目前,量子云码已经突破了玻璃、陶瓷、塑料、金属等重点难点领域,其一物一码技术与数字化平台广泛应用于食品、药品、化妆品、农产品、文化收藏等九大行业,已累计赋能500余家行业头部企业,在电缆电器领域有着非常成熟的项目落地经验。
鸽牌电线是行业内第一家采用二维码+量子云码双重防伪验证技术的企业,具有一圈一码、不可复制、防重复使用、质量信息可追溯等功能,极大程度增强了电线产品打假和质量追溯能力。通过扫微信的二维码,即可查询产品信息,在界面中选择下载,就会出现“鸽牌二维码”APP小程序,下载后扫描量子云码,便可查验产品真伪,更精准地管控了电线的产品质量,为民生用电筑起坚实的安全保障。
强大的量子计算机可以破解加密并解决经典机器无法解决的问题。虽然目前还没有人成功制造出这样的设备,但最近我们看到了进步的步伐——那么,会是新的一年吗?目前,注意力集中在一个被称为量子霸权的重要里程碑上:在合理的时间范围内,量子计算机能够完成经典计算机无法完成的计算。
谷歌在2019年首次使用具有 54 个量子位(常规计算位的量子等价物)的设备来执行称为随机抽样计算的基本上无用的计算,从而实现了这一目标。2021 年,中国科学技术大学的一个团队使用 56 个量子比特解决了一个更复杂的采样问题,后来又用 60 个量子比特将其推得更远。
但IBM 的Bob Sutor表示,这种跨越式 游戏 是一项尚未产生真正影响的学术成就。只有当量子计算机明显优于经典计算机并且能够解决不同问题时,才能实现真正的霸权,而不是目前用作基准的随机抽样计算。
他说,IBM 正在努力实现“量子商业优势”——在这一点上,量子计算机可以比传统计算机更快地为研究人员或公司解决真正有用的问题。Sutor说,这还没有到来,也不会在新的一年到来,但可以预期在十年内。
量子软件公司Classiq的联合创始人Nir Minerbi则更为乐观。他认为,新的一年将在一个有用的问题中展示量子霸权。
还记得第一辆电动 汽车 问世的时候吗?它们对于开车去杂货店很有用,但也许不适合开车300公里送孩子上大学。就像电动 汽车 一样,量子计算机会随着时间的推移变得越来越好,使其在更广泛的应用中发挥作用。
解决实际问题存在许多障碍。首先是设备需要数千个量子比特才能做到这一点,而且这些量子比特也必须比现有的更稳定和可靠。研究人员很可能需要将它们分组在一起,以作为单个“逻辑量子比特”工作。这有助于提高保真度,但会削弱规模的改进:数千个逻辑量子位可能需要数百万个物理量子位。
随着时间的推移,量子计算机会变得更好,在一系列应用中变得有用
研究人员还致力于量子纠错,以在出现故障时对其进行修复。谷歌在2021年7月宣布,其Sycamore处理器能够检测并修复其超导量子比特中的错误,但执行此 *** 作所需的额外硬件引入的错误多于修复的错误。马里兰州联合量子研究所的研究人员后来设法用他们捕获的离子量子比特通过了这个关键的收支平衡阈值。
即便如此,现在还为时过早。如果通用量子计算机在新的一年解决了一个有用的问题,那将是“相当令人震惊的”。在任意时间内保护单个编码的量子位,更不用说对数千或数百万个编码的量子位进行计算了。
量子计算机需要多大才能破解比特币加密或模拟分子?
预计量子计算机将具有颠覆性,并可能影响许多行业领域。因此,英国和荷兰的研究人员决定 探索 两个截然不同的量子问题:破解比特币(一种数字货币)的加密以及模拟负责生物固氮的分子。研究人员描述了他们创建的一种工具,用于确定解决此类问题需要多大的量子计算机以及需要多长时间。
这一领域的大部分现有工作都集中在特定的硬件平台、超导设备上,就像 IBM 和谷歌正在努力开发的那样。不同的硬件平台在关键硬件规格上会有很大差异,例如运算速率和对量子比特(量子比特)的控制质量。许多最有前途的量子优势用例将需要纠错量子计算机。纠错可以通过补偿量子计算机内部的固有错误来运行更长的算法,但它是以更多物理量子比特为代价的。从空气中提取氮来制造用于肥料的氨是非常耗能的,改进这一过程可能会影响世界粮食短缺和气候危机。相关分子的模拟目前甚至超出了世界上最快的超级计算机的能力,但应该在下一代量子计算机的范围内。
我们的工具根据关键硬件规格自动计算纠错开销。为了让量子算法运行得更快,我们可以通过添加更多物理量子位来并行执行更多 *** 作。我们根据需要引入额外的量子位以达到所需的运行时间,这严重依赖于物理硬件级别的 *** 作速率。大多数量子计算硬件平台都是有限的,因为只有彼此相邻的量子位才能直接交互。在其他平台中,例如一些捕获离子的设计,量子位不在固定位置,而是可以物理移动——这意味着每个量子位可以直接与大量其他量子位相互作用。
我们 探索 了如何最好地利用这种连接遥远量子位的能力,目的是用更少的量子位在更短的时间内解决问题。我们必须继续调整纠错策略以利用底层硬件的优势,这可能使我们能够使用比以前假设的更小的量子计算机来解决影响深远的问题。
量子计算机在破解许多加密技术方面比经典计算机更强大。世界上大多数安全通信设备都使用 RSA 加密。RSA 加密和比特币使用的一种(椭圆曲线数字签名算法)有一天会容易受到量子计算攻击,但今天,即使是最大的超级计算机也永远不会构成严重威胁。研究人员估计,一台量子计算机需要的大小才能在它实际上会构成威胁的一小段时间内破解比特币网络的加密——在它宣布和集成到区块链之间。交易支付的费用越高,这个窗口就越短,但可能从几分钟到几小时不等。
当今最先进的量子计算机只有50-100个量子比特。“我们估计需要30[百万] 到3亿物理量子比特,这表明比特币目前应该被认为是安全的,不会受到量子攻击,但这种尺寸的设备通常被认为是可以实现的,未来的进步可能会进一步降低要求。比特币网络可以对量子安全加密技术执行‘硬分叉’,但这可能会由于内存需求增加而导致网络扩展问题。
研究人员强调了量子算法和纠错协议的改进速度。四年前,我们估计捕获离子设备需要 10 亿个物理量子比特才能破解 RSA 加密,这需要一个面积为 100 x 100 平方米的设备。现在,随着全面改进,这可能会显着减少到仅仅 25 x 25 平方米的面积。大规模纠错量子计算机应该能够解决经典计算机无法解决的重要问题。模拟分子可应用于能源效率、电池、改进的催化剂、新材料和新药的开发。进一步的应用程序全面存在——包括金融、大数据分析、飞机设计的流体流动和物流优化。
什么是量子启示录?
想象一个加密的秘密文件突然被破解的世界——这就是所谓的“量子启示录”。简而言之,量子计算机的工作方式与上个世纪开发的计算机完全不同。从理论上讲,它们最终可能会比今天的机器快很多很多倍。这意味着面对一个极其复杂和耗时的问题——比如试图解密数据——其中有数十亿的多个排列,如果有的话,一台普通的计算机需要很多年才能破解这些加密。但理论上,未来的量子计算机可以在几秒钟内完成这项工作。这样的计算机可以为人类解决各种问题。英国政府正在牛津郡哈威尔投资国家量子计算中心,希望彻底改变该领域的研究。
一种用于量子计算的新语言
Twist是麻省理工学院开发的一种编程语言,可以描述和验证哪些数据被纠缠在一起,以防止量子程序中的错误。时间结晶、微波炉、钻石,这三个不同的东西有什么共同点?量子计算。与使用比特的传统计算机不同,量子计算机使用量子比特将信息编码为0或1,或两者同时编码。再加上来自量子物理学的各种力量,这些冰箱大小的机器可以处理大量信息——但它们远非完美无缺。就像我们的普通计算机一样,我们需要有正确的编程语言才能在量子计算机上正确计算。
对量子计算机进行编程需要了解一种叫做“纠缠”的东西,这是一种用于各种量子比特的计算机,它可以转化为强大的能量。当两个量子位纠缠在一起时,一个量子位上的动作可以改变另一个量子位的值,即使它们在物理上是分开的,这引起了爱因斯坦对“远距离幽灵动作”的描述。但这种效力同样是弱点的来源。在编程时,丢弃一个量子位而不注意它与另一个量子位的纠缠会破坏另一个量子位中存储的数据,从而危及程序的正确性。
麻省理工学院计算机科学与人工智能 (CSAIL) 科学家旨在通过创建自己的量子计算编程语言 Twist 来解开谜团。Twist 可以通过经典程序员可以理解的语言来描述和验证量子程序中纠缠了哪些数据。该语言使用一个称为纯度的概念,它强制不存在纠缠并产生更直观的程序,理想情况下错误更少。例如,程序员可以使用 Twist 表示程序作为垃圾生成的临时数据不会与程序的答案纠缠在一起,从而可以安全地丢弃。
虽然新兴领域可能会让人感觉有点浮华和未来感,但脑海中浮现出巨大的金属机器的图像,但量子计算机具有在经典无法解决的任务中实现计算突破的潜力,例如密码学和通信协议、搜索以及计算物理和化学。计算科学的主要挑战之一是处理问题的复杂性和所需的计算量。经典的数字计算机需要非常大的指数位数才能处理这样的模拟,而量子计算机可能会使用非常少量的量子位来做到这一点——如果那里有正确的程序。 “我们的语言 Twist 允许开发人员通过明确说明何时不得与另一个量子位纠缠来编写更安全的量子程序,”麻省理工学院电气工程和计算机科学博士生、有关 Twist的新论文的主要作者 Charles Yuan 说 “因为理解量子程序需要理解纠缠,我们希望 Twist 为开发语言铺平道路,让程序员更容易应对量子计算的独特挑战。”
解开量子纠缠
想象一个木箱,它的一侧伸出一千根电缆。您可以将任何电缆从包装盒中拉出,也可以将其完全推入。
在你这样做一段时间后,电缆会形成一个位模式——零和一——取决于它们是在里面还是在外面。这个盒子代表了经典计算机的内存。该计算机的程序是关于何时以及如何拉电缆的一系列指令。
现在想象第二个外观相同的盒子。这一次,你拉一根电缆,看到它出现时,其他几根电缆被拉回了里面。显然,在盒子内部,这些电缆不知何故相互缠绕。
第二个框是量子计算机的类比,理解量子程序的含义需要理解其数据中存在的纠缠。但是检测纠缠并不简单。你看不到木箱,所以你能做的最好的就是尝试拉动电缆并仔细推理哪些是纠缠的。同样,今天的量子程序员不得不用手推理纠缠。这就是 Twist 的设计有助于按摩其中一些交错的部分。
科学家们设计的Twist具有足够的表现力,可以为著名的量子算法编写程序并识别其实现中的错误。为了评估Twist的设计,他们对程序进行了修改,以引入某种对于人类程序员来说相对不易察觉的错误,并表明Twist可以自动识别错误并拒绝程序。
他们还测量了程序在运行时方面的实际执行情况,与现有的量子编程技术相比,它的开销不到4%。
对于那些担心量子在破解加密系统方面的“肮脏”名声的人来说,Yuan 表示,目前还不清楚量子计算机在实践中能够在多大程度上实现其性能承诺。“在后量子密码学方面正在进行大量研究,这些研究之所以存在,是因为即使是量子计算也不是万能的。到目前为止,有一组非常具体的应用程序,人们在这些应用程序中开发了量子计算机可以超越经典计算机的算法和技术。”
重要的下一步是使用Twist创建更高级别的量子编程语言。今天的大多数量子编程语言仍然类似于汇编语言,将低级 *** 作串在一起,没有注意数据类型和函数等东西,以及经典软件工程中的典型内容。
量子计算机容易出错且难以编程。通过引入和推理程序代码的“纯度”,Twist 通过保证一段纯代码中的量子位不会被不在该代码中的位更改,朝着简化量子编程迈出了一大步。 这项工作得到了麻省理工学院-IBM 沃森人工智能实验室、国家科学基金会和海军研究办公室的部分支持。
注释 量子计算机
量子计算机是一种直接利用量子力学现象(如叠加和纠缠)对数据进行运算的计算设备。量子计算背后的基本原理是量子属性可以用来表示数据并对这些数据执行 *** 作。
尽管量子计算仍处于起步阶段,但已经进行了一些实验,在这些实验中,量子计算 *** 作是在非常少量的量子比特(量子二进制数字)上执行的。实践和理论研究都在继续进行,许多国家政府和军事资助机构支持量子计算研究,以开发用于民用和国家安全目的的量子计算机,例如密码分析。
如果可以建造大规模的量子计算机,它们将能够比我们目前的任何经典计算机(例如 Shor 算法)更快地解决某些问题。量子计算机不同于DNA计算机和基于晶体管的传统计算机等其他计算机。一些计算架构(例如光学计算机)可能会使用经典的电磁波叠加。如果没有一些特定的量子力学资源,例如纠缠,推测不可能超过经典计算机的指数优势。
你知道什么是量子计算机吗?什么是量子霸权?
一、什么是量子计算机?量子计算机顾名思义,它就是一种计算机,但是是基于量子理论而研发出来的一种计算机,这种量子计算机一般可以同时处在多个状态之下,因为我们普通的计算机一般都是二进制的量子计算机,它可以在多个状态之下被使用,所以比我们普通的计算机应用的范围更加广泛一点,量子计算机在经过了多年的研究之后,于2019年的时候推出了世界上第一台计算机系统,这是一台商用的量子计算机。
二、量子计算机有什么用?量子计算机的应用范围一般都是为网络安全所服务的,而且比我们普通的计算机更加的智能化,能够处理非常复杂的数据,包括一些计算机所不能够应用的范围之内,量子计算机都可以被广泛的应用,已经涵盖了我们生活当中的医药人工智能或者金融等等的领域,都可以使用到量子计算机,虽然现在量子计算机还在进一步的研发完善之中,可是相信在不久的将来,这种计算机将会被迅速的推广起来,因为他比我们普通的计算机的智能化更加的高级,而且应用范围也更加的广泛。
三、生活当中可以用到量子计算机吗?量子计算机其实直到现在还没有出现真正意义上的可以在生活当中使用的计算机模型,因为一切都还在研发之中,而且还在不断的完善,再加上量子计算机现在在全世界各地有非常多的方案,但是想要付诸实际的话还是需要花费一定的时间和精力的,如果一旦量子计算机被研发成功,真正的应用到我们的生活当中的话,对我们人类的发展作用非常的重大,因为它能够解决很多普通计算机所不能够解决的问题,就像我们普通计算机的发展历程一样,都是从最开始的比较笨重,系统比较繁琐,直到现在演变成了超薄笔记本的,要是这都需要一个过程,所以相信量子计算机在被研发支出来之后,我们普通人的生活当中也是可以用到的,因为他能够给我们带来非常好的计算体验,完成普通计算机所不能完成的工作,我们的工作和生活也将会因此受到非常大的便利。
随着人工智能应用的不断扩大和深入,算力需求将不断增加。因此,未来算力发展将会迎来以下机遇:
超级计算机:随着技术的提升,超级计算机的算力将会越来越强大,可以处理更加复杂的人工智能问题。
量子计算:量子计算是一种全新的计算方式,它利用量子比特而非传统的经典比特进行计算,因此具有比传统计算机更快的计算速度。这将为人工智能开辟新的研究方向,同时也为解决更加复杂的人工智能问题提供了可能。
模型压缩与量化:针对目前人工智能模型存在的内存占用和计算速度慢等问题,模型压缩和量化技术将成为重要的发展方向。通过减小模型大小和复杂度,同时保持良好的精度,可以在不降低算法性能的情况下实现更高效的计算。
分布式计算:由于单台设备的算力有限,分布式计算将成为满足大规模计算需求的关键技术之一。这项技术可以将计算任务分配给多台设备进行处理,提高计算效率和准确性。
总之,随着人工智能应用的不断扩大和深入,算力发展将会迎来更多机遇,并为人工智能技术的进一步发展提供有力支撑。
撰稿 李占春 《之我精神导论》作者
二十八、量子武器可能改写人类史 ------选自《量子真相与哲学探略》作者 李占春
一: 解放军报/2019 年/12 月意念控制走向应用一文指出:还记得银幕上主人公通过“意念”控制物体的场景吗?其实,科学家们早已把这样的场景变成了现实,只不过囿于高造价和低性能,将“意念控制”仅仅局限在了实验室里。近日,我国科研团队用“脑机一体化”突破了脑控技术的关键难题和技术瓶颈,使“意念控制”走向广泛应用有了可能。“脑机一体化”,是脑科学与人工智能跨界融合的产物。即把人的大脑作为计算机控制系统的一个组成部分,通过脑机接口,将大脑的智力和基于计算机技术的人工智能结合起来,构成一个兼具大脑的灵活、智能和计算机的高速、大容量的新系统,既不完全依靠“脑”,也不完全依靠“机”,这样可以大幅度提升控制系统的智能化和适应性……
如何提取脑特征呢?现在的技术主要有两种:一种是“侵入式”,即将脑电波检测电极植入大脑。这种方式采集到的脑信号强且稳定,但会对人体造成创伤,除非特殊情况,否则极少有人选择这一方式。另一种是“非侵入式”,即穿戴可穿戴的脑电波检测设备。相比前者,这种方式对人体无伤害,但稳定性弱、速度慢、正确率低。要想获得稳定的脑信号,通常需要连接较多的信号采集装置,穿戴十分不便,因此推广应用也大大受限。我国科研团队通过“脑机一体化”,对化解以上难题进行了有益 探索 ,在提升信号传输的精确性、实时性与精准度的同时,有效减少了导联装置。“脑机一体化”应用前景十分广阔,从日常生活到医疗、教育、军事及 游戏 娱乐 等领域,都会呈现出它的“给力”。不久前,有研究人员大胆提出“用意念 游戏 延缓脑衰老,从而预防老年痴呆症”的想法,若能实现,“跨界融合”将会再向前迈出一大步。未来,只能在中看到的机甲战士或将真的走上战场,或是身材魁梧的“巨无霸”,或是与人等身的“钢铁侠”。
实现“意念控制”的技术难点是通过脑机接口技术实现对脑电信号的“捉”和“转”,进而在人脑与计算机之间建立直接的交流和控制通道,利用该通道,实现通过大脑表达想法或 *** 纵设备的目的。脑机接口技术被公认为新一代人机交互和人机混合智能的关键核心技术,也是美国商务部限制对外出口的技术之一。该技术的实现途径分四步:第一步是脑电波采集,第二步是脑电波解读,第三步对脑电波进行信息编码,第四步是将信息编码结果反馈给外接设备。在脑电波采集中,可分为非植入式和植入式两类。非植入式主要通过头皮脑电实现,植入式则是将电极植入颅内,采集颅内脑电信号,这一步的技术难点是研制性能先进的神经接口元器件。目前美国一些研究机构已开发出“神经尘埃”“神经蕾丝”等具有突破性的接口器件。近些年,各国军队纷纷加入对意念控制技术的研究。其中,美军在这方面投资巨大,相关在研项目繁多且涉及多种功能。
三: 英国《每日邮报》刊文称,美国防部高级研究计划局正推进“非植入式神经技术”项目,目标是搭建起“人与机器之间的一座桥梁”。该项目通过开发能够让军人使用脑电波发送和接收信息的系统,使他们可以用意念控制无人机等装备。项目负责人称,“非植入式神经技术”项目研发出的神经接口系统,能够迅速从大脑多个点读取信息并写入信息。除此之外,美军还在开发各种仿生肢体,如仿生眼、仿生腿等。这些仿生肢体通过人的意念直接控制,且具备特殊功能,例如仿生眼具备一定的夜视功能,仿生腿能够承担更重载荷。另外实验已经证明,人的记忆与电脑计算具备相同原理,因此用计算机模拟出有记忆的大脑,理论上是可行的。据报道,瑞士科学家正计划打造“人造脑”,研究人员分析脑细胞间的数十亿个连接,然后将这些连接输入电脑。研究人员称,随着电脑速度的提高,他们能在硅和金属上模拟人类的精神活动,包括记忆和 情感 。这样看来,“人造脑”可能在不远的将来成为现实。
点评:站在量子视野,从以上介绍看,所谓意念控制只是经典计算机、感应器以及一系列的电子媒介媒质搭建的——受人脑指示的、较为高级的反应反射——连锁传动式—— *** 作和指挥平台,系列技术也只是主要应用传统的经典物理手段,离那种神话一样的隔空打物相去甚远,而与心灵感应也不是一个层次概念,但人脑的电活动在此倒是展露无遗。 话说,纯粹的意念控制最高境地——应是人对人的控制。以下,我们看看资料,其实也就是故事。
故事一:前苏联的超能力研究开始于20世纪30年代,心灵部队的成员都是一些超能力者,他们可以用意念控制别人的行动、大脑,甚至生死,前提是要知道对方的相貌。不过,认为超能力是唯心论的斯大林一开始很反对。让斯大林转变态度的是被称为“前苏联超能力界帝王”的伍尔夫·马辛格。斯大林给他出了一个难题——“你能独自去国家银行用超能力提取10万卢布吗?”第二天,马辛格来到银行。在出纳员面前,他拿出一张无字的纸条,集中意识不断向出纳员发送意念。出纳员收下了纸条,并提取了10万卢布交给了马辛格。斯大林这才相信意念力的存在。1970年,在前苏联一家心理学研究室里,一只蛙的心脏在烧杯中搏动。一个中年女子正对着心脏进行“意念控制”。女子的面孔变成朱红色, 身体微微颤动着。23分钟后,蛙的心脏搏动停止了。原本蛙的心脏从体内取出数小时后搏动仍可以继续。现场的人们发出叹息声,中年女性也停止意念发出。之后,蛙的心脏又开始搏动,1小时后自然停止了。这个女子名叫尼娜·克拉吉纳。她发现自己具有超能力是在44岁的时候。当时她因神经机能症住院,为了打发时间,她就用有颜色的卡片把眼睛蒙上,却能百发百中地猜出护士将要公布什么事情。她还对双脚麻痹而不能走路的男子实施触手治疗,随后该男子便能走路了。1967年,前苏联在实验中起用了具有心灵感应能力的尤里·卡门斯基和卡尔·尼古拉耶夫。卡门斯基从莫斯科发出信息,而尼古拉耶夫在800千米外的列宁格勒接收信息。两个超能力者通过心灵感应用莫尔斯电码信号成功地进行送信、收信。前苏联2 0 世纪50-70年代在国内设置了几十家研究所,发现了许多超能力者。如果把超能力运用于军事上,可能会有超过想象的结果。例如绝密情报,通过心理控制 *** 纵某个国家首脑的意志。可是,前苏联在1977年以后停止了对超能力的研究。
故事二:从40年代开始的美国超能力研究尽管在学术界尚有争议,但进入70年代后,美国政府开始资助并组织这方面的研究工作,这完全是出于特异功能可能具有的潜在的重要性。从1972年起,斯坦福大学研究所在美国政府的资助下,进行了一系列关于遥视和遥感的实验。他们设计了一套严格的实验方法,让特异功能者闭目入静,用意念遥视从几十公里远到地球上任何地点当时的情景,并连画带写记在纸上,再与实际情景比较。经过历时l0年的数百次实验,发现大约三分之二的遥视是成功的,比偶然碰到的机率高约100倍。随后普林斯顿等几所大学又重复了他们的实验,得到的成功率基本上相同。1977年7月,斯坦福研究所的工作人员在太平洋岸边用一艘潜艇进行了一系列的实验。实验时,一位名叫英格·斯万的具有遥视功能的人,被潜艇拉到离岸一英里远处,沉到500米深的水下,然后让他“看”岸上的实验者所在地方的样子(实验前并不知道会到何处),并对着录音机讲述他看到的情景。成功率仍然远高于偶然碰上的机率。这个实验表明,这种特异功能信号也不受深水的影响,因此不可能是某种电磁波。
故事三:据《华盛顿邮报》透露,1973年,美国中央情报局曾让两名具有特异功能的人进行了一次“千里眼”观测试验。试验中,两人用特异功能准确地描绘出正在遥远的印度洋加尔西西岛上秘密兴建的美军基地的情况;接着又对隐蔽在乌拉尔山脉里的苏联导d基地进行了“窥视”试验。结果表明,通过这个试验所得到的情报,比美国间谍卫星拍摄的照片更详细。1977年8月13日的芝加哥论坛报报道说:当时的中央情报局局长特纳透露,他们从1975年就雇佣了一个特异功能人,只要给他世界上任何地方的照片,他就能用他的特异功能“看出”当时那里在干什么。特异功能在美国尽管还为许多民众所不理解,军方和中央情报局却经常求助于它。近年来,他们曾经数次请特异功能专家侦察前苏联武器秘密,监视诺列加以及在伊朗等国寻找恐怖分子和人质所在地。1988年5月,当时的美国总统里根夫人南希定期征询旧金山一位占星家的看法来安排总统活动日程之事曝光,使她成了全世界的笑柄。然而.现在看来,南希并不孤独;华盛顿热衷此道的还大有人在。国会议员中大约有四分之一的人对特异功能现象表现出极大兴趣。美国国会未来信息交换中心的创始人之一罗斯,在这个中心为一些特异功能专家们提供了发表言论的场地。(以上资料来自百度贴吧-神秘局吧-叫神)
故事四:1978年,世界国际象棋锦标赛在菲律宾的巴古伊奥举行。27岁的阿南托利卡波夫,是当时的卫冕冠军。他的对手是世界著名棋手维克多克尔其诺。克尔其诺是前苏联国际象棋冠军。1976年他逃往西方,妻子和儿子还在苏联。他公开表示要借这次受到国际媒体广泛注意的比赛,来要求苏联释放他的家人。可以想象,在国际象棋这一苏联最盛行的 娱乐 项目上,假如俄国金童卡波夫,被一个判逃的前苏联公民击败,那将是多么丢面子的事情。克格勃为这次象棋锦标赛,在菲律宾专门组织了一只专家队伍,目的就是影响克尔其诺,使他无法赢棋,这是主要目的。克格勃找到弗拉几米尔祖卡,苏联著名的意念遥控大师。祖卡虽然只是以一个观棋者的身份出现,但克尔其诺却说,他运用了催眠术,对他进行干扰。
克尔其诺也意识到了,他还就此表示了强烈不满。卡波夫是苏联棋界的金童,苏联希望他能够连续获胜。苏联人自己也公开谈论,在这次象棋比赛中,特异功能大师,被利用来保证卡波夫赢棋。从比赛一开始,祖卡医生就对克尔其诺产生了惊人的影响。本来一向以攻势凌厉,棋风灵活著称的克尔其诺,表现得犹豫不决,而且他的信心随着比赛的进程,不断减弱。尽管祖卡后来被挪到了赛场的后排,克尔其诺仍然感受到了他的强大影响。比赛持续了破纪录的78天,总共下了32盘棋。最后,克尔其诺输了。当克尔其诺向苏联抗议时,他们解释说,祖卡只是在研究克尔其诺,观察他的“肢体语言”,然后向卡波夫提出建议。但是除了电视镜头所捕捉到的之外,是否还有其他的?祖卡,这位苏联的意念遥控专家,是否控制了杰出的象棋大师训练有素的头脑?
暂且不管,这些故事的虚假和迷离,我们下面来瞧瞧——与意念控制相似的心灵感应之奇闻轶事。
之一: 本人的一个亲身经历吧,让我相信有心灵感应,发在这里也不知道合不合适,各位权当看个故事吧。小学时候因为父亲在京值班的缘故,经常暑假在北京过暑假,小时候六年级那年暑假,莫得作业,就天天跑去西单图书大厦看书。有天下午在西单图书大厦看书,突然感觉一阵心慌,就着急坐地铁回去,到了北京南站出去的时候隐隐约约听见我妈在喊我的名字,我心里更烦躁了,出了站就慌慌忙忙往住的地方跑,抬头看天天也阴了下来。刚刚跑到住的楼下边就看见父母拖着行李箱在走,看见我的时候感觉拉着我往火车站去。原来我奶奶突发心脑血管病,去医院下了病危,我爸就找黄牛买了三个票,想着能遇见我带着我走,不能遇见就交代了邻居照顾我一段时间,还好我赶上了。最后回去奶奶抢救回来目前身体 健康 。
之二: 这事儿我自己经历的,是发生在我2016年上高三的时候。在我妈动手术之前我是不知道她动手术了的,我是正常在学校里上课的。我妈住院那几天,我的心老是莫名其妙的疼,浑身没精神,也没有食欲吃饭,起初我以为是我生病了,就去校医务室看病,可校医说我没什么病,也没发烧,没有感冒的。校医让回去休息,这种状态持续了三四天吧。那天,我爸趁着中午吃饭的空把我接走出去吃饭(我记得是吃的水饺)。我问我爸(我爸还带着我弟弟呢,来接我),怎么想着来县城啦?我爸说你妈妈在医院里,动手术了,这不趁着你吃饭的空来接你看看你妈。当时饭还没上来,我爸一说我妈动手术了,我顿时感觉到很难过,就眼泪止不住往下流,就感觉到内心有种伤心的感觉,饭都没吃就给我爸说 等会再吃吧我现在去看看我妈妈怎么样了。我爸说,你别哭了,你妈妈没事了,做完手术了,特别小一个手术,别难过了啊,等会你吃完饭再看你妈妈去。我们吃完饭去看我妈妈,推开门看到我妈妈坐在病房里绣十字绣(捂脸笑,当时无语死我了)。我说我担心你担心的要死,你在这绣十字绣!我妈说:我没事,只是小手术。我问我妈为啥做手术了。我妈说体检出来胸口上方有一个小肿瘤,切了就没事了。我跟我妈说这两天在学校里心脏老是特别疼,头晕状态不好,我没往家里这边想——是不是出什么事儿了。我妈说咱娘俩心有灵犀呀,我在胸口上开个口,你在学校里心脏疼。
之三: 我也说一个真实的灵异事,我个人特别没有安全感,怕黑。高一的时候,有一次凌晨大概1点的时候,我被室友叫醒了,原因是寝室外面有两只猫一直叫,是那种撕心裂肺的叫,听起来就像孩子嘶哑的哭声,她睡不着。被她这么一叫之后,我也睡不着了,害怕得心里直打鼓,后来迷迷糊糊的睡了一会,做了一个噩梦,我在梦里面想要醒却醒不过来,但意识很清醒,能清楚的听到猫的叫声,但是,我大声喊了一声“奶奶”就醒过来了。周末回家的时候,奶奶对我说,有一天晚上她在睡觉的时候,半夜突然听到我在大声的叫她,然后她就醒过来了,一直到天亮都没有睡着。时间和那天晚上吻合。我觉得好神奇,但是不知道怎么解释这种现象?
之四: 去年过年前的一个月左右,我在离家几个小时路程的地方出差,那天早上刚洗完脸正把霜拿出来擦,啪的一下就摔碎了,当时没多想只是觉得刚买的就摔碎了怪心疼的,后来过了一个小时左右,我妈就给我打电话说我奶奶去世了让我回来,我当时就懵了,(在我出差之前奶奶出过车祸身体一直不好,家里人都说可能活不到过年了,也算意料之中,但是还是觉得很突然不知所措)问什么时候去世的,她说个把小时之前,之后我算了一下,差不多就是我霜摔碎的时间。然后就跟单位请了假让我朋友来接我回家,晚上在家睡觉的时候,我梦到有人进来了一看是我奶奶,什也没说站一会就走了。后来跟我妈说奶奶来看过我,我妈就说是我自己做梦。梦是假的而这是真实发生过的,只是它以意识的形态出现在了我的脑海。是不是心灵感应呢?还是只是巧合?(以上故事来自中国灵异网)
综上一大堆——可谓乱七八糟,其实都是陈芝麻烂谷子。尽管如此,这也算是我们人间的烟火。尽管——真真假假,但这一堆堆现象背后并不简单。中国民间的跳大神、跳大仙、跳萨满等等,其背后则可能伴有量子信息的传导,也就是说跳者通过一系列说唱动作,让灵魂之我进入静默的凝滞状态,就如同梦游态一般,这样利于集中精力或能量,任由思维驰骋,与服务对象目标人对接,通过此再嫁接上——信息来源的通路,由此进行量子态信息传导,与所谓的鬼神感应,以致获取所要的讯息。这些,我们在《之我精神导论》有关萨满的章节有所探讨。好了,闲话少说,以下我们来看看来自量子 科技 的前沿消息。
(一)、来自清华大学和中科院的周涛、龙桂鲁、傅双双、骆顺龙在《物理》撰文就量子关联指出——量子纠缠作为一种非局域的关联,是一种重要的资源而被广泛应用于量子信息处理。然而,最近的研究结果发现,可分态中也可以存在非经典的关联,量子纠缠只是量子关联的一部分;非纠缠的量子关联在一些量子通信和量子计算任务中扮演着重要的角色。
引言指出——近年来,量子信息理论和技术都得到了突飞猛进的发展。量子信息处理具有经典信息处理难以比拟的优越性,可以完成经典信息中不能实现的信息处理任务,例如量子密钥分配、量子隐形传态、量子秘密共享、量子密集编码、量子直接安全通信、以及大数因子分解量子算法和量子搜索算法等[1]。在这一背景下,对量子系统中关联的研究也变得越来越重要,因为关联在信息处理中是一种基本资源,量子信息处理之所以具有经典信息处理所不具有的优越性,通常都是因为量子系统之间存在着超越经典的关联。其实,在量子力学早期著名的EPR 文章中,Einstein 等人就注意到量子系统之间的超强关联,但是他们从定域实在论的前提出发,认为量子系统之间的这种超强关联反映了量子力学的不完备性。同年,Schrödinger 在著名的猫态文章中提出了纠缠(entanglement) 的概念,用以称呼EPR 文章中的超强关联。
有关量子力学完备性的争论一直持续,直到二十世纪六十年代,Bell 提出了一些数学不等式,称之为 Bell 不等式,首次提供了用实验在爱因斯坦的定域实在性和量子理论的超强关联之间做出判决的机会。二十世纪八十年代,Aspect 等人进行了很多精细实验,结果与量子力学理论的预测一致,说明量子系统之间确实存在经典所不允许的关联。进入二十世纪九十年代,量子信息理论和技术开始飞速发展,量子纠缠作为一种资源被广泛 探索 和应用。然而,近年的研究发现,量子纠缠并不能刻画量子系统中的所有量子关联,某些非纠缠(可分) 态也可用于量子信息处理,具有超越经典信息处理的优势。所以,人们又基于量子测量,提出将关联分为经典关联和量子关联,把量子关联作为资源用于量子信息处理。
(二)、来自中国科学技术大学中国科学院量子信息重点实验室的许金时、李传锋、张永生、郭光灿撰文量子关联,摘要指出——量子纠缠是量子信息处理过程中的重要资源, 也是量子力学与经典力学本质区别的一个重要特征。最近随着量子信息理论的不断发展, 人们发现可分态中也可以存在非经典的量子关联, 量子纠缠只是量子关联的一部分。而且这种非纠缠的量子关联可能在一些量子信息处理过程中起到重要的用。
引言指出——量子信息学是将量子力学基本原理运用到信息理论和计算机科学中所产生的一门崭新学科, 是当前国际研究最活跃、最重要的课题之一。量子信息可以实现诸多经典领域所不能完成的信息处理任务,例如量子隐形传态、量子密集编码、绝对安全的量子密钥传输, 能够破解当前广泛使用的公开密钥体系 RSA 的大数因子分解的量子算法等等 量子纠缠是不同量子体系之间的一种特殊关联1935 年, Einstein, Podolsky 和 Rosen( EPR) 基于局域实在假定, 发表了著名的质疑量子力学完备性的文章,从此,量子纠缠就一直是量子力学中最热点讨论的基本问题之一。量子纠缠是一种非局域的关联,它是量子力学区别于经典力学的一个本质特征, 可以存在于相隔非常遥远没有相互作用的两个量子体系之间,比如一对相隔很远的原子、光子 、电子等等。量子纠缠的这些特殊的性质使它成为量子通信和量子计算中的重要资源。很多经典方法所不能实现的量子信息方案都可以通过量子纠缠来辅助实现
然而我们所感兴趣的量子体系一般不是一个封闭系统,它不可避免地要与环境发生相互作用, 从而发生消相干。量子纠缠体系也不例外,与环境的耦合将破坏纠缠的特性,这给量子信息技术的发展和应用带来严峻的考验因此对量子纠缠在不同噪声环境中的动力学过程的研究, 将有助于我们采取措施来克服困难 ;而且量子纠缠在消相干信道中的演化会展现出与单粒子相干性渐进衰减完全不同的性质。纠缠可能在有限的演化时间内完全消失, 即纠缠的突然死亡现象,这为我们更深刻地理解和利用纠缠提供了契机。
最近, 随着量子信息理论的发展, 很多工作已经指出, 包含经典和量子两部分的关联可能比纠缠更广泛, 更基础。纠缠只是作为一种特殊的量子关联存在。举个最简单的例子, 在一个 Bell 态中, 经典关联和量子关联都为 1, 而在这种情况下, 纠缠就等于量子关联 更进一步, 人们又发现了可分态中可能含有非经典关联, 这就意味着纠缠为零的可分态中可能含有非零的量子关联, 而且这种非纠缠的量子关联已经在理论上被用在非幺正的量子计算模型中, 以实现使问题加速解决的一些计算方案, 并且这些方案已经在实验上得到实现。与纠缠一样, 量子系统中的各种关联在周围环境噪声作用下都会不断衰减研究各种关联在不同噪声信道下的动力学过程, 将有助于我们进一步理解和应用它们。而且相对于纠缠突然死亡的独特性质, 对其他各种关联独特演化方式的研究, 不仅有助于区分各种关联在量子信息方案优越性方面所起的作用, 而且对进一步利用它们也有着重要的实际意义。
引用以上科研信息的意思是提醒——量子信息的传导路子在逐渐扩宽,由纠缠态的特殊量子关联——延展到了——宽泛或广义的量子关联。 就上述的意念和感应来说,我们人脑本身就是一部量子发生处理器——既可以发散量子,也可以接受反馈量子信息,与远古时代比较,我们身处的环境受到了诸多的干扰,我们自身在身体上所谓的潜能也退化殆尽。在一些动物身上其实还还留很多这样的神奇,例如地震或火山等自然灾害来临之前,它们会用异样的行为来表达灾难降临之前兆。当今,运用 科技 手段既可以造福人类,也可以嫁祸世界。例如,外电消息证实伊朗核科学家遇刺,系遭某国卫星控制、人脸识别的机q精准射杀而亡。我们设想一下,通过高空卫星的识别定准定位,运用量子纠缠或关联原理,通过卫星中转或直接发射——量子信息炸d——改变或抹掉或损毁——目标个体的脑信息、脑思维、脑功能,可以说是易如反掌——而且无声无息、无痕无影。如果这种技术普及开来,甚至可做成如遥控器一般大小,对整个世界来说将会引发——人心惶惶、动荡不宁。这绝对不是杞人忧天,而是我们即将要面临的事实。最可怕的,是这种武器如果被智能机器人掌握了,那我们人类将怎么办?因为在量子计算的辅助下,智能机器人可能比人类更聪明、更狡诈。
所谓量子通信是指利用量子纠缠效应进行信息传递的一种新型的通讯方式,是近二十年发展起来的新型交叉学科,是量子论和信息论相结合的新的研究领域。
光量子通信主要基于量子纠缠态的理论,使用量子隐形传态(传输)的方式实现信息传递。根据实验验证,具有纠缠态的两个粒子无论相距多远,只要一个发生变化,另外一个也会瞬间发生变化,利用这个特性实现光量子通信的过程如下:事先构建一对具有纠缠态的粒子,将两个粒子分别放在通信双方,将具有未知量子态的粒子与发送方的粒子进行联合测量(一种 *** 作),则接收方的粒子瞬间发生坍塌(变化),坍塌(变化)为某种状态,这个状态与发送方的粒子坍塌(变化)后的状态是对称的,然后将联合测量的信息通过经典信道传送给接收方,接收放根据接收到的信息对坍塌的粒子进行幺正变换(相当于逆转变换),即可得到与发送方完全相同的未知量子态。
经典通信较光量子通信相比,其安全性和高效性都无法与之相提并论。安全性-量子通信绝不会“泄密”,其一体现在量子加密的密钥是随机的,即使被窃取者截获,也无法得到正确的密钥,因此无法破解信息;其二,分别在通信双方手中具有纠缠态的2个粒子,其中一个粒子的量子态发生变化,另外一方的量子态就会随之立刻变化,并且根据量子理论,宏观的任何观察和干扰,都会立刻改变量子态,引起其坍塌,因此窃取者由于干扰而得到的信息已经破坏,并非原有信息。高效,被传输的未知量子态在被测量之前会处于纠缠态,即同时代表多个状态,例如一个量子态可以同时表示0和1两个数字, 7个这样的量子态就可以同时表示128个状态或128个数字:0~127。光量子通信的这样一次传输,就相当于经典通信方式的128次。可以想象如果传输带宽是64位或者更高,那么效率之差将是惊人的2,以及更高。这里进一步解释一下量子纠缠。量子纠缠可以用“薛定谔猫”来帮助理解:当把一只猫放到一个放有毒物的盒子中,然后将盒子盖上,过了一会问这个猫现在是死了,还是活着呢?量子物理学的答案是:它既是死的也是活的。有人会说,打开盒子看一下不就知道了,是的,打开盒子猫是死是活确实就会知道,但是按量子物理的解释:这种死或者活着的状态是人为观察的结果,也就是人的宏观干扰使得猫变成了死的或者活的了,并不是盒子盖着时的真实状态,同样,微观粒子在不被“干扰”之前就一直处于“死”和“活”两种状态的叠加,也可以说是它既是“0”也是“1”。
在微观领域中,某些物理量的变化是以最小的单位跳跃式进行的,而不是连续的,这个最小的单位叫做量子。尽管量子极小,但如果不把它加入理论中,就无法成立。量子可以加密是因为它也有0,1两个量子位,他的优点在于,每当有人试图破解量子密钥而偷看光子束时,这个观测就会影响到其他的性质,从而被发现。也就是说,运用这种技术能做出无法破解的密码。预计这将是防御量子计算机密码破解的唯一手段。(量子计算机靠 *** 控纠缠态来破解密钥,一旦真正的量子计算机被制造,现有的所有密码都将失去安全性,被轻易破解)在自然人的眼中,大多数固定的物品似乎都是静止的,完全静止的。然而,有可能我们得到了一个量子焦点,允许我们看到单个iotas大小的物体,一个无所事事地坐在我们工作区周围的苹果会显示为各种各样的振动粒子,特别是移动的。在最近的几年里,物理学家们发现了超冷物质的方法,他们的目标是使它们的分子处于接近停止的状态,或者处于“运动基态”。直到这一点,物理学家们还与无数粒子或纳克级物体的巨浪一样的小物体搏斗,变成这样的纯量子态。
目前有趣的是,研究人员已经将一个巨大的人体尺度物体冷却到接近其运动基态。这篇文章不是明确无误的感觉被安排在一个地区,但是四个独立的项目,每个项目的联合运动,重量约40公斤。专家们冷却的“物体”预计质量约为10公斤,含有约1x1026个,或近1个八亿的粒子。
专家们利用激光干涉仪引力波观测台的能力,以惊人的精确度测量大多数物体的运动,并将大多数物体的总运动超冷到77纳米开尔文,这与该物体预期的10纳米开尔文的地面条件差得很小。
解决了需要冷却到接近运动基态的最大项目。研究人员说,他们目前有机会注意到重力对一个巨大的量子物体的影响。机械设计助理教师说:“在任何时候都没有人见过引力是如何影响到可怕的量子态的。”我们已经展示了如何在量子状态下准备好公斤级的物体。这最终为测试研究重力对巨大量子物体的意义开辟了道路,而这正是迄今为止人们所渴望的。”
所有物品都是一种运动的典范,因为物联网之间以及来自外部影响的众多合作。这种随意的运动反映在物品的温度上。当一个物体在接近零度的温度下冷却下来时,它除了一个剩余的量子运动,一种被称为“运动基态”的状态
为了让一个项目无语,一个人可以在它上面应用一个相等的和相反的权力(考虑一下在中途用手套的力量停止棒球运动。)如果研究人员完全可以测量一个物联网的发展规模和进程,他们可以应用中和能力来减少它——这是一个被称为输入冷却的过程。物理学家们已经通过不同的方法,包括激光,使奇异分子和超轻物体进入它们的量子基态,并努力对更大的物体进行动态超冷,在更大的、传统的老式框架中考虑量子影响。
“某物具有温度的方式是它与周围物质联系的可能性的一种印象,”Sudhir说更重要的是,更大的文章更难脱离周围发生的每一件事。”为了冷却一个巨大物体的粒子,使其接近基态,人们首先需要极其精确地测量它们的运动,知道阻止这种运动所需要的回推程度。地球上几乎没有任何仪器能达到如此精确的程度。LIGO,就像它发生的那样,可以。
重力波识别天文台在美国独立地区使用了双干涉仪。每个干涉仪都有两个L形的长通道,一个或另一个方向延伸4公里。在每个通道的一边或另一边,都有一个40公斤重的反射镜,被细细的细绳悬挂着,由于任何不稳定的影响,如接近的引力波,反射镜像钟摆一样摆动。通道连接处的一束激光被分开,沿着每个通道发射,然后,在那个点反射回它的源头。返回激光的情况绝对告诉研究人员每个反射镜移动了多少,精确到质子宽度的1/10000。
Sudhir和他的伙伴们对是否可以利用LIGO的运动估计精确性来最初测量巨大的、人类尺度的物体的运动感到困惑,然后,在那一点上,应用一种与他们测量的相反的检查能力,将这些物体带到它们的基态。
背对背行动
他们想要冷却的文章当然不是一个单独的镜子,而是利戈四个镜子中每一个的联合运动。
“LIGO的目的是量化四个40公斤重的镜子的联合运动,”Sudhir澄清说事实证明,你可以用数字来规划这些物体的联合运动,把它们看作一个10公斤重的物体的运动。”Sudhir说,在估计粒子的运动和其他量子碰撞时,实际的估计演示可能会随意地踢镜子,而不是一种被称为“估计回活动”的量子碰撞,光子的能量推回到镜子上。Sudhir和他的合作伙伴明白,如果像LIGO中那样不断地估计反射镜,那么从后来的光子传输的数据中可以看到过去光子的不规则反冲。四种先进的ligo40kg反射镜中的一种被冷却到接近其量子基态。
在每面镜子上都有量子和旧式加积的完整记录,专家们在每面镜子的背面连接了电磁铁,并施加了一个等效和反向的功率。撞击将聚集体的运动拉到了接近停止的位置,使得反射镜的能量非常小,以至于它们移动到了接近10-20米的位置,比质子的千分之一还小。
当时,研究小组将这件物品的过剩能量或运动与温度进行了比较,发现这件物品的温度为77纳米开尔文,非常接近其运动基态,他们预计这一温度为10纳米开尔文。“这相当于核物理学家冷却他们的粒子到基态的温度,也就是说有一点可能是1000000分子的雾,测量皮克,”苏希尔说沿着这些路线,你能把这么重的东西冷却到类似的温度是非常重要的。”惠特尔说:“准备好基态的东西通常是将它置于激发态或特殊量子态的第一步。”因此,这项工作是充满活力的,因为它可以让我们把这些不同状态的一部分集中在一个从未完成的大规模上。”
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)