物联网技术怎么实现?

物联网技术怎么实现?,第1张

物联网的技术原理

事实上,物联网的原理是在计算机互联网的基础上,利用RFID、无线数据通信技术,构建覆盖全球数万座建筑的物联网。在这个网络中,建筑物(物品)之间可以在不需要人工干预的情况下进行通信。其实质是利用射频自动识别技术,通过计算机互联网实现物品之间的自动识别和信息的互联与共享。

物联网的核心技术还在云计算中,云计算是物联网实现的核心。物联网的三个关键技术和领域包括:传感器技术、RFID标签技术、嵌入式系统技术。领域:公共事务管理(节能环保、交通管理等)、公共社会服务(医疗健康、家居建筑、金融保险等)、经济发展(能源电力、物流零售等)。

传感器技术是计算机应用中的一项关键技术,将传输线上的模拟信号转化为可由计算机处理的数字信号。

RFID,即射频识别,是一种集射频技术和嵌入式技术于一体的集成技术,在不久的将来将广泛应用于自动识别和货物物流管理。

嵌入式系统技术是集计算机软件、计算机硬件、传感器技术、集成电路技术和电子应用技术为一体的复杂技术。

物联网使用场景,主要体现在几个步骤:采集、传输、计算、展示

物联网终端采集数据,将数据传送给服务器,服务器存储和处理数据,并将数据显示给用户。

例如,自行车是共享的,前向过程是自行车获取GPS位置数据,通过2G网络向服务器报告,服务器记录自行车位置信息,用户在APP终端查看自行车位置。反向处理是用户向服务器发出解锁请求,服务器通过2G网络向自行车发送解锁指令,自行车执行解锁指令。

物联网的大大小小的应用都是基于正向数据采集和反向指令控制实现的。

传输模式的选择:取决于距离和功耗

物联网的联网方式:

近距离低功耗,带BLE或ZigBee。

远距离低功耗,NB-IoT或2G

近距离大数据,带WiFi

大数据远程,使用4G网络

关于网络布局:

远距离传输比短距离传输更昂贵,功耗更高。合理使用远距离和远距离配置可以有效降低物联网终端的成本。

例如,原始共享自行车被2G网络解锁,需要数据的长连接或下行短消息解锁,功耗高,下载的共享自行车丢弃了远程解锁,直接使用手机的蓝牙解锁自行车,节省数据流,降低功耗,本发明还可以提高解锁速度,剩余能量电动自行车智能充电站也是物联网的高科技产品,采用最新的窄带通信技术引领电动自行车充电设备的技术高度。

云服务设计

物联网的云服务器和应用程序设计与I互联网基本一致,Java、PHP和ASP可用于物联网的后台处理。

移动互联网是“人-服务器-人”的框架,物联网是"物-服务器-人"的框架,两者是相同的,物联网终端设备也采用TCP、>

总结简图

《物联网技术》首先讨论物联网的基本概念、体系结构、软硬件平台系统组成、关键技术以及应用领域;其次介绍节点感知识别技术,包括射频识别工作原理、RFID系统的基本组成及其典型应用、传感器及检测技术等;然后讲述与物联网相关的通信与网络技术、传感网及其关键支撑技术等内容;最后介绍物联网中的数据融合、云计算技术、物联网应用系统的规划设计与典型应用,使课程理论与实践紧密地结合起来。

随着物联网技术的高速发展,人们的生活进入了智能化的阶段。
本文分享了一种基于物联网技术的远程控制方法,欢迎大家共同探讨。
1、 远程控制原理一,原理框图如下所示:
此种方法,不需要数据库,因此只能实现较少接入设备,实时的查询和控制,如果设备长时间不在线就可能控制失败,(当然如果服务软件一直不清除命令的数据记录,也能够保存一段时间,直至服务器断电或者服务软件关闭,但是一般为了设备的稳定运行,服务软件不会一直保存控制命令,会定时清除并释放相应内存。)
2、 远程控制原理二,原理框图如下所示:
此种方法,手机控制端直接和服务器上面的数据库进行通讯,服务软件定时去在数据库里面查询有无相应设备的数据,并发送给设备进行通讯和控制。这种模式是大多数商用模式的原型,可以同时接入更多的设备,因为设备的信息都在数据库里面,服务软件可以分时进行处理,甚至的软件异常关闭、重启也不影响用户数据。

NTP提供准确时间,首先要有准确的时间来源,这一时间应该是国际标准时间UTC。 NTP获得UTC的时间来源可以是原子钟 、天文台、卫星,也可以从Internet上获取。这样就有了准确而可靠的时间源。时间按NTP服务器的等级传播。按照离外部UTC 源的远近将所有服务器归入不同的Stratum(层)中。Stratum-1在顶层,有外部UTC接入,而Stratum-2则从Stratum-1获取时间,Stratum-3从Stratum-2获取时间,以此类推,但Stratum层的总数限制在15以内。所有这些服务器在逻辑上形成阶梯式的架构相互连接,而Stratum-1的时间服务器是整个系统的基础。计算机主机一般同多个时间服务器连接, 利用统计学的算法过滤来自不同服务器的时间,以选择最佳的路径和来源来校正主机时间。即使主机在长时间无法与某一时间服务器相联系的情况下,NTP服务依然有效运转。为防止对时间服务器的恶意破坏,NTP使用了识别(Authentication)机制,检查来对时的信息是否是真正来自所宣称的服务器并检查资料的返回路径,以提供对抗干扰的保护机制。NTP时间同步报文中包含的时间是格林威治时间,是从1900年开始计算的秒数。

无线AP的工作原理是将网络信号通过双绞线传送过来,经过AP产品的编译,将电信号转换成为无线电讯号发送出来,形成无线网的覆盖,这一切,只需要一根网线和一个电源就可以完成。
通俗的来说就是微波射频技术
笔记本目前有WIFI、GPRS、CDMA等几种无线数据传输模式来上网,后两者由中国电信和中国联通来实现,前者电信或网通有所参与,但不多主要是自己拥有接入互联网的WIFI基站(其实就是WIFI路由器等)和笔记本用的WIFI网卡。要说基本概念是差不多的,通过无线形式进行数据传输。无线上网遵循8021q标准
通过无线传输,有无线接入点发出信号,用无线网卡接受和发送数据
无线网络是实现移动Internet的基本物理网之一,它为移动计算机(移动终端)提供高速
的网络接入方法。目前,无线局域网提供的通信业务实际上是一个尚未开发的大市场,有着很
大的潜力。国际上许多大公司,如IBM、AT&T(Incent)、DEC、AMD等都在加紧研制无线网络产
品。现虽有部分产品面市,但只是实现了简单的计算机无线联网,真正支持移动通信的产品还
未见到。IEEE协会已推出了IEEE80211协议,制订了无线局域网的媒体访问控制协议,我们研
制的网卡不但符合IEEE80211协议,而且具有漫游和散步功能。
无线网卡的硬件组成包括Antenna & RF、IF、SS和NIC等几部分,如图所示。
@@49E19000GIF;图1 网卡的硬件组成示意图@@
NIC是网络接口控制单元,它完成SS单元与计算机之间的接口控制。SS是扩频解扩频及解
调单元,它完成对发送数据的频谱扩展和对接收信号的解扩解调,同时,它还具有对数据进行
加、解扰处理的功能,在QPSK时还要进行并/串和串/并变换。在SS单元,还要对发射功率和分
集接收进行相应的控制,并具有信道能量检测(ED-Energy Detect,实际是接收信号强度指示
RSSI-Receive Signal Strength Indication)和载波强度(CS-CarrierSense,实际是信号
质量SQ-Signal Quality)检测等功能。IF是中频单元,它完成对已扩频信号的调制BPSK/QP
SK)和对接收信号的变频及其它处理。RF&Antenna单元完成对发送中频信号的向上和向下变
频、功率放大(PA)及低噪声放大(LNA)等功能,一般包括Antenna及分集开关、T/R开关、LNA
和PA、Local oscilator、向下/向下混频器、滤波器几个部分。
由RF&Antenna、IF和SS单元构成了扩频通信机(SS Transceiver)。
无线网卡的工作原理
按照IEEE80211协议,无线局域网卡分为媒体访问控制(MAC)层和物理层(PHY Layer)在
两者之间,还定义了一个媒体访问控制-物理(MAC-PHY)子层(Sublayers)。MAC层提供主机与
物理层之间的接口,并管理外部存储器,它与无线网卡硬件的NIC单元相对应。
物理层具体实现无线电信号的接收与发射,它与无线网卡硬件中的扩频通信机相对应。
物理层提供空闲信道估计CCA信息给MAC层,以便决定是否可以发送信号,通过MAC层的控制来
实现无线网络的CCSMA/CA协议,而MAC-PHY子层主要实现数据的打包与拆包,把必要的控制信
息放在数据包的前面。
IEEE80211协议指出,物理层必须有至少一种提供空闲信道估计CCA信号的方法。
无线网卡的工作原理如下:当物理层接收到信号并确认无错后提交给MAC-PHY子层,经过
拆包后把数据上交MAC层,然后判断是否是发给本网卡的数据,若是,则上交,否则,丢弃。
如果物理层接收到的发给本网卡的信号有错,则需要通知发送端重发此包信息。当网卡
有数据需要发送时,首先要判断信道是否空闲。若空,随机退避一段时间后发送,否则,暂不发
送。由于网卡为时分双工工作,所以,发送时不能接收,接收时不能发送。
扩频通信机
扩频通信机的功能和技术指标如下:
1扩频和解扩
无线网卡几乎均采用了扩频技术,IEEE80211也要求使用扩频技术,且规定扩频处理增益
不小于10dB。在无线网卡中使用扩频技术,主要有以下几方面的考虑:
·限制发射功率谱密度,减小对其它设备的影响;
·提高抗干扰能力;
·有一定的加密作用;
·在多用户环境下提高强有力的多址功能。
IEE80211推荐使用的扩频技术有直扩(DS)和跳频(FH)两种,对应的调制方式分别为PS和
FSK。在我们研制的网卡中,使用的是直扩方式。
2基带时间的加扰与解扰
时间加解扰器分别对未编码和已解码的基带时间(Bit)进行加扰和解扰。对数据进行加
扰的目的有二:一是进一步扩展频谱,减小数据中"0"和"1"数目的不平衡性;二是可以获得一
定的保密性。
3DBPSK/DQPSK调制与解调
差分BPSK/QPSK编解码器和调制解调器分别对发送和接收的BPSK/QPSK信号进行编解码和
调制解调。
4上/下变频
对发送IF已调信号上变频至RF以便发射;对接收到的RF信号下变频至IF以便进一步处理

5RF信号的发送和接收
6无线分集接收
可实现通信的二重极化分集或二重空间分集,从而改善无线网卡物理层的性能。
7载波检测(CS)或信号质量(SQ)检测
8能量检测(ED)或接收信号强度指示(RSSI)
9PA控制
根据需要可控制发射机的发射功率。
10技术指标
·频率范围:21400GHz~2500GHz;
·调制方式:DS/BPSK或DS/QPSK,参考码可编程;
·通信方式:半双工;
·发射功率:10mW/100mW,自适应选择;
·数据速率:2Mbps/4Mbps;
·PN码速及码长:11264Mc/s,11chips-64chips可编程;
·相关方式:匹配滤波器;
·PN码同步捕获时间:一个伪码周期;
·天线分集:空间自适应分集;
·接收机灵敏度:-89dBm~-995dBm,BER10—6。
NIC
NIC的功能是:
·从驱动程序接收时间并装帧发送;
·从扩频通信机接收数据,拆帧并送至驱动程序;
·媒体访问控制(MAC);
·与主机的总线接口;
·移动管理:越区切换、用户登录与认证;
·网络同步:网络同步指的是本站与基站和WLAN的其它站达到时钟同步;
·节能管理:当无业务量或者业务量少时,使物理层处于睡眠状态或节能工作模式。
媒体访问控制协议
媒体访问控制协议,即IEEE80211MAC,IEEE80211MAC的基础是CSMA/CA,在它之上可配置
无竞争信道访问的接入机制,这就是中心网控方式(PCF)。在PCF方式中,时间域被划分为超帧
格式。在超帧的无竞争期,由中心控制节点(一般是AP)进行轮询,某一时刻仅允许一个站点发
送。而在超帧的竞争期,使用改进的CSMA/CA方式,或称分布接入方式(DCF)。这样,IEEE8021
1MAC除了能以竞争接入方式支持异步业务外,无竞争的访问方式还可支持同步业务或时限业
务。时限业务对于实时数据和语音通信是至关重要的。
1CSMA/CA与DCF
a)基本的CSMA/CA与访问优先权
如上所述,IEEE80211MAC有两种访问控制方式:分布式(DCF)和集中控制方式(PCF),二者
的基础是CSMA/CA。IEEE80211MAC采用的基本的CSMA/CA算法非常简单:当监测到信道空闲期
间大于某一帧间隔(IFS)后立即开始发送帧;否则延迟接入直至监测到需要的帧间隔,然后选
择退避时延进入退避;退避结束后重新开始上述过程。基本的CSMA/CA利用物理层提供的载波
监测指示信号CS监测信道的忙闲。IEEE80211MAC规定了三种访问优先权,依优先权不同,IS
不同。
Short优先级:对需要立即响应业务(如某些控制帧)的优先级。例如,MAC层的Ack帧,或当
采用PCF时主机对轮询的响应帧等。该优先级的帧间隔被称为SIFS。
PCF优先级:PCF接入方式的优先级。该优先级的帧间隔被称为PIFS。
DCF优先级:DCF接入方式的优先级。该优先级的帧间隔被称为DIFS。上述各IFS满足:DF
S>PIFS>SIFS。
b)增强型CSMA/CA
为了增强基本CSMA/CA对异步业务传输的可靠性,IEEE80211MAC建立在基本CSMA/CA的基
础上使用MAC层确认机制,也就是CSMA/CA+Ack,这样可以在MAC层对帧丢失予以检测并重新发
送。此外,为了进一步减小在各种环境下的碰撞概率,源站与目的站可在数据传送前交换简短
的控制帧,即RTS/CTS,它们以Short优先级接入信道。RTS/CTS帧中的Duration字段被各站点
(目的站除外)用于设置它们的网络分配矢量(NAV:Net Allocation Vector),以确定信道将被
占用多长时间,这样,载波监测的功能可由监测、维护CS及NAV实现。IEEE80211MAC要求DC方
式必须支持基本的CSMA/CA,可选地支持增强型CSMA/CA,即CSMA/CA+Ack与CSMA/CA+Ack+RS/C
TS。
c)延迟接入与退避算法
如上所述,欲发送帧的站检测到信道忙时就会延迟接入,直到监测到信道空闲时间大于I
FS/SIFS后选择一个退避时间值然后进入退避状态。这样可解决正在处于延迟的多个站间的
竞争。
在退避状态下,只有当检测到信道空闲时退避计时器才计时。如果检测到信道忙,则退避
计时器将停止计时,直到检测到信道空闲时间大于DIFS后计时器才重新继续计时。这一做法
的作用是:当多个站延迟并进入随机退避状态后,退避时间值(Backoff)最小的站将在竞争中
获胜,从而获得对媒体的访问权:在竞争中失败的站会保持在退避状态直到下一个DIFS。这样
,这些主站就有可能比第一次进入退避的新站具有更短的退避时间。另外,退避过程也可重传

d)防止重帧
因为在IEEE80211MAC中引入了确认和重传,所以可能产生重帧现象,即在接收站可能会
收到多个相同的帧。IEEE80211MAC利用帧中的MPDU-ID域防止重帧现象。同一MPDU中的帧具
有相同的MPDU-ID值,在不同MPDU中的帧其MPDU-ID值不同。接收站保持一个MPDU-ID缓冲区它
将拒收那些MPDU-ID值与缓冲区某一MPDU-ID值相同的重传帧。
2中心网控方式PCF
a)PCF支持的业务类型
如图2所示,PCF方式由上述CSMA/CA协议提供的访问优先级实现,它可支持无竞争型时限
业务及无竞争型异步业务。而DCF仅支持竞争型异步业务。
@@49E19001GIF;图2 IEEE80211 MAC的业务模型@@
b)超帧结构
@@49E19002GIF;图3 PCF的超帧结构@@
IEEE80211MAC使用图3所示的超帧实现PCF。在一个超帧期间(SFP),PCF使用无竞争期C
FP),DCF使用竞争期(CP)。
在超帧开始时,如果信道空闲则PCF获得信道访问权;否则PCF会延迟直到它检测到信道空
闲时间大于PIFS,才能获得信道访问权。这样,就可能引起超帧的扩展,导致超帧中CFP的起始
点可变,并且CFP的长度可变。DCF的异步业务将自动地延迟到CFP之后才能获得信道访问权。
c)PCF协议原理
PCF协议基于轮询机制。某站(如手持或固定站点)如希望提供无竞争服务,则需要向APA
ccess Point,即基站)发出请求,经许可后该站将被列入轮询序列,从而参与无竞争业务。
AP以PCF优先级向参与无竞争业务的站发送下行数据帧(CF-Down业务),具体使用帧头控
制域的轮询比特实现轮询。如果被轮询到的站有缓存的数据,则在检测到一个SIFS后立即将
数据发出。当AP发出轮询后,如果在PIFS时间内没有响应,那么AP将恢复对信道的控制,发出
下一个轮询帧。当发生下列情况时,参与无竞争业务的站不对AP的轮询进行响应:没有上行的
无竞争业务(CF-Up)等待发送,并且对前面收到的下行无竞争帧(CF-Down)也无须进行确认。
3网同步
无线网络(WLAN)中每个站均有其内部时钟,所谓网同步指这些时钟的同步。在多区WLA中
,AP(基站)控制着网同步,它周期性地发送含有其自身时钟信息的信标帧,BSS内与AP连接的各
站对照此信标修改自己本地时钟。而在自组WLAN中,所有站均承担有定期发送网同步信标的
责任,各站根据确定的算法将本地时钟与"听"到的时间进行比较并调整,这样,在一定时间内
全网时钟能够达到同步。
无线网络中的许多功能都借助各站同步的时钟实现,例如,下面几个典型的功能就是利用
同步实现:
·节能管理,允许MT关闭其接收机直到下一信标到达为止。
·物理层管理,比如当物理层使用跳频扩展频谱方式时,网同步用于确定跳频定时。
·支持时限业务,利用网同步完成超帧定时。
尽管信标发送应该是定期的,但它也必须遵循CSMA/CA这一基本信道访问原则,因此确定
的"信标间隔"只能是预计发送时刻。信标中含有时戳、信标间隔等内容。信标以广播方式发
送,含有发送者的物理网地址(NID)。
如何在入网时获取同步,这一问题实际上是解决越区切换的基础。
4节能管理
IEEE80211MAC提供的节能管理机制允许网中各站点收发器在一段时间内关闭,使之工作
于低功耗节能模式。其基本原则是在不同环境中,使网中站点获得合理的性能/功耗比。
在多区WLAN中,当一个站希望进入节能模式时,应事先通知AP。而AP将暂存发往该站的数
据并在适当的时刻转发给该站。在由AP定时发送的信标中含有业务指示表TIM,该表中标识了
哪些站在AP中暂存有待收数据。工作于节能模式的站点仍需以一定的时间间隔定时"苏醒"以
便接收像信标帧这样的控制帧。在TIM被标识的站点应当向AP申请或做好等待接收被暂存数
据的准备。
在自组WLAN中,没有像AP这样的站点始终处于激活状态并为其它站点提供暂存服务。为
了支持节能工作模式,需要各站在全网同步的基础上定时"苏醒"。当某站要向一个处于节能
模式的站点发送数据时,就预先发送一种具有声明性质的控制帧(ATIM),这样可使处于节能模
式的目的站能定时打开收发器并维持一段时间的正常工作状态,以便接收源站点后续发来的
数据。
结论
对于无线网络,目前世界标准(IEEE80211)已经确定,网卡硬件和相应的IC陆续推出,价
格逐渐下降,无线网卡的软件也已渐成熟,其市场将会越来越明朗,如再与移动Intenet网结合
,仿照移动电话蜂窝网的形式来组网,其前景将更看好。

分类: 电子数码
问题描述:

简练,准确,全面

解析:

同步原理

任何数字通信系统都是离散信号的传输,要求收发两端信号在频率上

相同和相位上一致,才能正确地解调出信息。扩频通信系统也不例外。一个相干扩频数字通信系统,接收端与发送端必须实现信息码元同步、PN码码元和序列同步和射频载频同步。只有实现了这些同步,直扩系统才能正常的工作。可以说没有同步就没有扩频通信系统。
同步系统是扩频通信的关键技术。在上述几种同步中,信息码元时钟可以和PN码元时钟联系起来,有固定的关系,一个实现了同步,另一个自然也就同步了。对于载频同步来说,主要是针对相于解调的相位同步而言。常见的载频提取和跟踪的方法都可采用,例如用跟踪锁相环来实现载频同步。因此,这里我们只重点讨论PN码码元和序列的同步。

一般说来,在发射机和接收机中采用精确的频率源,可以去掉大部分频率和相位的不确定性。但引起不确定性的因素有以下一些:

收发信机的距离引起传播的延迟产生的相位差;

收发信机相对不稳定性引起的频差;

收发信机相对运动引起的多普勒频移;

以及多径传播也会影响中心频率的改变。

因此,只靠提高频率源的稳定度是不够的,需要采取进一步提高同步速率和精度的方法。

同步系统的作用就是要实现本地产生的PN码与接收到的信号中的PN码同步,即频率上相同,相位上一致。同步过程一般说来包含两个阶段:

(1) 接收机在一开始并不知道对方是否发送了信号,因此,需要有一个搜捕过程,即在一定的频率和时间范围内搜索和捕获用信号。这一阶段也称为起始同步或粗同步,也就是要把对方发来的信号与本地信号在相位之差纳入同步保持范围内,即在PN码一个时片内。

(2) 一旦完成这一阶段后,则进入跟踪过程,即继续保持同步,不因外界影响而失去同步。也就是说,无论由于何种因素两端的频率和相位发生偏移,同步系统能加以调整,使收发信号仍然保持同步。图5-13为同步系统搜捕和跟踪原理图。

图5-13

接收到的信号经宽带滤波器后,在乘法器中与本地PN码进行相关运算。此时搜捕器件,调整压控钟源,调整PN码发生器产生的本地脉序列伪重复频率和相位,以搜捕有用信号。一旦捕获到有用信号后,则起动跟踪器件,由其调整压控钟源,使本地PN码发生器与外来信号保持同步。如果由于采种原因引起失步,则重新开始新的一轮搜捕和跟踪过程。

因此,整个同步过程,是包含搜捕和跟踪两个阶段闭环的自动控制和调整过程。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/12615846.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-26
下一篇 2023-05-26

发表评论

登录后才能评论

评论列表(0条)

保存