什么是陆海基航天测控通信网?

什么是陆海基航天测控通信网?,第1张

测控通信系统在载人航天任务中主要是,对火箭、飞船目标的飞行轨道和工作状态进行监视,并根据控制要求,对火箭、飞船进行飞行控制;测量运载火箭起飞漂移量及摄录飞行实况景象;跟踪测量运载火箭、飞船(含留轨舱)轨道;接收、记录和传送运载火箭、飞船(含留轨舱)与航天员遥测参数以及飞船电视、部分科学实验(有效载荷)数据等;建立地面与航天员之间双向话音链路;计算并显示飞行轨道和控制量,实时显示火箭、飞船、有效载荷工作状态和航天员生理状态参数及电视图像,实时和事后处理各种信息;待发段提供逃逸指令上行通道、上升段进行逃逸与火箭飞行安全控制,参与上升段和运行段飞船应急返回控制;对飞船进行飞行控制,向飞船(含留轨舱)发送遥控指令和注入数据;按要求生成并执行飞行控制计划及故障对策预案;完成与其他有关系统的数据交换;进行船地时间比对和校准,提供调度指挥及通信保障。
载人航天任务对测控通信覆盖率、测量精度、数据传输速率、数据处理能力等方面都提出了更高要求:飞船运行段要求确保每圈都有测控通信弧段,飞船入轨后前3圈及轨道控制时有较长的测控弧段,每次连续测控通信大于2min,平均每圈不少于10~14min,平均轨道覆盖率不小于11%;对飞船轨道确定尤其是对返回制动点的轨道预报精度提出了很高要求;要支持2Mbps数据传输速率,总的数据通路达到了80多路。以上这些要求都是以往航天测控通信系统难以满足的。从1993年到2003年,测控通信系统根据总体技术要求,遵循确保完成我国载人航天测控通信任务的同时,作为我国航天测控通信新一代综合性系统要能够完成今后我国大部分航天器测控通信任务的原则,经过充分的调研和详细的分析论证,敢于实践,勇于创新,设计并建成了包括S频段统一测控系统(USB)、大功率脉冲雷达系统、北京航天指挥控制中心、东风发射指挥控制中心、西安卫星测控中心、天地通信系统和数字数据通信网在内的载人航天测控通信系统。这些系统设施有机结合,优化设计布局,构成了我国载人航天高可靠性的上升段、返回段测控系统,组成了我国新一代具有中国特色、达到国际先进水平的S频段航天测控网。

自从迅猛发展的计算机技术及微电子技术渗透到测控和仪器仪表技术领域,便使该领域的面貌不断更新。相继出现的智能仪器、总线仪器和虚拟仪器等微机化仪器,都无一例外地利用计算机的软件和硬件优势,从而既增加了测量功能,又提高了技术性能。由于信号被采集变换成数字形式后,更多的分析和处理工作都由计算机来完成,故很自然使人们不再去关注仪器与计算机之间的界限。近年来,新型微处理器的速度不断提高,采用流水线、RISC结构和cachE等先进技术,又极大提高了计算机的数值处理能力和速度。在数据采集方面,数据采集卡、仪器放大器、数字信号处理芯片等技术的不断升级和更新,也有效地加快了数据采集的速率和效率。与计算机技术紧密结合,已是当今仪器与测控技术发展的主潮流。对微机化仪器作一具体分析后,不难见,配以相应软件和硬件的计算机将能够完成许多仪器、仪表的功能,实质上相当于一台多功能的通用测量仪器。这样的现代仪器设备的功能已不再由按钮和开关的数量来限定,而是取决于其中存储器内装有软件的多少。从这个意义上可认为,计算机与现代仪器设备日渐趋同,两者间已表现出全局意义上的相通性。据此,有人提出了“计算机就是仪器”/软件就是仪器”的概念。
计算机就是测控系统的中坚
总线式仪器、虚拟仪器等微机化仪器技术的应用,使组建集中和分布式测控系统变得更为容易。但集中测控越来越满足不了复杂、远程(异地)和范围较大的测控任务的需求,对此,组建网络化的测控系统就显得非常必要,而计算机软、硬件技术的不断升级与进步、给组建测控网络提供了越来越优异的技术条件。 Unix、WindowsNT、Windows2000、Netware等网络化计算机 *** 作系统,为组建网络化测试系统带来了方便。标准的计算机网络协议,如OSI的开放系统互连参考模型RM、Internet上使用的TCP/IP协议,在开放性、稳定性、可靠性方面均有很大优势,采用它们很容易实现测控网络的体系结构。在开发软件方面,比如NI公司的Labview和LabWindows/CVI,HP公司的VEE,微软公司的的VB、VC等,都有开发网络应用项目的工具包。软件是虚拟仪器开发的关键,如Labview和LabWindows/CVI的功能都十分强大,不仅使虚拟仪器的开发变得简单方便,而且为把虚拟仪器做到网络上,提供了可靠,便利的技术支持。LabWindows/CVI中封装了TCP类库,可以开发基于TCP/Ip的网络应用。Labview的TCP/IP和UDP网络VI能够与远程应用程序建立通信,其具有的Internet工具箱还为应用系统增加了E-mail、FTP和Web能力;利用远程自动化VI,还可对控制其他设备的分散的VI进行控制。Labview5.1中还特别增加有网络功能,提高了开发网络应用程序的能力。
将计算机、高档外设和通信线路等硬件资源以及大型数据库、程序、数据、文件等软件资源纳入网络,可实现资源的共享。其次,通过组建网络化测控系统增加系统冗余度的方法能提高系统的可靠性,便于系统的扩展和变动。由计算机和工作站作为结点的网络也就相当于现代仪器的网络。计算机已成为现代测控系统的中坚。
网络技术已越来越成为测控技术满足实际需求的关键支撑
当今时代,以Internet为代表的计算机网络的迅速发展及相关技术的日益完善,突破了传统通信方式的时空限制和地域障碍,使更大范围内的通信变得十分容易,Internet拥有的硬件和软件资源正在越来越多的领域中得到应用,比如电子商务、网上教学、远程医疗、远程数据采集与控制、高档测量仪器设备资源的远程实时调用,远程设备故障诊断,等等。与此同时,高性能、高可靠性、低成本的网关、路由器、中继器及网络接口芯片等网络互联设备的不断进步,又方便了Internet、不同类型测控网络、企业网络间的互联。利用现有Internet资源而不需建立专门的拓扑网络,使组建测控网络、企业内部网络以及它们与Internet的互联都十分方便,这就为测控网络的普遍建立和广泛应用铺平了道路。 把TCP/IP协议作为一种嵌入式的应用,嵌入现场智能仪器(主要是传感器)的ROM中,使信号的收、发都以TCP/IP方式进行,如此,测控系统在数据采集、信息发布、系统集成等方面都以企业内部网络(Intranet)为依托,将测控网和企业内部网及Internet互联,便于实现测控网和信息网的统一。在这样构成的测控网络中,传统仪器设备充当着网络中独立节点的角色,信息可跨越网络传输至所及的任何领域,实时、动态(包括远程)的在线测控成为现实,将这样的测量技术与过去的测控、测试技术相比不难发现,今天,测控能节约大量现场布线、扩大测控系统所及地域范围。使系统扩充和维护都极大便利的原因,就是因为在这种现代测量任务的执行和完成过程中,网络发挥了不可替代的关键作用,即网络实实在在地介入了现代测量与测控的全过程。基于Web的信息网络Intranet,是目前企业内部信息网的主流。应用Internet的具有开放性的互联通信标准,使Intranet成为基丁TCP/IP协议的开放系统,能方便地与外界连接,尤其是与Internet连接。借助Internet的相关技术,Intranet给企业的经营和管理能带来极大便利,已被广泛应用于各个行业。Internet也已开始对传统的测控系统产生越来越大的影响。目前,测控系统的设计思想明显受到计算机网络技术的影响,基于网络化、模块化、开放性等原则,测控网络由传统的集中模式转变为分布模式,成为具有开放性、可互 *** 作性、分散性、网络化。智能化的测控系统。网络的节点上不仅有计算机、工作站,还有智能测控仪器仪表,测控网络将有与信息网络相似的体系结构和通信模型。比如目前测控系统中迅猛发展的现场总线,它的通信模型和OSI模型对应,将现场的智能仪表和装置作为节点,通过网络将节点连同控制室内的仪器仪表和控制装置联成有机的测控系统。测控网络的功能将远远大于系统中各独立个体功能的总和。结果是测控系统的功能显著增强,应用领域及范围明显扩大。Jini软件技术问世。Jini软件技术旨在使各种电器设备、测量仪器及采用JAVA芯片的各种装置能连接上网,Jini软件连同以Java语言编写的简单程序,可使联网的任何仪器设备实现其自身功能的同时,还能为其他仪器设备加以利用。
网络技术的出现,正在并将极大地改变人们生活的各个方面。具体到计量测试、测控技术及仪器仪表领域,微机化仪器的联网,高档测量仪器设备以及测量信息的地区性、全国性乃至全球性资源共享,各等级计量标准跨地域实施直接的数字化溯源比对,远程数据采集与测控,远程设备故障诊断,电、水、燃气、热能等的自动抄表,等等,都是网络技术进步并全面介入其中发挥关键作用的必然结果。

物联网与嵌入式是密不可分的,虽然物联网拥有传感器、无线网络、射频识别,但物联网系统的控制 *** 作、数据处理 *** 作,都是通过嵌入式的技术去实现的,物联网就是嵌入式产品的网络化。

物联网与嵌入式之间的关系

1、物联网是新一代信息技术的重要组成部分,是互联网与嵌入式系统发展到高级阶段的融合。

2、作为物联网重要技术组成的嵌入式系统,嵌入式系统视角有助于深刻地、全面地理解物联网的本质。

3、无论是通用计算机还是嵌入式系统,都可以溯源到半导体集成电路。微处理器的诞生,为人类工具提供了一个归一化的智力内核。

4、在微处理器基础上的通用微处理器与嵌入式处理器,形成了现代计算机知识革命的两大分支,即通用计算机与嵌入式系统的独立发展时代。

5、通用计算机经历了从智慧平台到互联网的独立发展道路;嵌入式系统则经历了智慧物联到局域智慧物联的独立发展道路。

6、物联网是通用计算机的互联网与嵌入式系统单机或局域物联在高级阶段融合后的产物。

7、物联网中,微处理器的无限弥散,以“智慧细胞”形式,赋予物联网“智慧地球”的智力特征。

嵌入式简介

嵌入式系统是一种专用的计算机系统,作为装置或设备的一部分。通常,嵌入式系统是一个控制程序存储在ROM中的嵌入式处理器控制板。事实上,所有带有数字接口的设备,如手表、微波炉、录像机、汽车等,都使用嵌入式系统,有些嵌入式系统还包含 *** 作系统,但大多数嵌入式系统都是由单个程序实现整个控制逻辑。

从应用对象上加以定义,嵌入式系统是软件和硬件的综合体,还可以涵盖机械等附属装置。国内普遍认同的嵌入式系统定义为:以应用为中心,以计算机技术为基础,软硬件可裁剪,适应应用系统对功能、可靠性、成本、体积、功耗等严格要求的专用计算机系统。

嵌入式的特点

1、专用软硬件可裁剪可配置(嵌入式系统是面向应用的,和通用系统的区别在于系统功能专一)

2、低功耗高可靠性高稳定性

3、软件代码短小和PC资源相比资源(硬件资源内存等)比较少

4、代码可固化在存储器芯片或单片机中而不是存在磁盘中

5、实时性

6、交互性(一般不需要键盘鼠标人机交互以简单为主)

7、它是将先进的计算机技术、半导体技术和电子技术与各个行业的具体应用相结合的产物。

深圳市天工测控技术有限公司(Skylab M&C Technology Co,Ltd),专业从事GNSS、WiFi、蓝牙等无线产品的研究,提供并基于模块内核进行二次开发应用,给客户提供低成本的无线产品解决方案。生产执行ISO-9001质量管理体系和IATF-16949汽车行业质量标准体系,旨在向国内外客户提供高品质、高性能的无线模块和应用方案。

航天器进入茫茫太空,运转速度快,轨道复杂,航天器在空间航行,必须与地面保持密切的联系,由地面对航天器进行跟踪、遥测、遥控和通信。测控系统由分布在全球各地的台、站、船等组成。这些地面设备具有非常完备、高级的电子设备,是航天技术中的重要组成部分。

第一步,从升空到运行的测控。航天器随运载火箭离开发射台之后,很快进入看不见、摸不着的宇宙太空,要跟踪和测量航天器的飞行路线,掌握其工作状态,预报其运行轨道,以及改变其运行轨道,就只能通过无线电波等手段,同时建立实时的信息联系。

地面测控网要按照航天器的飞行轨道和任务,比如:入轨点、机动变轨段、回收段等,在地面上布置以控制计算中心为核心的多处测控站,在海上布置以测量指挥船为核心的测控船队和岛屿测控点。它的主要任务就是:一要接收记录遥测信息,并向测控计算中心传送;二要在跟踪测轨获得初轨的基础上进行计算,以作出航天器运行轨迹的全球性预报;三要控制计算中心综合并计算各测控站的数据、实时显示航天器的各种工作状态;四要通过地面遥控系统,向航天器及时发出遥控指令,对航天器进行遥控。

为保障长期执行航天测控任务,除少数测控航队可临时机动派遣外,绝大多数测控站是常设的。比如,我国航天测控网的卫星测控中心设在陕西渭南,辐射到全国各地,在各地建立了20多个航天器(当前还是人造地球卫星)观测站,形成了广阔而密集的测控网络。地面测控网规模宏大、系统综合性强,要能对航天器“抓得住、测得准、报得及时、指控得力”,必须建立一个综合控制的统一的测控网。这种“综合测控技术”在60年代后期我国首先采用,取得优异成效,在“计算机录取和交换数据”、“四机联网指令链”和“系统仿真模拟”等应用技术方面,对解决航天器进入太空、返回地面、同步定点问题发挥了突出作用。从80年代中期开始,我国西安卫星测控中心开发出了利用一套测控网,连续8年同时对多颗不同类型的在轨运行的长寿命卫星实施“一网管多星”的独特模式,闯出一条科学、高效、经济的卫星测控管理之路,使这一测控技术达到世界先进水平。

第二步,从绕地到定点的指挥。通信卫星,通常设在地球同步静止轨道上,故也称地球同步卫星或静止卫星。它定点于赤道上空35786公里的轨道上,比测控近地轨道上的航天器要复杂得多。在保证中、低轨道测控网的基础上,必须增加大功率、高灵敏度、超远距离的测控设备,才能适应静止轨道航天器的测探要求。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/10930002.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-12
下一篇 2023-05-12

发表评论

登录后才能评论

评论列表(0条)

保存