边缘计算网关(又叫物联网边缘计算网关),简称 Edge-Gateway,是一种可以在设备上运行本地计算、消息通信、数据缓存等功能的工业智能网关,可以在无需联网的情况实现设备的本地联动以及数据处理分析。
智慧眼智脑识别终端是能够运行本地计算、消息通信、数据缓存等功能的工业级物联网边缘计算网关,搭载国产自主研发的TPU,满足网点中各类物联网设备、视频设备的连接管理、设备数据计算等需求,具有高稳定性、高可靠性、高安全性和易扩展性,结合不同的应用场景,搭配多样化算法,实现人脸布控、视频结构化分析、行为分析、轨迹分析、热力分析等应用,为金融行业进行AI赋能。
1、延迟问题
延迟是指处理和分析捕获数据所需的时间。连接到互联网的设备必须在100毫秒内响应,有时甚至不到10毫秒。因此,计算过程必须尽可能本地化,以抵消远距离传输数据的固有延迟。
通过物联网中的边缘计算,计算将在源头附近完成,例如传感器,如果汽车上的传感器判断出将要发生碰撞,那么系统就必须具有足够的确定性,能够在一定的时间范围内部署安全气囊,如果在长距离传输数据方面有任何滞后,那就是根本不安全的。
2、带宽问题
运行软件和生成数据的大多数物联网设备需要链接到云以存储和进一步处理该数据。因此,需要大量的功率和带宽将IoT数据传输到云。
在物联网中使用边缘计算,组织可以减少互联网带宽的使用,因为可以在源附近处理大量数据。
例如,边缘计算相机可以通过分析警察仪表板的视频源来帮助执法机构减少带宽,相机摄像头可以实时生成大量的视频和音频记录,但只有在必要时才将相关数据发送到云端。
3、带宽成本问题
物联网应用程序生成大量相对低价值的时间序列数据。这意味着带宽成本,设备获得带宽的机会成本,存储和分析成本,以及云中这些低价值时间序列数据的计算成本。
有了边缘计算,这些数据就可以被捕获,如果有必要的话,在将数据发送到云或其他上游聚合点之前进行分析和汇总,这比通过WAN链路发送未经过滤的数据要便宜得多,后者通常非常昂贵。
4、传统系统连接问题
公司经常连接到物联网的传统系统具有非IP/以太网接口。因此,他们需要来自模拟或专有系统接口的物理转换,以便能够使用和分析数据。这只能在生成数据的原始设备旁边完成。
这是物联网中的边缘计算可以提供帮助的地方。边缘可以充当新旧之间的中介,为没有现代计算能力的传统资产添加智能功能。
5、物联网安全问题
尽管云服务提供商已经为终端客户的物联网产品开发了出色的安全性,但运营技术专业人员仍然担心他们的敏感数据一旦离开企业的墙壁就不会安全。
为了解决这个问题,可以在边缘添加更多智能来保护系统,使其更强大,可以抵御黑客攻击和入侵。因此,任何中断都将仅限于边缘计算设备和这些设备上的本地应用程序。
边缘计算在物联网中应用的领域非常广泛,特别适合具有低时延、高带宽、高可靠、海量连接、 异构汇聚和本地安全隐私保护等特殊业务要求的应用场景。为了打造更适合行业应用的物联网通讯终端产品,四信通信充分利用边缘计算技术,大力研发生产出了F-G200边缘计算网关,该系列产品可帮助用户快速接入高速互联网,实现安全可靠的数据传输。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)