大学中国物联网发展战略研究基地

本文刊于《中国发展观察》杂志2021年第3-4期合刊


《中国发展观察》由国务院发展研究中心主管、中国发展出版社主办、中国发展观察杂志社编辑出版,是以发展为主线、以经济为重点的综合性半月刊,开设有战略、宏观、区域、世界、法治、 社会 、文化、前沿、产业、智库论坛等栏目,具有较强的前瞻性、权威性、可读性。《中国发展观察》在学术理论界、各级党政机关以及企业家阶层拥有广泛而稳固的读者群,并被中国 社会 科学院、国家发展改革委等重要机构和中国知网、维普资讯等权威数据库列为核心期刊或来源期刊。

中国发展观察杂志社:

北京经济技术开发区荣华中路22号院亦城财富中心A座7层(邮编:100176)

网址:>

人工智能是未来的大趋势。机器翻译,智能控制,专家系统,机器人学,语言和图像理解,遗传编程机器人工厂,自动程序设计,航天应用,庞大的信息处理,储存与管理,执行化合生命体无法执行的或复杂或规模庞大的任务等等。竞争压力是会有的,这恰恰体现了人工智能专业的热门,所以学习人工智能方面的专业是很不错的。虽然这些不是人人都能干的,但是对于我国乃至世界来讲人才也是非常多的,所以竞争压力肯定会有的。必须的不断学习,探索新知。

拓展补充:

对于中国而言,人工智能的发展是一个历史性的战略机遇,对缓解未来人口老龄化压力、应对可持续发展挑战以及促进经济结构转型升级至关重要。

虽然“人工智能”(AI)已经成为一个几乎人人皆知的概念,但对人工智能的定义还没有达成普遍共识。传统的人工智能发展思路是研究人类如何产生智能,然后让机器学习人的思考方式和行为。现代人工智能概念的提出者约翰·麦卡锡认为,机器不一定需要像人一样思考才能获得智能,重点是让机器能够解决人脑所能解决的问题。

第四次工业革命正在来临,而人工智能已经从科幻逐步走入现实。从1956年人工智能这个概念被首次提出以来,人工智能的发展几经沉浮。随着核心算法的突破、计算能力的迅速提高、以及海量互联网数据的支撑,人工智能终于在21世纪的第二个十年里迎来质的飞跃,成为全球瞩目的科技焦点。自从2016年AIphaGo战胜李世石之后,全球对于人工智能发展的兴奋与担忧交织难分。

即使如此,世界各国已经认识到人工智能是未来国家之间竞争的关键赛场,因而纷纷开始部署人工智能发展战略,以期占领新一轮科技革命的历史高点。对于中国而言,人工智能的发展是一个历史性的战略机遇,对缓解未来人口老龄化压力、应对可持续发展挑战以及促进经济结构转型升级至关重要。

本文从科技产出与人才投入、产业发展和市场应用、发展战略和政策环境等方面描绘中国人工智能的发展面貌。

科技产出与人才投入

1 论文产出 : 中国人工智能论文总量和高被引论文数量都是世界第一。中国在人工智能领域论文的全球占比从 1997 年 426% 增长至2017 年的 2768%,遥遥领先其他国家。高校是人工智能论文产出的绝对主力,在全球论文产出百强机构中,87家为高校。中国顶尖高校的人工智能论文产出在全球范围内都表现得十分出众。不仅如此,中国的高被引论文呈现出快速增长的趋势,并在 2013 年超过美国成为世界第一。但在全球企业论文产出排行中,中国只有国家电网公司的排名进入全球前 20 位。从学科分布看,计算机科学、工程和自动控制系统是人工智能论文分布最多的学科。国际合作对人工智能论文产出的影响十分明显,高水平论文里中国通过国际合作而发表的占比高达 4264% 。

2 专利申请 : 中国专利数量略微领先于美国和日本,国家电网表现突出。中国已经成为全球人工智能专利布局最多的国家,数量略微领先于美国和日本,而中美日三国占全球总体专利公开数量的 74%。全球专利申请主要集中在语音识别、图像识别、机器人以及机器学习等细分方向。中国人工智能专利持有数量前 30 名的机构中,科研院所与大学和企业的表现相当,其技术发明数量占比分别为 52% 和48%。企业中的主要专利权人表现差异巨大,尤其是中国国家电网近五年的人工智能相关技术发展迅速,在国内布局专利技术量远高于其他专利权人,而且在全球企业排名中位列第四。中国的专利技术集中在数据处理系统和数字信息传输等领域,其中图像处理分析的相关专利占总发明件数的 16%。电力工程也已成为中国人工智能专利布局的重要领域。

3 人才投入 : 中国人工智能人才总量居世界第二,但是杰出人才占比偏低。截至 2017 年,中国的人工智能人才拥有量达到 18232 人,占世界总量的 89%,仅次于美国(139% ) 。高校和科研机构是人工智能人才的主要载体,清华大学和中国科学院系统成为全球人工智能人才投入量最大的机构。然而,按高 H 因子(又称 H 指数,用于评价科学家的科研绩效)衡量的中国杰出人才只有 977 人,不及美国的五分之一,排名世界第六。企业人才投入量相对较少,高强度人才投入的企业集中在美国,中国仅有华为一家企业进入全球前 20。中国人工智能人才集中在东部和中部,但个别西部城市如西安和成都也表现十分突出。国际人工智能人才集中在机器学习、数据挖掘和模式识别等领域,而中国的人工智能人才研究领域则比较分散。

产业发展和市场应用

1 企业规模 : 中国人工智能企业数量为全球第二,北京是全球人工智能企业最集中的城市。截至2018 年 6 月,全球共监测到人工智能企业总数达 4925 家,其中美国人工智能企业数 2028 家,位列全球第一。中国( 不含港澳台地区 )人工智能企业总数 1011 家,位列全球第二,其后分别是英国、加拿大和印度(图 1):

从城市尺度看(图 2),全球人工智能企业数量排名前 20 的城市中,美国占 9 个,中国占 4 个,加拿大占 3 个,英国、德国、法国和以色列各占 1 个。其中,北京成为全球人工智能企业数量最多的城市,其次是旧金山和伦敦。上海、深圳和杭州的人工智能企业数量也进入全球前 20。

从成立时间看(图 3),中国人工智能创业企业的涌现集中在2012-2016 年,在 2015 年达到顶峰,新增初创企业数量达到 228 家。从2016 年开始,创业企业的增速有所放缓。

中国人工智能企业的平均年龄为 55 年。其中,北京、上海和天津等地初创企业云集,企业平均年龄相较于全国平均水平更年轻,平均年龄在 55 年以下。山东和辽宁等地老牌工业机器人和自动化企业转型较多,企业年龄相对较大。

人工智能的应用技术主要包括语音类技术 ( 包括语音识别、语音合成等 )、视觉类技术 ( 包括生物识别、图像识别、视频识别等 ) 和自然语言处理类技术 ( 包括机器翻译、文本挖掘、情感分析等 )。将基础硬件考虑在内,国内外人工智能企业应用技术分布如图 4 所示。相比国外,中国人工智能企业的应用技术更集中于视觉和语音,而基础硬件占比偏小。

人工智能在行业应用上包括智能机器人、智能驾驶、无人机、AR/VR、大数据及数据服务、各类垂直领域应用(本文中定义为“AI+")等。国内外人工智能企业的行业应用分布如图 5 所示。可以看出,相比于国外,国内企业更看重智能机器人、无人机和智能驾驶等终端产品的市场,而国外企业更注重 AI在各类垂直行业的应用。

2 风险投资 : 中国已成为全球人工智能投融资规模最大的国家。自 2013 年以来,全球和中国人工智能行业投融资规模都呈上涨趋势(图 6)。2017 年全球人工智能投融资总规模达 395 亿美元,融资事件1208 笔,其中中国的投融资总额达到 2771 亿美元,融资事件 369 笔。中国 AI 企业融资总额占全球融资总额的 70%,融资笔数达 31%。

根据 2013 年到 2018 年第一季度全球的投融资数据,中国已在人工智能融资规模上超越美国成为全球最“吸金”国家,但是在投融资笔数上,美国仍然在全球处于领先地位。

发展战略和政策环境

1 国际比较 : 各国人工智能战略与政策各有着重点。 2013年以来,美、德、英、法、日、中等国都纷纷出台了人工智能战略和政策。各国人工智能战略各有侧重,美国重视人工智能对经济发展、科技领先和国家安全的影响 ; 欧盟国家关注人工智能带来的安全、隐私、尊严等方面的伦理风险 ; 日本希望人工智能推进其超智能社会的建设 ; 而中国人工智能政策聚焦于实现人工智能领域的产业化,助力中国的制造强国战略。各国政策在研发重点和重点应用领域也存在着较大差异。

2 国家政策 : 从物联网,到大数据,再到人工智能。从 2009 至今,中国人工智能政策的演变可以分为五个阶段,其核心主题词也不断变化,体现了各阶段发展重点的不同。

国家层面政策早期关注物联网、信息安全、数据库等基础科研,中期关注大数据和基础设施,而 2017年后人工智能成为最核心的主题,知识产权保护也成为重要主题。综合来看,中国人工智能政策主要关注以下六个方面 : 中国制造、创新驱动、物联网、互联网 +、大数据、科技研发。

3 地方政策 : 响应国家战略,地方政策主题因地而异。地方政府积极响应国家人工智能发展战略,其中,《中国制造 2025》处于人工智能政策应用网络的核心,在地方人工智能政策制定过程中发挥着纲领性的作用。通过政策发布数量来看,目前中国人工智能发展活跃的区域主要集中在京津冀、长三角和粤港澳地区。各省的政策主题也大有不同,比如江苏省关注基础设施、物联网和云计算等基础研发领域,广东省关注制造和机器人等人工智能应用,而福建省关注物联网、大数据、创新平台和知识产权,各地政策与地方发展条件密切相关。

对社会的综合影响

随着人工智能的充分发展,劳动生产率和生产力水平的提升,人们的生活体验将更加丰富多彩,将更多地将人们从体力劳动乃至常规性的脑力劳动中解放出来,更多地投入到创造性活动当中,使人类自身与社会得到更充分的发展。当前,人工智能技术的突飞猛进正不断改变着零售、农业、物流、教育、医疗、金融、商务等领域的发展模式,重构生产、分配、交换、消费等各环节。根据 IDC 数据显示,在未来5 年内,人工智能技术应用到多个行业,将极大提高这些行业的运转效率,具体提升的效率为教育行业82%、零售业 71%、制造业 64%、金融业 58%。

1 人工智能对教育和就业的影响。发展人工智能的最终目的不是用来替代人类,而是帮助人类变得更加智慧,而教育将在这个过程中起到关键性作用。人工智能技术提升经济活动中的产能,使得人们逐渐从机械的重复性的或危险的劳动中抽离出来,从而增加了思考、欣赏等闲暇时间,更专注于创新能力、思考能力、审美与想象力的潜能开发与提升。

目前,人工智能在教育领域的应用主要集中在以下几方面 : 自适应 ( 个性化 ) 学习、虚拟导师、教育机器人、基于编程和机器人的科技教育、基于虚拟现实 / 增强现实的场景式教育。用适合自己的方式去学习,不仅效率会提高,而且会保持更长时间的学习兴趣。

在教育领域深度发展人工智能的意义并不是取代教师,而是协助教师使教学变得更加高效和有趣。另外,在人工智能技术所影响的教育体系中,对人才的信息输入与输出能力、自主学习能力等的要求骤然提高,创新能力的培养也成为重要方向。

随着技术的发展逐步替代人类从事大部分繁琐重复的工作或体力劳动,在给人们带来福利的同时也带来前所未有的挑战。今天已经有越来越多的人担忧是否自己的工作会被人工智能技术所取代,或者只能在人工智能所留下的“夹缝”中生存。有专家对中国的就业岗位被人工智能取代的概率进行了估算,结果显示,未来 20 年中,约占总就业人口 76% 的劳动力会受到来自人工智能技术的冲击,若只考虑非农业人口,这一比例为 65 %。但同时,人工智能技术对就业的创造效应也已有所显现。调查显示,中国科技公司目前人工智能团队规模平均扩张 20%,而且这种需求还会增长。另外国家工业和信息化部教育考试中心专家称,在未来几年中国对 AI 领域的人才需求可能增至 500 万。

可以判断,在人工智能重塑产业格局和消费需求的情境下,一部分工作岗位终将被历史淘汰,但是也会伴随着人工智能技术孵化出一系列新的岗位。另一方面,新型的人机关系正在构建,非程序化的认知类工作会变得愈发难以替代,其对人的创新、思考与想象力提出更高的要求。

机械化和智能化塑造着新的就业格局,但也要警惕新格局下有可能发生的衍生问题,比如由于失业率上升而引起的贫富差距和社会稳定问题。人工智能所带来的“冲击”是持续性的,对教育和就业的多重影响也是持续性的,因此也需要不断积极探索与技术革命相匹配、相适应的教育与就业机制。

2 人工智能对隐私与安全的影响。今天,在许多生活消费场景中,人们对个性化体验的需求不断增加,个性化、场景化服务也逐渐成为人工智能驱动创新的主要方向。服务供应方在信息获取社交化、时间碎片化的情境下,着力建立更灵活便捷的消费场景,给人们带来更加友好的用户体验。与此同时,随着语音识别、人脸识别、机器学习算法的发展和日趋成熟,企业可以通过分析客户画像真正理解客户,精准、差异化的服务使得客户的被重视被满足感进一步增强。但是在蕴藏着巨大商业价值的同时,也对现有法律秩序与公共安全构成了一定的挑战。

网络空间的虚拟性,使得个人数据更易于被收集与分享,极大地便利了身份信息编号、健康状态、信用记录、位置活动踪迹等信息的存储、分析和交易过程,与此同时,人们却很难追踪个人数据隐私的泄露途径与程度。例如,以人工智能技术为支撑的智慧医疗,病人的电子病例、私人数据归属权如何界定,医院获得及使用私人数据的权限界限如何规范。再比如人工智能技术生成作品的著作权问题等。开放的产业生态使得监管机构难以确定监管对象,也令法律的边界变得越来越模糊。

人工智能的普遍使用使得“人机关系”发生了趋势性的改变,人机频繁互动,可以说已形成互为嵌入式的新型关系。时间与空间的界限被打破、虚拟与真实也被随意切换,这种趋势下的不可预测性与不可逆性很有可能会触发一系列潜在风险。与人们容易忽略的“信息泄露”不同,人工智能技术也可能被少数别有用心的人有目的地用于欺诈等犯罪行为。如基于不当手段获取的个人信息形成“数据画像”,并通过社交软件等冒充熟人进行诈骗。再比如,使用人工智能技术进行学习与模拟,生成包括图像、视频、音频、生物特征在内的信息,突破安防屏障。去年曾有报道,新款苹果手机“刷脸”开机功能被破解即是这类例子。而从潜在风险来看,无人机、无人车、智能机器人等都存在遭到非法侵入与控制,造成财产损失或被用于犯罪目的的可能。

3人工智能对社会公平的影响。随着人工智能研发与应用的突飞猛进,一系列价值难题也正逐渐显现在人们面前。目前还有大量不会上网、由于客观条件无法使用互联网及不愿触碰互联网的人群,已经被定义为人工智能时代的“边缘人”,而人工智能对人们的文化水平、信息流的掌握程度又有了更高的要求。人工智能技术越发达,信息鸿沟就越深,进而演变为服务鸿沟、福利鸿沟,而在人工智能时代,“边缘人”将越来越难享受到便捷的智能信息服务,也更不易获得紧缺的服务资源。

本文转自 中国经济报告 2018年第10期,作者:清华大学中国科技政策研究中心

政策推动我国物联网高速发展

自2013年《物联网发展专项行动计划》印发以来,国家鼓励应用物联网技术来促进生产生活和社会管理方式向智能化、精细化、网络化方向转变,对于提高国民经济和社会生活信息化水平,提升社会管理和公共服务水平,带动相关学科发展和技术创新能力增强,推动产业结构调整和发展方式转变具有重要意义。

以数字化、网络化、智能化为本质特征的第四次工业革命正在兴起。物联网作为新一代信息技术与制造业深度融合的产物,通过对人、机、物的全面互联,构建起全要素、全产业链、全价值链全面连接的新型生产制造和服务体系,是数字化转型的实现途径,是实现新旧动能转换的关键力量。

我国物联网行业呈高速增长状态 未来将有更广阔的空间

自2013年以来我国物联网行业规模保持高速增长,增速一直维持在15%以上,江苏、浙江、广东省行业规模均超千亿元。中国通信工业协会的数据表明,随着物联网信息处理和应用服务等产业的发展,中国物联网行业规模已经从2013年的4896亿元增长至2019年的15万亿元。

虽然我国物联网发展显著,但我国物联网行业仍处于成长期的早中期阶段。目前中国物联网及相关企业超过3万家,其中中小企业占比超过85%,创新活力突出,对产业发展推动作用巨大。

物联网作为中国新一代信息技术自主创新突破的重点方向,蕴含着巨大的创新空间,在芯片、传感器、近距离传输、海量数据处理以及综合集成、应用等领域,创新活动日趋活跃,创新要素不断积聚。

物联网在各行各业的应用不断深化,将催生大量的新技术、新产品、新应用、新模式。未来巨大的市场需求将为物联网带来难得的发展机遇和广阔的发展空间。

在政策、经济、社会、技术等因素的驱动下,2020年GSMA移动经济发展报告预测,2019-2025年复合增长率为9%左右,2020年中国物联网行业规模目标16亿元,按照目前物联网行业的发展态势,十三五规划的目标有望超预期完成;预计到2025年,中国物联网行业规模将超过27万亿元。

未来物联网行业将向着多元方向发展

标准化是物联网发展面临的最大挑战之一,它是希望在早期主导市场的行业领导者之间的一场斗争。目前我国物联网行业百家争鸣,还未有一个统一的标准出现。因此在未来可能通过不断竞争将会出现限数量的供应商主导市场,类似于现在使用的Windows、Mac和Linux *** 作系统。

合规化同样是当下物联网面临的问题之一,特别是数据隐私问题。目前数据隐私已成为网络社会的一个关键词,各种用户数据泄露或被滥用的事件频发,特别是Facebook的丑闻引发了全球担忧。

因此在未来,我国各种立法和监管机构将提出更加严格的用户数据保护规定,,用户的敏感数据可能会随着时间的推移而受到更严格的监管。

安全化是指预防物联网软件遭受网络黑客攻击,在未来,以安全为重点的物联网设施将受到更多的关注,特别是某些特定的基础行业,如医疗健康、安全安防、金融等领域。

多重技术推动物联网技术创新

从技术创新趋势来看,物联网行业发展的内生动力正在不断增强。连接技术不断突破,NB-Iot、eMTC、Lora等低功耗广域网全球商用化进程不断加速;物联网平台迅速增长,服务支撑能力迅速提升;

区块链、边缘计算、人工智能等新技术题材不断注入物联网,为物联网带来新的创新活力。受技术和产业成熟度的综合驱动,物联网呈现“边缘的智能化、连接的泛在化、服务的平台化、数据的延伸化”等特点。

——上数据来源于前瞻产业研究院《中国物联网行业应用领域市场需求与投资预测分析报告》。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/10697222.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-10
下一篇 2023-05-10

发表评论

登录后才能评论

评论列表(0条)

保存