视频AI行为智能分析预警系统解决方案

视频AI行为智能分析预警系统解决方案,第1张

视频AI行为智能分析预警系统解决方案

系统概述

随着 社会 安防视频监控路数越来越多,系统越来越复杂,数据量越来越大,如何有效地采集到有用的视频数据信息显得越来越迫切。传统视频监控为事后查询录像,而视频AI行为智能分析预警系统则实现了同步预警功能,使监控智能化。

视频AI行为智能分析 预警系统解决方案是一套可以独立运行的监控预警系统,仅需在原有监控系统的基础上,增加一台智能预警分析主机,就能实现监控系统智能预警功能。当监控视野内发生事先预设的事件,如人员倒地、求救、入侵、打架、、未佩戴安全帽等,以及出现手机、剪刀、小刀等,便立即触发报警并进入紧急预案模式。

技术介绍

视频AI行为智能分析预警系统是行为识别技术、人脸识别技术、物体识别技术多合一的技术整合而成的一套系统。其中,人体行为分析技术是基于AI神经网络的视觉分析算法,根据摄像机拍摄回来的画面勾勒出人体结构,针对人体运动轨迹做算法分析,识别出人的各种异常行为动作。物品识别及预警则基于用户需求应用人工智能技术,对视频画面中的物品反复测试、学习,使得系统能识别该物品,在系统设置区域内出现该物品即发出告警。

三大技术:

1、行为识别:识别人的异常动作行为,预警并标记。

2、穿戴识别:识别人头上戴的物体、身上背的物体、手里拿的物体。

3、物体识别:识别 汽车 、摩托车、自行车、剪刀、小刀、家具等涉及 社会 公共安全的监测项。

人体行为分析项

视频AI行为智能分析预警系统以检测视频画面中人体架构形态为基础,并叠加时间、动作、人数、方向四个维度,扩展更多检测事件。根据使用环境,分析规则设计按各个场景应用进行部署,如:非法闯入、倒地事件、求救事件、打架事件、聚众、离岗检测、睡岗检测、离床检测、攀高检测、入厕超时、入厕尾随、独处检测等等。

物品识别分析项

物品检测识别项包括是否佩戴安全帽、使用手机、刀具、摩托车、自行车、 汽车 、箱子、是否吸烟、烟火、工服、乱摆放等。

分析项功能介绍:

1、闯入事件:闯入行为的定义可以灵活变通,应用到场所所有禁止随意闯入的场景或在某些时间段禁行的场景。闯入行为加上有效区域设置、无效区域设置、时间段设置等因素,可以变得非常实用。多应用与围墙周界、出入口、重点车间、禁入区域等。

2、倒地/跌倒事件:当人的头、臀部、脚处于同一平面平行于地面时定义为跌倒。可以设置指定区域或是全地面区域,设定告警时间段,选择高灵敏度或低灵敏度。可应用于养老院舍、医院、出入口等公共区域。

3、求救事件:当有人员遇到紧急情况,或被挟持双手抱头、反复挥手、伸手过头即可发出求救信号。可应用于校园、养老院、监管场所等。

4、离岗检测:各固定值班岗位必须要有人值班的场景,值班岗位超过设定的时间检测到区域没人,定义为离岗行为。如值班室、出入口门岗等。

5、睡岗检测:检测到人趴在桌子上长时间不动或者检测眼睛长时间闭上时定义为睡岗。如办公室、监控中心、值班室、门岗等。更多行为分析详情请咨询铱微云。

随着全国智慧安防,智慧城市建设的开展,智能监控预警响应作为必不可少的产品,将得到更广泛、充分的应用。

本文由铱微云UWB室内定位系统我整理发布。

品牌型号:华为MateBook D15
系统:Windows 10

物联网数据特征是整体感知、可靠传输和智能处理。

整体感知:可以利用射频识别、二维码、智能传感器等感知设备感知获取物体的各类信息。可靠传输:通过对互联网、无线网络的融合,将物体的信息实时、准确地传送,以便信息交流、分享。智能处理:使用各种智能技术,对感知和传送到的数据、信息进行分析处理,实现监测与控制的智能化。

物联网(Internet of Things,简称IoT)是指通过各种信息传感器、射频识别技术、全球定位系统、红外感应器、激光扫描器等各种装置与技术,实时采集任何需要监控、 连接、互动的物体或过程,采集其声、光、热、电、力学、化学、生物、位置等各种需要的信息,通过各类可能的网络接入,实现物与物、物与人的泛在连接,实现对物品和过程的智能化感知、识别和管理。物联网是一个基于互联网、传统电信网等的信息承载体,它让所有能够被独立寻址的普通物理对象形成互联互通的网络。

数据分析、机器学习与物联网
我们当前所处的世界,联网程度不断上升,低成本传感器和分布式智能也在不断普及,产业即将面临这一切带来的革命性的冲击;同时,在此过程中还会产生大量的数据,其规模将庞大到远远超过人类所能处理的范畴。对此,企业是否能足够迅速地适应并演进自身的业务,以维持在竞争格局中所处的位置?面对我们栖身的环境中植入的这些全新的信息来源和智能设备,人类应当如何掌握它们并从中获益?利用不断演进的技术组织机构将需要建立起内部数据仓库,以便能够利用新的数据源和数据流。智能接入设备亦将在某些情况下取代人的角色,它们将能够自行决策、执行自我调整,或是根据需要引发对自身的纠正和修复。在另一些情景中,众多设备的集合将聚集在一起成为完整的系统,这样的系统可以采用新的方法进行优化;而由系统聚集成的系统,将会彼此共享数据,并成为由数据和设备组成的生态系统。机器学习(指从数据中推导出意义的众多方法)注定将成为这个生态系统中的一部分;此外,随着企业着手为物联网(IoT)做准备,传统业务和数据分析技术也同样将被纳入到该生态系统之中物联网——某些人更愿意称之为“万物互联”(Internet of Everything)——正处于不断上升的轨道上。一项Gartner研究指出,在2020年IoT单元的数量将达到260亿,而IoT产品和服务的市值将达到3000亿美元1。另外,GE在工业互联网(Industrial Internet)——这一概念包含用于监控和优化工业设备(例如喷气式引擎、铁路机车、动力涡轮机和制造工艺)性能的机制和应用——领域已经活跃了很长时间。根据GE的估算和预测,在接下来20年中,工业互联网将帮助全球GDP产值提高10到15万亿美元(没错,万亿量级)。当然,围绕着已问世的全新技术和正在逐步浮现的技术概念,市场中充斥着大量炒作。例如,Gartner备受争议的 “成熟度曲线”(注:也有些人使用“炒作周期”这一贬义说法)报告就把IoT摆在了“翘首以望的顶峰”的位置上(而大数据作为之前的热点,已经进入了“理想幻灭的低谷” 3)。然而,哪怕企业家们为之表现出群情激昂的兴奋,或是记者们在笔下展现出了对未来的狂热展望,在现实中依旧存在着大量的挑战,组织机构必须克服它们,才能够真正乘上这次技术演进的东风。挑战组织机构必须聚焦于:了解产品技术和IT领域中,企业能力的相对成熟度;了解可以纳入哪些类型的IoT功能,以及新能力将会在哪些方面对客户价值带来影响;了解机器学习和预测分析模型的角色;基于市场变化的迅捷程度和竞争对手的相对敏捷度,重新思考业务模型和价值链。接下来,让我们对这些挑战逐一进行更详细地分析。理解产品和IT成熟度可以从产品和IT两个维度分别进行分析。首先,产品组合的成熟度如何?它是属于变更较缓慢且逐步演进的传统类型的产品,还是属于前进速度更快,同时具有更复杂生态系统的产品?矿产设备在技术上非常复杂。并且,与科学研究仪器相比,它拥有更为漫长的设备生命周期,和相对更缓慢的演进速度。然而,这并不意味着科研仪器的公司,在利用IoT产品进行系统优化方面更具优势。另一个需要考虑的因素是IT流程的成熟度。各种类型的组织机构都可能会因采用IoT而获益;然而,要想达成这一目标,它们所需采用的模型却各不相同。让我们进一步分析一下IT成熟度水平这个因素。举例来说,科学研究仪器供应商或许拥有先进技术,但却可能缺乏强有力的IT架构、流程和IT治理能力。与之相反,矿业设备制造商或许拥有非常成熟的内部IT流程。对科学研究仪器公司而言,IoT将让它们能够对安置在现场的仪器设备进行功能升级;但面对由多种类型设备组成的实验室信息生态系统库,公司并不一定愿意尝试去进行优化。(当然,以IT作为成本中心——例如内部IT管理——方面的成熟度不足,并不等于以IT作为利润中心——例如IT产品——方面成熟度的缺失;但当开发或拓展IT服务的时候,许多组织机构都选择在现有的基础IT能力之上构建。)在去年的哈佛商业评论(Harvard Business Review)中,讨论了一个矿业设备领域的例子:Joy Global是一家矿业设备制造商,其专家团队横跨与采矿作业相关的多种系统和流程。Joy Global以此为依托,针对来自多家供货商的一系列设备,提供监控、维护和优化的服务4。了解IoT能力接下来,应该考虑一下使用智能联网设备中的哪些能力。刚刚提到的哈佛商业评论刊登的文章4指出,IoT包含四种类型的能力:监视——传感器提供关于运行环境、产品使用和性能方面的数据;控制——可以控制并定制个性化产品功能;优化——来自监视与控制的反馈回路,能够提供更高的效率、更好的性能、预防性维护,以及诊断和修复;自治——监视、控制和优化将支持独立运行、不同系统间的协作、与环境交互、个性化、补给,以及自我诊断和修复。这四个层级的能力,将为重新定义供应链并重新配置价值链提供支持。我们不应该抱有产品的功能应固定不变的观点;相反,我们应该认为它们将更具灵活性和适应性。那些智能联网设备和产品将具有可变特性,并能够随着用户需求的变化而改变。在数年以前,软件制造商就已经认识到了这一点。而现在,物理对象也正在逐渐转变为软件驱动功能的载体或容器。上述这些层级的能力要求越来越精密的数据分析方法——从收集和应用数据,到支持算法自身运用数据并在同时进行学习。第一个层级的能力——监视——将成为一套实时的机制,我们可以运用它更好地了解现场情况和用户需求,并提供新的能力。这意味着组织机构的传统产品和服务将不再泾渭分明,而且二者的边界将彼此渗透。在过去,现场设备的维护由某个现场服务承包公司承担,设备制造商的业务并不涉及此环节。而在智能设备与监视能力结合后,设备可以在故障发生前将所需的服务提前告知制造商。同时,设备制造商也可以将常规维护纳入自己的服务范畴。不过,如果利润和物流对组织机构而言是个问题的话,那么复杂的维修工作将依旧由专业承包商完成。这一“去中介化”(disintermediation)的模式也可以运用到分发链中。设备可以自动发起补充供应的请求,从而降低甚至消除供应链中的物流和库存压力。控制是建立在监视之上的更复杂的应用。我们可以监视设备运行情况,并通过控制设备的多个部分或多个系统,来扩展人工干预的边界。想象一下,在 *** 作大部分功能都是自动化执行的系统或机器时,人类所扮演的角色:人类指导机器运转,并寻找系统设计的时候没有预料到(或是基于经济划算的角度未设计应对预设)的边界条件、异常和例外。接下来,人类使用自己的判断做出变更、纠正或调整。我们并不需要(在空间上)与设备在一起,或许我们也无需实时监视它们(这取决于流程)。我们通过监视层面采集数据并进行处理(某些数据处理必须在特定时刻完成),并通过控制层面将这些数据实时(或准实时)地运用到设备或装置的运行上。需要组织机构做出的战略决策是,是否以及何时在产品中提供更多的控制能力,以及是将其作为一种服务向客户开放,还是让客户拥有这些功能。第三个层级的能力——优化——可以拓展到某个单体对象、一系列对象,或是一套由来自多家制造商、使用不同技术的对象组成的生态系统的表现方面。是否将提供的服务拓展到这一领域,取决于围绕着价值链和流程边界的知识和经验的水平。前面提到的矿业的例子,反映出Joy Global与供应商相比的优势,主要在于拥有在流程生态系统中更加聚焦的视角。以卡车制造商为例,它无法很好地优化复杂的矿业设备,但却会凭借对自己的一系列卡车(以及潜在的一系列其他制造商生产的卡车)进行优化而获益——如果行业动态确实具有商业意义的话。要将优化的范围延伸到独立运行,还需要对这三个层级的能力进行一些拓展,以支持与环境及其他系统进行受限程度更低的交互。自治要求围绕着算法提供更多的智能,以便应对计划外的情况——程序员和系统工程师未能明确设计这些情况下的方案。自主运行需要整合具有适应性的机器学习方法,以应对新出现的情况,并将之纳入到用于监视、控制和优化的核心算法中。了解分析和机器学习2014年11月,施乐公司帕洛阿尔托研究中心的Mike Kuniavsky在IDTechEx上进行了一场名为“IoT领域中预测分析方面的用户体验”的演讲。在演讲中他表示,我们应该将几乎所有功能都存放(或是在不久的将来存放)在云上。数据和功能可以从任何位置、通过任何设备访问。而专业设备则提供用户访问数据的环境。健康手环可以通过iPhone或笔记本电脑,在特定的锻炼环境中访问用户的身体健康数据。在这种情况下,健康手环扮演了IoT传感器的角色,同时也提供了访问和使用数据的一种途径,而且它还通过软件功能包含了其他一些设备(例如计步器)的能力。设备上产生的数据可以为厂家提供额外的洞见,帮助其了解消费者的使用情况和喜好,并藉此升级功能或开发新特性。如果汇聚来自用户群的数据并结合其他数据集,那么新的洞见可以阐明流行病方面的数据、人群活动水平、生活方式和人口统计数据。对市场人员、健康服务提供者、保险公司和政府机构来说,这些信息具有宝贵的价值。(当然,我们必须认真对待隐私和数据使用许可方面的责任。)我们可以使用机器学习算法,基于这些数据模式作出预测。例如,在一份来自Mayo Clinic的研究中,发掘出了活动数据与心脏病人恢复速度的相关性5。同样的机器学习和预测算法也是许多联网智能消费设备的基础。例如,Nest恒温器是一套能够使用数据模式的设备,它预测消费者对于某个特定房间、在一天中的某个特定时刻的温度要求。(另一个控制和优化的例子体现在聚居区的层面。在获得了业主许可的情况下,电力设施可以通过远程调节的方式,控制成百上千的Nest设备,将室温调高或调低几度,从而完成高峰期的用能负载调度)。这类消费设备涵盖了从声音模式(例如亚马逊的个人助理输入设备Echo6)到更复杂的行为和活动模式(例如捷豹的路虎监视系统,它依赖于一套复杂的软件系统,该系统让汽车能够学习、预测和检查,并提醒车上的乘客帮助驾驶员自动委派次要任务,以便驾驶员将更多的注意力集中在驾驶上7)进行学习的范围。优化算法通过使用机器学习机制,来利用从动态环境下交互的传感器和智能设备传回的数据。算法不能基于特定的参数,精确地预测这些多变的情况,而是需要不断地感知、响应并适应。例如,随着汽车从驾驶员身上分担了更多的责任,它们需要与周边环境中更多的数据来源进行交互(传感器、灯光、其他车辆等等)。在工业自动化、物流和交通运输、电力网络与能源系统、交通管理、安全系统以及其他“系统的系统”等领域中的各类应用,都将让机器直接与其他机器进行交流。此外,这些应用还将基于能够演进和自适应的算法,帮助机器翻译数据流,从而使机器能够依据给定的运行参数达到要求的最终状态。反思业务模型和价值链智能联网设备要求组织机构重新检视,它们处在市场中的什么位置、以什么方式创造价值,以及这些价值将如何随着竞争环境和信息生态系统的演进而增加或减少。分析将帮助验证某些决策(例如,在对特性进行变更或是增加服务和功能后,获得实时使用数据);不过,市场新进入者和新的价值链结构或许会对业务模式带来巨大的转变,而基于公司传统业务模式做出的分析将不再具有相关性。因此,产品或服务的基础,或许会转变为来自传统产品的数据流,而不是来自产品本身的收入。新的业务模式将得以延展,甚至有可能远远超出产品本身的范畴,覆盖上游供应商或下游消费者。最重要的是,所有这些可能性,都会要求组织机构拥有围绕着其内部数据健康度和用于分析的基础设施的基础能力:数据“打捞”(curation)、所有制和质量标准、具有一致性的企业架构、干净整洁地集成在一起的系统、自动化的数据载入流程,以及成熟的分析专家。如果欠缺或未能有效管理这些基础条件,组织机构将很难进行快速反应,并演化出新的分析和数据管理功能与能力。IoT将基于数据流和复杂的方法,从信息中获取洞见,并通过与企业知识整合,将之运用到价值创造方面。而不具备这些能力的组织机构将在市场上落后,或是降级到低价值、低利润的层次。数据被称为“新的石油”——我们可以拓展这一比喻,这意味着通过分析能力中的知识提炼环节,数据将被精炼为高价值产品。组织机构现在就需要在构建此类基础设施的方面投入资源,以便为接下来数年中应对供应链和价值创造环节的转型、扰动和颠覆做好准备。信息敏捷性将成为必备的核心能力。


系统简介

水肥一体化智能控制系统通过与灌溉系统相结合,实现智能化控制。系统由物联网监控平台、气象数据采集终端、视屏监控、施肥一体机、过滤系统、阀门控制器、电磁阀、田间水管线等组成。


图为河南益民控股5G+智慧辣椒种植基地水肥一体化系统控制中心

概述

水肥一体化技术是将灌溉与施肥融为一体的农业新技术。水肥一体化是借助压力系统(或地形自然落差),将可溶性固体或液体肥料,按土壤养分含量和作物种类的需肥规律和特点,配兑成的肥液与灌溉水一起,通过可控管道系统供水、供肥,使水肥相融后,通过管道、喷q或喷头形成喷灌、均匀、定时、定量,喷洒在作物发育生长区域,使主要发育生长区域土壤始终保持疏松和适宜的含水量,同时根据不同的作物的需肥特点,土壤环境和养分含量状况,需肥规律情况进行不同生育期的需求设计,把水分、养分定时定量,按比例直接提供给作物。

系统原理图

水肥一体化系统通常包括水源工程、首部枢纽、田间输配水管网系统和灌水器等四部分,实际生产中由于供水条件和灌溉要求不同,施肥系统可能仅由部分设备组成。

水肥一体机

水肥一体机系统结构包括:控制柜、触摸屏控制系统、混肥硬件设备系统、无线采集控制系统。支持pc端以及微信端实施查看数据以及控制前端设备;水肥一体化智能灌溉系统可以帮助生产者很方便的实现自动的水肥一体化管理。系统由上位机软件系统、区域控制柜、分路控制器、变送器、数据采集终端组成。通过与供水系统有机结合,实现智能化控制。可实现智能化监测、控制灌溉中的供水时间、施肥浓度以及供水量。变送器(土壤水分变送器、流量变送器等)将实时监测的灌溉状况,当灌区土壤湿度达到预先设定的下限值时,电磁阀可以自动开启,当监测的土壤含水量及液位达到预设的灌水定额后,可以自动关闭电磁阀系统。可根据时间段调度整个灌区电磁阀的轮流工作,并手动控制灌溉和采集墒情。整个系统可协调工作实施轮灌,充分提高灌溉用水效率,实现节水、节电,减少劳动强度,降低人力投入成本。

施肥系统

水肥一体化施肥系统原理由灌溉系统和肥料溶液混合系统两部分组成。灌溉系统主要由灌溉泵、稳压阀、控制器、过滤器、田间灌溉管网以及灌溉电磁阀构成。肥料溶液混合系统由控制器、肥料灌、施肥器、电磁阀、传感器以及混合罐、混合泵组成。

41:输配水管网系统

由干管、支管、毛管组成。干管一般采用PVC管材,支管一般采用PE管材或PVC管材,管径根据流量分级配置,毛管目前多选用内镶式滴灌带或边缝迷宫式滴灌带;首部及大口径阀门多采用铁件。干管或分干管的首端进水口设闸阀,支管和辅管进水口处设球阀。

输配水管网的作用是将首部处理过的水, 按照要求输送到灌水单元和灌水器,毛管是微灌系统的最末一级管道,在滴灌系统中,即为滴灌管,在微喷系统中,毛管上安装微喷头。


42:环境数据采集器

421气象信息采集

环境数据采集器由低功耗气象传感器、低功耗气象数据采集控制器和计算机气象软件三部分组成。可同时监测大气温度、大气湿度、土壤温度、土壤湿度、雨量、风速、风向、气压、辐射、照度等诸多气象要素;具有高精度高可靠性的特点,可实现定时气象数据采集、实时时间显示、气象数据定时存储、气象数据定时上报、参数设定等功能。

422土壤墒情采集

土壤检测仪可实现对土壤不同深度的温度、湿度、EC、 PH等数据监控,通过5G信号传输至AI农大数据平台,借助于大数据平台的综合建模分析,从而给出土壤土质的综合评级,并语音播报。


43:无线阀门控制器


阀门控制器是接收由田间工作站传来的指令并实施指令的下端。阀门控制器直接与管网布置的电磁阀相连接,接收到田间工作站的指令后对电磁阀的开闭进行控制,同时也能够采集田间信息,并上传信息至田间工作站,一个阀门控制器可控制多个电磁阀。

电磁阀是控制田间灌溉的阀门,电磁阀由田间节水灌溉设计轮灌组的划分来确定安装位置及个数。

44:灌水器系统

微灌按微灌灌水流量小,一次灌水延续时间较长,灌水周期短,需要的工作压力较低,能够较精确的控制灌水量,能把水和养分直接地输送到作物根部附近的土壤中去。

系统功能

51:用水量控制管理

实现两级用水计量,通过出口流量监测作为本区域内用水总量计量,通过每个支管压力传感采集数据实时计算各支管的轮灌水量,与阀门自动控制功能结合,实现每一个阀门控制单元的用水量统计。同时水泵引入流量控制,当超过用水总量将通过远程控制,限制区域用水。


52:运行状态实时监控

通过水位和视频监控能够实时监测滴灌系统水源状况,及时发布缺水预警;

通过水泵电流和电压监测、出水口压力和流量监测、管网分干管流量和压力监测,能够及时发现滴灌系统爆管、漏水、低压运行等不合理灌溉事件,及时通知系统维护人员,保障滴灌系统高效。

53:阀门自动控制功能

通过对农田土壤墒情信息、小气候信息和作物长势信息的实时监测,采用无线或有线技术,实现阀门的遥控启闭和定时轮灌启闭。根据采集到的信息,结合当地作物的需水和灌溉轮灌情况制定自动开启水泵、阀门,实现无人职守自动灌溉,分片控制,预防人为误 *** 作。

54:PC展示平台

通过物联网水肥一体化智能监测平台,能够为用户提供传感器数据、远程、采集、传输、储存、处理及报警信息发送等服务。该平台以集中式分区化的方式为用户提供便捷、经济、有效的远程监控整体解决方案。通过物联网智能监测平台,用户可以不受时间、地点限制对监控目标进行实时监控、管理、观看和接收报警信息。

55:移动终端

建立手机系统,客户直接采用微信客户端就可以控制和查看实时数据,手机端具有手动启动、关闭电磁阀,水泵等设备功能。

56:运维管理功能

包括系统维护、状态监测和系统运行的现场管理;实现区域用水量计量管理、旱情和灌溉预报专家决策、信息发布等功能的远程决策管理;以及对用水、耗电、灌水量、维护、材料消耗等进行统计和成本核算,对灌溉设施设备生成定期维护计划,记录维护情况,实现灌溉工程的精细化维护运行管理。

节水灌溉自动化控制系统能够充分发挥现有的节水设备作用,优化调度,提高效益,通过自动控制技术的应用,更加节水节能,降低灌溉成本,提高灌溉质量,将使灌溉更加科学、方便,提高管理水平。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/10801747.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-11
下一篇 2023-05-11

发表评论

登录后才能评论

评论列表(0条)

保存