物联网技术涵盖感知层、网络层、平台层和应用层四个部分。
感知层的主要功能就是采集物理世界的数据,其是人类世界跟物理世界进行交流的关键桥梁。比如在智能喝水领域会采用一种流量传感器,只要用户喝水,流量传感器就会立即采集到本次的喝水量是多少,再比如小区的门禁卡,先将用户信息录入中央处理系统,然后用户每次进门的时候直接刷卡就行。(了解更多智慧人脸识别解决方案,欢迎咨询 汉玛智慧)
网络层主要功能就是传输信息,将感知层获得的数据传送至指定目的地。物联网中的“网”字其实包含了2个部分:接入网络、互联网。以前的互联网只是打通了人与人之间的信息交互,但是没有打通人与物或物与物之间的交互,因为物本身不具有联网能力。后来发展出将物连接入网的技术,我们称其为设备接入网,通过这一网络可以将物与互联网打通,实现人与物和物与物之间的信息交互,大大增加了信息互通的边界,更有利于通过大数据、云计算、AI智能等先进技术的应用来增加物理和人类世界的丰富度。
平台层可为设备提供安全可靠的连接通信能力,向下连接海量设备,支撑数据上报至云端,向上提供云端API,服务端通过调用云端API将指令下发至设备端,实现远程控制。物联网平台主要包含设备接入、设备管理、安全管理、消息通信、监控运维以及数据应用等。
应用层是物联网的最终目的,其主要是将设备端收集来的数据进行处理,从而给不同的行业提供智能服务。目前物联网涉及的行业众多,比如电力、物流、环保、农业、工业、城市管理、家居生活等,但本质上采用的物联网服务类型主要包括物流监控、污染监控、智能交通、智能家居、手机钱包、高速公路不停车收费、远程抄表、智能检索等。
物联网十大应用分别是:设备监控、机器和基础设施维护、物流和追踪、集装箱环境、机器管理库存、网络数据用于营销、识别危险网站、无人驾驶卡车、WAN监控、GPS数据聚合。
十大应用介绍:
一、设备监控:像监控或者调节建筑物恒温器这样的事情可以远程完成,甚至可以做到节约能源和简化设施维修程序。这种物联网应用的美妙之处在于,它很容易实施,容易梳理性能基准,并得到所需的改进。
二、机器和基础设施维护:传感器可以放置在设备和基础设施材料上,例如铁路轨道,来监控这些部件的状况,并且在部件出现问题的时候发出警报。一些城市交通管理部门已经采用了这种物联网技术,能够在故障发生之前进行主动维护。
三、物流和追踪:运输业现在把传感器安装在移动的卡车和正在运输的各个独立部件上。从一开始中央系统就追踪这些货物直到结束。这么做可以防止货物在边远地区被盗窃,让企业供应链可以保持追踪,因为管理层可以在任何时间点清楚地看到车辆的位置(以及车辆应该在的位置)。
四、集装箱环境:同样是在物流和运输行业,运送装着易腐货物的集装箱是对周围环境条件进行监控的,如果超出温度或者湿度范围传感器会发出警报。此外,当集装箱被弄乱或者密封被破坏的时候,传感器也会发出警报。这个信息是实时通过中央系统直接发送给决策者的,这样情况可以得到补救,即使这些货物是在全球各地的运输途中。
五、机器管理库存:向消费者提供了各种商品的自助服务售卖机和便携式商店,现在可以在特定商品低于再订购水平的时候发送自动补充库存警报。这种做法可以为零售商节约成本,因为他们只需要在机器告诉他们需要补充库存的时候让现场工作人员进行补货。
六、网络数据用于营销:企业可以选择利用自己的分析,追踪客户在网络中的行为,或者他们可以将这个任务外包给在这个领域内有声誉的营销公司。在网站的导航模式中,访客来到或者来自你的网站,访客所使用的设备类型,以及其他关于访客的相关数据,可以聚合起来以更全面地了解。交易数据和物联网数据的结合,将会丰富你的营销分析及预测,可以快速实施。
七、识别危险网站:商业公司提供的安全服务,可以让网络管理员追踪机器对机器的交流,追踪来自公司计算机的互联网网站访问,揭示公司计算机定期访问的“危险”网站和IT地址。实践会降低网络遭受恶意软件和病du入侵的风险。因为这种“观察”服务是从云厂商那里提供的,所以实施简单,企业可以马上开始。
八、无人驾驶卡车:在气候条件恶劣和没有道路基础设施的边远地区,石油和天然气开采行业的企业正在使用无人驾驶卡车,这种卡车可以远程控制和远程通信。这降低了运营费用,因为你不用派人进入该领域,还可以避免在已知极其危险的区域发生事故。
九、WAN监控:企业可以很好地监控和修改他们的网络流量,但是当这个流量通过广域网或者互联网路由的时候,有时候似乎是在他们控制范围之外的。现在位于全球不同地点的办公室的边缘路由器,会显示出显著不同的服务质量,这取决于这个办公室是在新加坡或者里约热内卢。如果IT希望更好地监控互联网流量,那么可以购买商业服务,实时显示哪些地方放缓了,甚至可以重新路由流量以保持通信畅通。
十、GPS数据聚合:GPS数据聚合是应用最广泛的物联网数据收集方法之一。企业喜欢它是因为可以让他们统计人口数据、天气数据、基础结构数据、图形数据和任何可以并定位到特定地理位置的数据类型。很多厂商可以帮助你,以对业务有意义的方式聚合GPS数据。
●传感器技术:价格低廉、性能良好的传感器是物联网应用的基石,物联网的发展要求更准确、更智能、更高效以及兼容性更强的传感器技术。智能数据采集技术是传感器技术发展的一个新方向。信息的泛在化对传感器和传感装置提出了更高的要求。具体如,微型化:元器件的微小型化,要求节约资源与能源;智能化:具备自校准、自诊断、自学习、自决策、自适应和自组织等人工智能技术;低功耗与能量获取技术:供电方式为电池、阳光、风、温度、振动等多种方式。●设备兼容技术:大部分情况下,企业会基于现有的工业系统建造工业物联网,如何实现工业物联网中所用的传感器能够与原有设备已应用的传感器相兼容是工业物联网推广所面临的问题之一。传感器的兼容主要指数据格式的兼容与通信协议的兼容,兼容关键是标准的统一。目前,工业现场总线网络中普遍采用的如Profibus、Modus协议,已经较好地解决了兼容性问题,大多数工业设备生产厂商基于这些协议开发了各类传感器、控制器等。近年来,随着工业无线传感器网络应用日渐普遍,当前工业无线的WirelessHART、ISA100.11a以及wIA—PA3大标准均兼容了IEEE802.15.4无线网络协议,并提供了隧道传输机制兼容现有的通信协议,丰富了工业物联网系统的组成与功能。
●网络技术:网络是构成工业物联网的核心之一,数据在系统不同的层次之间通过网络进行传输。网络分为有线网络与无线网络,有线网络一般应用于数据处理中心的集群服务器、工厂内部的局域网以及部分现场总线控制网络中,能提供高速率高带宽的数据传输通道。工业无线传感器网络则是一种新兴的利用无线技术进行传感器组网以及数据传输的技术,无线网络技术的应用可以使得工业传感器的布线成本大大降低,有利于传感器功能的扩展,因此吸引了国内外众多企业和科研机构的关注。
传统的有线网络技术较为成熟,在众多场合已得到了应用验证。然而,当无线网络技术应用于工业环境时,会面临如下问题:工业现场强电磁干扰、开放的无线环境让工业机器更容易受到攻击威胁、部分控制数据需要实时传输。相对于有线网络,工业无线传感器网络技术则正处在发展阶段,它解决了传统的无线网络技术应用于工业现场环境时的不足,提供了高可靠性、高实时性以及高安全性,主要技术包括:自适应跳频、确实性通信资源调度、无线路由、低开销高精度时间同步、网络分层数据加密、网络异常监视与报警以及设备入网鉴权等。
●信息处理技术:工业信息出现爆炸式增长,工业生产过程中产生的大量数据对于工业物联网来说是一个挑战,如何有效处理、分析、记录这些数据,提炼出对工业生产有指导性建议的结果,是工业物联网的核心所在,也是难点所在。
当前业界大数据处理技术有很多,如SAP的BW系统在一定程度上解决了大数据给企业生产运营带来的问题。数据融合和数据挖掘技术的发展也使海量信息处理变得更为智能、高效。工业物联网泛在感知的特点使得人也成为了被感知的对象,通过对环境数据的分析以及用户行为的建模,可以实现生产设计、制造、管理过程中的人一人、人一机和机一机之间的行为、环境和状态感知,更加真实地反映出工业生产过程中的细节变化,以便得出更准确的分析结果。
●安全技术:工业物联网安全主要涉及数据采集安全、网络传输安全等过程,信息安全对于企业运营起到关键作用,例如在冶金、煤炭、石油等行业采集数据需要长时问的连续运行,如何保证在数据采集以及传输过程中信息的准确无误是工业物联网应用于实际生产的前提。
分析大数据
物联网传感器持续接收来自大量连接的异构设备的数据。随着联网设备数量的增加,物联网系统需要具有可伸缩性,以适应数据的流入。分析系统处理这些数据并提供有价值的报告,这将使企业具有竞争优势。由于数据是基于其类型挖掘的,因此必须对数据进行分岔以充分利用数据。根据问题数据的类型,可以进行不同类型的分析。比较常见的有:
流分析(Streaming Analytics)
流分析结合了来自传感器的未排序的流数据和来自研究的存储数据,以发现熟悉的模式。这种方法的实时分析可以在车队跟踪和银行交易等用例中提供帮助。
地理空间分析(Geospatial Analytics)
另一类大数据分析方法是地理空间,其中IoT传感器数据和传感器的物理位置的组合可以为预测分析提供整体视角。物联网世界中的对象数量众多,其通过无线网络发送数据的能力有助于获得详细的数据转储,这些数据转储可用于促进洞察。
挑战
对于目前所处的阶段,获取、分析和报告物联网数据是大多数企业的必修课。然而,由于这些技术仍处于发展阶段,这些组织面临着相当多的挑战。其中一些是:
集成
由于物联网数据通过多个渠道以不同的格式接收,因此收集和集成物联网数据具有挑战性。分析系统需要确保接收到的数据是一种可 *** 作的格式,足以确定见解。文本挖掘和机器学习技术通常用于从传感器中提取文本数据。然而,提取非文本格式的数据,如图像、视频不能快速完成。
关于如何对物联网数据进行大数据分析,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)