IoT第一层:感知层企业

IoT第一层:感知层企业,第1张

感知层:底层数据采集职能,包括芯片、连接芯片和应用设备的模组、传感器、各类识别技术等

1、芯片:低功耗、高可靠性的半导体芯片应用广泛,MCU/SoC逐渐渗透物联网领域。MCU芯片复杂度较低,适用于智能设备的短距离信息运输,主要应用于智能家居、消费电子、医疗保健和工业电子等领域;SoC芯片系统复杂度较高,集成功能更丰富,支持运行多任务复杂系统,可应用于功能较复杂的嵌入式电子设备,应用于无人机、自动驾驶和工业互联网等领域

2、无线模组:为物联网提供网联能力的基础硬件,将芯片、存储器和功放器件等集成在一块线路板上,并提供标准接口,在物联网产业中处于承上启下的中间环节,向上连接芯片行业,向下连接各类终端设备,终端设备借助无线模组实现通信或定位的功能。

3、传感器:作为物体的“五官”,传感器承担采集数据、感知世界的重任,不断向智能化、高精度、微型化的方向发展,市场空间广阔。传感器与MEMS结合是当下技术的新趋势,MEMS传感器集成通信、CPU、电池等组件及多种传感器,具有体积小、功耗低、成本低、集成度高、智能化特点,广泛应用于消费电子、医疗和车联网等领域。

涉及企业:

芯片

翱捷科技:具备全球稀缺的全制式蜂窝基带芯片研发能力的平台型芯片设计企业。2015年成立以来一直专注于无线通信芯片的研发和技术创新。公司各类芯片产品可应用于手机、智能穿戴设备为代表的消费电子市场和以智慧安防、智能家居、自动驾驶为代表的智能物联市场。

先科电子:领先的高质量模拟和混合信号半导体产品供应商。成立于1960年,主要为客户提供电源管理、保护、高级通信。人机界面、测试与测量以及无线和感应产品方的专有解决方案。

广芯微电子:成立于2017年,一家为客户提供创新解决方案的集成电路设计企业,公司开发包括面向工业物联网(IIoT)并支持边缘计算的专用处理器芯片、面向LPWA的IoT连接专用芯片、IoT基带处理器芯片、以及应用于传感器信号调理的专用芯片。

华为海思:全球领先的Fabless半导体与器件设计公司,前身为华为集成电路设计中心,2004年注册成立实体公司,提供海思芯片的对外销售及服务。

联发科:全球第四大无晶圆半导体公司,联发科技的核心业务包括移动通信、智能家居与车用电子,着重研发适用于跨平台的芯片组核心技术,联发科的芯片经过优化,能在极低散热量且极度节能的模式下运行,以延长电池续航力,时时刻刻达到高效能、高电源效率与连网能力的完美平衡。

紫光展锐:我国集成电路设计产业的龙头企业。公司于2013年成立,致力于移动通信和物联网领域核心芯片的研发及设计,产品包括移动通信中央处理器、基带芯片、AI芯片、射频前端芯片、射频芯片等各类通信、计算及控制芯片,其物联网解决方案支持众多智能电子产品,包括智能手机、平板电脑、Wi-Fi调制解调器、家用设备、可穿戴设备、互联汽车产品等。

移芯通信:为中国自主研发的超低功耗NB-IoT和Cat-M物联网芯片供应商。公司于2017 年成立,2020年12月完成B轮融资。主要业务为蜂窝物联网芯片的研发和销售,致力于设计全球极致性价比的蜂窝物联网基带芯片。

高通:是全球领先的无线科技创新者,也是5G研发、商用与实现规模化的推动力量。成立于1985年,1991年在纳斯达克上市。Qualcomm主要研发无线芯片平台和其它产品解决方案,凭借行业领先的技术解决方案以及在标准组织中的积极贡献,Qualcomm成为赋能无线生态系统不可或缺的一部分。

诺领科技成立于2018年9月,是探索满足IoT需求的全集成、低功耗无线SoC解决方案的先行者。诺领科技作为一家广域无线物联网芯片设计公司,拥有射频模拟、基带通信系统、GNSS、SoC系统和软件方面的顶尖人才,致力于发布最佳SoC解决方案。公司目前推出的产品包括物联网系统级芯片NB-IoT和Cat-M SoCs,服务于广泛的市场,其中包括智慧城市、可穿戴设备、资产追踪等等。

芯翼信息是5G物联网端侧SoC创新领导者。成立于2017年3月,公司专注于物联网通讯芯片(NB-IoT)的研发和销售。其产品XY1100是全球首颗single  die集成CMOS  PA的量产NB-IoT  SoC,具有超低功耗、超小体积模块设计和开发灵活等优势,可应用于智慧气表、智慧水表、烟感、电动车、物流跟踪、智慧穿戴等应用场景。

智联安科技是一家专业从事芯片设计的国家高新技术企业。成立于2013年9月,公司总部位于中国北京,在硅谷、武汉、合肥等多地设有子公司和技术研发中心。公司致力于无线通信芯片的技术研发,目前已于2019年8月成功完成NB-IoT终端通信芯片MK8010量产流片,并在多个行业中实现落地应用。

中兴微电子为中国领先的通信IC设计公司。成立于2003年,中兴微电子专注于通信网络、智能家庭和行业应用等通信芯片开发,自主研发并成功商用的芯片达到100多种,覆盖通信网络“承载、接入、终端”领域,服务全球160多个国家和地区,连续多年被评为“中国十大集成电路设计企业”。

Nordic Semiconductor北欧半导体是专注研究物联网无线技术无晶圆厂半导体公司。公司专注于低功耗无线技术产品,包括短距离蓝牙,2020年从Imagination Technologies收购的Wi-Fi技术和LTE-M / NB-IoT蜂窝物联网解决方案。

Marvell美满是高性能数据基础架构产品的全球半导体解决方案提供商。成立于1995年,Marvell专注模拟,混合信号,计算,数字信号处理,网络,安全性和存储领域,提供产品和解决方案来满足汽车,运营商,数据中心和企业数据基础架构市场日益增长的计算,网络,安全性和存储需求。公司当前的产品主要包括两大类:网络和存储。

Broadcom博通是全球领先的有线和无线通信半导体公司。拥有50年来的创新,协作和卓越工程经验,公司设计提供高性能并提供关键任务功能的产品和软件,包括半导体解决方案和基础设施软件解决方案,半导体解决方案主要包括明星级的有线基础设施业务(以太网交换芯片/数据包处理器/ASCI等)和无线芯片业务(Wi-Fi 芯片/蓝牙/GPS 芯片等)。基础设施软件部门主要包括主机、企业软件解决方案和光纤通道存储区域网络业务。

NXP恩智浦半导体公司是嵌入式应用安全连接解决方案的全球领导者。公司于2006年在荷兰成立,前身为荷兰飞利浦公司于1953年成立的半导体事业部,致力于为客户提供广泛的半导体产品组合,包括微控制器,应用处理器,通信处理器,连接芯片组,模拟和接口设备,RF功率放大器,安全控制器和传感器等

乐鑫科技是一家专业的物联网整体解决方案供应商。公司在2008年4月成立于上海,是一家主要从事智能物联网Wi-Fi  MCU通信芯片与模组研发设计与销售的公司。公司采用Fabless的经营模式,将晶圆制造、封装和测试环节委托于专业代工厂商。近年来,公司牢牢把握智能物联网行业的机遇,主要产品Wi-Fi MCU通信芯片目前主要运用于智能家居、智能照明、智能支付终端、智能可穿戴设备、传感设备及工业控制等物联网领域

晶晨股份是全球布局、国内领先的集成电路设计商。成立于2003年,公司专注于为多媒体智能终端SoC芯片的研发、设计与销售,芯片产品主要应用于智能机顶盒、智能电视和AI音视频系统终端等科技前沿领域。公司属于典型的Fabless模式IC设计公司,将晶圆制造、芯片封装和芯片测试环节分别委托给专业的晶圆制造企业和封装测试企业代工完成,自身则长期专注于多媒体智能终端SoC芯片的研发、设计与销售,已成为智能机顶盒芯片的领导者、智能电视芯片的引领者和AI音视频系统终端芯片的开拓者。

蜂窝模组企业

移远通信:全球领先的物联网模组龙头。公司成立于2010年,从事物联网领域无线通信模组及其解决方案的设计、生产、研发与销售服务,可提供包括无线通信模组、物联网应用解决方案及云平台管理在内的一站式服务。

广和通:作为首家上市的无线通讯模组企业,近十年为公司业务的快速发展期。成立于1999年,并于2017年在深圳证券交易所创业板上市,成为中国无线通讯模组产业中第一家上市企业。公司主要从事无线通信模块及其应用行业的通信解决方案的设计、研发与销售服务。

美格智能:全球领先的无线通信模组及解决方案提供商。成立于2007年,美格智能专注于为全球客户提供以MeiGLink品牌为核心的标准M2M/智能安卓无线通信模组、物联网解决方案、技术开发服务及云平台系统化解决方案。

日海智能:通信行业连接设备龙头,成立于2003年,2017年相继收购了龙尚科技与芯讯通,入股美国艾拉,在国内率先实现了“云+端”的物联网战略布局,卡位物联网发展关键环节;在2018年重新确立了AIoT人工智能物联网发展战略,

高新兴:全球领先的智慧城市物联网产品与服务提供商。成立于1997年,公司长期致力于研发基于物联网架构的感知、连接、平台层相关产品和技术,从下游物联网行业应用出发,以通用无线通信技术和超高频RFID技术为基础,融合大数据和人工智能等技术,实现物联网“终端+应用”纵向一体化战略布局,构筑物联网大数据应用产业集群,并成为物联网大数据应用多个细分行业领先者,服务于全球逾千家客户。目前公司正处于战略和资源进一步聚焦阶段,重点聚焦车联网和执法规范化两大垂直应用领域。

有方科技:物联网接入通信产品和服务提供商。成立于2006年,公司致力于为物联网行业提供稳定可靠的接入通信产品和服务。公司的主营业务为物联网无线通信模块、物联网无线通信终端和物联网无线通信解决方案的研发、生产(外协加工方式实现)及销售。

合宙通信:一家专业提供物联网无线通信解决方案技术产品和服务的高科技企业。成立于2014年,公司致力于提供基于通信模块的智能硬件、软件平台、云平台等综合解决方案

鼎桥通信:行业无线解决方案的领导者。成立于2005年,公司专注于无线通信技术与产品的创新,布局三大业务板块:行业无线、物联网&5G、行业定制终端。

锐明技术:全球商用车载监控龙头。成立于2002年,公司聚焦商用车视频监控和车联网18年,细分行业龙头公司,产品覆盖商用车全系车型。公司外销“商用车通用监控产品”,内销“商用车行业信息化产品”,全球累计超过120万辆商用车安装有公司的产品

传感器

奥比中光:一家全球领先的AI 3D 感知技术方案提供商。公司成立于2013年,在2020年12月进行上市辅导备案。公司拥有从芯片、算法,到系统、框架、上层应用支持的全栈技术能力,主要产品包括3D视觉传感器、消费级应用设备和工业级应用设备技术产品,其AI 3D 感知技术广泛应用于移动终端、智慧零售、智能服务、智能制造、智能安防、数字家庭等领域。

歌尔股份:一家电子元器件制造商,成立于2001年,属于消费电子行业,主营业务可分为精密零组件业务、智能声学整机业务和智能硬件业务。

汉威科技:气体传感器龙头企业,成立于1998年,并于2009年10月作为创业板首批上市公司在深交所创业板上市。公司致力于气体传感器和仪表的制造、并提供物联网解决方案

联创电子:成立于1998年,公司主营业务为研发、生产和销售触控显示类产品和光学元件产品。公司现已形成光学镜头和触控显示两大业务板块,主要产品包括高清广角镜头、平面保护镜片、手机触摸屏、中大尺寸触摸屏、显示模组、触控显示一体化模组等

瑞声科技:全球领先的智能设备解决方案提供商,在声学、光学、电磁传动、精密结构件、射频天线等领域提供专有技术解决方案。公司成立于1993年,公司是电磁器件、射频天线、精密结构件等多个细分领域的行业冠军,也是5G天线产品的重要供应商

睿创微纳公司是一家专业从事专用集成电路、红外热像芯片及MEMS传感器设计与制造,成立于2009年。公司具有完全自主的知识产权,为全球客户提供性能卓越的红外成像MEMS芯片、红外探测器、ASIC 处理器芯片、红外热成像与测温机芯、红外热像仪、激光产品光电系统。

远望谷:我国物联网产业的代表企业,成立于1999年,公司主营业务集中在物联网感知层和应用层,为多个行业提供基于RFID技术的系统解决方案、产品和服务。

金溢科技:一家智慧交通与物联网核心设备及解决方案提供商。公司创立于2004年,公司产品主要包括高速公路ETC产品、停车场ETC产品、多车道自由流ETC产品和基于射频技术的路径识别产品。

杭州士兰微电子:一家专业从事集成电路芯片设计以及半导体微电子相关产品生产的企业。公司成立于1997年,并于2003年3月在上交所主板上市。公司主要产品是集成电路以及相关的应用系统和方案,主要产品包括集成电路、半导体分立器件、LED(发光二极管)产品等三大类。

水晶光电:专业从事光学光电子行业的设计、研发与制造,专注于为行业领先客户提供全方位光学光电子相关产品及服务的公司。公司创建于2002年8月

敏芯股份:成立于2007年,是一家专业从事微电子机械系统传感器研发设计和销售的的高新技术企业,也是国内唯一掌握多品类MEMS芯片设计和制造工艺能力的半导体芯片上市公司,主营产品包括MEMS麦克风、MEMS压力传感器和MEMS惯性传感器

必创科技:成立于2005年,无线传感器网络系统解决方案及MEMS传感器芯片提供商

固锝电子:成立于1990年,2006年在深交所主板上市,是国内半导体分立器件二极管行业完善、齐全的设计、制造、封装、销售的厂商。

感知交互企业

出门问问:以语音交互和软硬结合为核心的AI公司。公司成立于2012年,作为入选“新基建产业独角兽TOP100”的人工智能企业,出门问问拥有完整的“端到端”语音交互相关技术栈,包括声音信号处理、热词唤醒、语音识别、自然语言识别、自然语言理解、语音合成等尖端技术。

汉王科技:国内人工智能产业的先行者,成立于1998年,在人工智能领域深耕二十多年,是一家模式识别领域的软件开发商与供应商,主营业务包括“人脸及生物特征识别”、“大数据与服务”、“智能终端”、“笔触控与轨迹”等

科大讯飞:亚太地区知名的智能语音和人工智能上市企业,公司成立于1999年,公司主营业务包括语音及语言、自然语言理解、机器学习推理及自主学习等人工智能核心技术研究、人工智能产品研发和行业应用落地。科大讯飞作为中国人工智能产业的先行者,在人工智能领域深耕二十年,公司致力让机器“能听会说,能理解会思考”,用人工智能建设美好世界,在发展过程中形成了显著的竞争优势。

声智科技:融合声学和人工智能技术的平台服务商,也是全球人工智能 *** 作系统领域的开拓者。公司成立于2016年4月,拥有声学与振动、语音与语义、图像与视频等远场声光融合算法,以及开源开放的壹元人工智能交互系统(SoundAI Azero),具有声光融合感知、人机智能交互、内容服务聚合、数据智能分析、IoT控制和即时通讯等能力。

云知声:致力于AI产业的高新技术企业,成立于2012年6月,总部位于北京。公司以AI语音技术起家,经过多年经验和技术的积累,逐渐构筑起一个涵盖机器学习平台、AI芯片、语音语言、图像及知识图谱等技术的技术城池,成为了具有世界顶尖智能语音技术的独角兽

生物识别企业

商汤科技:全球领先的人工智能平台公司,也是中国科技部指定的首个“智能视觉”国家新一代人工智能开放创新平台。公司自主研发并建立了全球顶级的深度学习平台和超算中心,推出了一系列领先的人工智能技术,包括:人脸识别、图像识别、文本识别、医疗影像识别、视频分析、无人驾驶和遥感等。商汤科技已成为亚洲领先的AI算法提供商。

神州泰岳:致力于将人工智能/大数据技术、物联网通讯技术、ICT技术进行融合,大力提升行业/企业组织信息化、智能化的质量与效率的高新技术企业。公司成立于2001年

端侧BIoT

比特大陆:是一家全球领先的科技公司,成立于2013年。公司立足中国,以全球视野整合前沿研发资源,专注于高速、低功耗定制芯片设计研发,其产品包括算力芯片、算力服务器、算力云,主要应用于区块链和人工智能领域。

不是。

中易云(北京)物联网科技有限责任公司(简称中易物联),位于北京市朝阳区东南四环,是专业从事建筑物联网应用研发的高科技服务企业。公司利用云计算系统,自主研发建设了建筑物联网服务管控平台。客户端可将建筑的用电设施、安全保护、环境监测等末端管控对象纳入该平台,在任意上网设备或手机上实现全智能高级服务控制。

中易云(北京)物联网科技有限责任公司是合法的机构。

简述Inter,物联网,云端计算之间的区别以及联络

因特网(Inter),物联网都是通讯网路,将装置进行连线,就好比物联网是高速公路与英特网是大马路,大马路可以走人走脚踏车走汽车,高速路只走汽车。云端计算是区别于本地计算的一种概念,是分散式计算的一种技术名称。
云端计算和物联网两者之间本没有什么特殊的关系,物联网只是今后云端计算平台的一个普通应用,物联网和云端计算之间是应用与平台的关系。
物联网的发展依赖于云端计算系统的完善,从而为海量物联资讯的处理和整合提供可能的平台条件,云端计算的集中资料处理和管理能力将有效的解决海量物联资讯储存和处理问题。

云端计算,物联网,人之智慧技术之间的联络, 人工智慧云端计算物联网三者之间的联络

人工智慧是程式演算法和大资料结合的产物。
而云计算是程式的演算法部分,物联网是收集大资料的根系的一部分。
可以简单的认为:人工智慧=云端计算+大资料(一部分来自物联网)
随着物联网在生活中的铺开,它将成为大资料最大,最精准的来源。

日日月月科技云端计算和物联网之间的区别与联络是什么?

云端计算通俗理解:1、通过网路上传到云储存东西,无需储存装置有网路便可读取。像银行
2、可以通过云端计算,有些软体无需安装便可使用,比如直接通过云写文件,不用安装word。像家里用电不用自己发电,通过电网购买。
云的使用对自己电脑的配置实用减少,而物联网是本地电脑和伺服器资讯互换,处理资讯使用的是本地电脑的资源处理东西。

如何认识Inter与物联网、云端计算、三网融合之间的关系

物联网是客观世界在Inter上的一种应用;云端计算是建立在Inter上的一种分散式技术服务模式;三网融合是将Inter、电信网、广电网业务融合在一起的应用技术及业务模式。
希望对你有用。

云端计算大资料物联网之间的区别与联络 2250字左右我写论文

随着社会迅速发展,人类逐渐进入大资料的时代,而物联网与云端计算作为近年来的热点,受到了业内不少人士的关注。据业界人士分析,大资料的前景与物联网以及云端计算这两者之间的关系非常密切,那么,真像业界人士所说的那样它们之间存在着不一样的关系呢?下面,我们就来了解一下大资料与物联网、云端计算之间的关系吧。
大资料概念
巨量资料(big data),或称大资料、海量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软体工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。“大资料”是由数量巨大、结构复杂、型别众多资料构成的资料集合,是基于云端计算的资料处理与应用模式,通过资料的整合共享,交叉复用,形成的智力资源和知识服务能力。
大资料市场格局
具体意义上来讲,早在20世纪90年代“资料仓库之父”的Bill Inmon便提出了“大资料”的概念。大资料之所以在最近走红,主要归结于网际网路、移动装置、物联网和云端计算等快速崛起,全球资料量大大提升。可以说,移动网际网路、物联网以及云端计算等热点崛起在很大程度上是大资料产生的原因。
我们通过分析,形象的知道大资料与移动网际网路、物联网以及传统网际网路的关系。物联网,移动网际网路再加上传统网际网路,每天都在产生海量资料,而大资料又通过云端计算的形式,将这些资料筛选处理分析,提前出有用的资讯,这就是大资料分析。
大资料与云端计算
云端计算(cloud puting)是基于网际网路的相关服务的增加、使用和交付模式,通常涉及通过网际网路来提供动态易扩充套件且经常是虚拟化的资源。近几年,云端计算的概念受到了学术界、商界,甚至 的热捧,一时间云端计算无处不在,这真让同时代其他的IT技术相形见绌,无地自容。
本质上,云端计算与大资料的关系是静与动的关系;云端计算强调的是计算,这是动的概念;而资料则是计算的物件,是静的概念。如果结合实际的应用,前者强调的是计算能力,或者看重的储存能力;但是这样说,并不意味着两个概念就如此泾渭分明。大资料需要处理大资料的能力(资料获取、清洁、转换、统计等能力),其实就是强大的计算能力;另一方面,云端计算的动也是相对而言,比如基础设施即服务中的储存装置提供的主要是资料储存能力,所以可谓是动中有静。
如果资料是财富,那么大资料就是宝藏,而云计算就是挖掘和利用宝藏的利器!没有强大的计算能力,资料宝藏终究是镜中花;没有大资料的积淀,云端计算也只能是杀鸡用的宰牛刀。
大资料与物联网
物联网是一个基于网际网路、传统电信网等资讯承载体,让所有能够被独立定址的普通物理物件实现互联互通的网路。
大资料与物联网之间的关系是相铺相成的。物联网产生大资料。美国人前几年医院一年产生500个数据,IMT1。4TB资料等各种的资料通过感测器产生,也有在网上直接产生的,我们现在处于大资料时代,物联网一分钟可以产生非常多的东西,苹果下载2万余次,一分钟会上传10万条新微博,全世界物联网上虚拟网路上,产生了大量的资料。
物联网产生的大资料与一般的大资料有不同的特点。物联网的资料是异构的、多样性的、非结构和有噪声的,更大的不同是它的高增长率。物联网的资料有明显的颗粒性,其资料通常带有时间、位置、环境和行为等资讯。物联网资料可以说也是社交资料,但不是人与人的交往资讯,而是物与物,物与人的社会合作资讯。
除此之外,大资料助力物联网,不仅仅是收集感测性的资料,实物跟虚拟物要结合起来。今天北京交通堵塞,但是并不知道堵塞原因,如果 释出讯息和市民微博释出讯息结合起来就知道发生什么事,物联网要过滤,过滤要有一定模式。

基于大资料与物联网,云端计算之间的关系

物联网重点突出了感测器感知的概念,同时它也具备网路线路传输,资讯储存和处理,行业应用介面等功能。而且也往往与网际网路共用伺服器,网路线路和应用介面,使人与人(Human ti Human ,H2H),人与物(Human to thing,H2T)、物与物( Thing to Thing,T2T)之间的交流变成可能,最终将使人类社会、资讯空间和物理世界(人机槠)融为一体。
大资料目前尚没有统一的定义,比较有代表性的是3V 定义,即认为大资料需满足3 个特点:规模性(Volume)、多样性(Variety)和高速性(Velocity)。
以云端计算为代表的网际网路新应用的兴起,表明网际网路基础服务无论从硬体,软体还是资料资讯都在向集中和统一的方向发展。也就是说,未来的大资料还将具备一个新的特性-统一性(Unity)。
你也可以参考物联商业网。

因特网与物联网,云端计算,三网融合之间的关系

因特网是一个数据网际网路;物联网是将现实世界的事物通过感测器等连线到网际网路形成的一个管理网路;云端计算是一种大规模的计算服务平台,它可以为其他网路提供计算服务;三网融合是将电信网、电视网及网际网路融合在一起的综合应用网路。
希望对你有用。

论述网格计算、云端计算、按需计算之间的联络与区别

云端计算与网格计算的概念
首先,究竟什么是云端计算(Cloud Computing)呢?钱教授指出,云就是网际网路——做网路的似乎总是把网路抽象成云;云端计算就是利用在Inter中可用的计算系统,能够支援网际网路各类应用的系统。云端计算是以第三方拥有的机制提供服务,为了完成功能,使用者只关心需要的服务,这是云端计算基本的定义。
相对于网格计算(Grid Computing)和分散式计算,云端计算拥有明显的特点:第一是低成本,这是最突出的特点。第二是虚拟机器的支援,使得在网路环境下的一些原来比较难做的事情现在比较容易处理。第三是镜象部署的执行,这样就能够使得过去很难处理的异构的程式的执行互 *** 作变得比较容易处理。第四是强调服务化,服务化有一些新的机制,特别是更适合商业执行的机制。
那么网格计算的特点又是什么呢?
网格计算有了十几年的历史。网格基本形态是什么?是跨地区的,甚至跨国家的,甚至跨洲的这样一种独立管理的资源结合。资源在独立管理,并不是进行统一布置、统一安排的形态。网格这些资源都是异构的,不强调有什么统一的安排。另外网格的使用通常是让分布的使用者构成虚拟组织(VO),在这样统一的网格基础平台上用虚拟组织形态从不同的自治域访问资源。此外,网格一般由所在地区、国家、国际公共组织资助的,支援的资料模型很广,从海量资料到专用资料以及到大小各异的临时资料集合,在网上传的资料,这是网格目前的基本形态。
云端计算与网格计算区别何在
可以看出,网格计算和云端计算有相似之处,特别是计算的并行与合作的特点;但他们的区别也是明显的。主要有以下几点:
首先,网格计算的思路是聚合分布资源,支援虚拟组织,提供高层次的服务,例如分布协同科学研究等。而云计算的资源相对集中,主要以资料中心的形式提供底层资源的使用,并不强调虚拟组织(VO)的概念。
其次,网格计算用聚合资源来支援挑战性的应用,这是初衷,因为高效能运算的资源不够用,要把分散的资源聚合起来;后来到了2004年以后,逐渐强调适应普遍的资讯化应用,特别在中国,做的网格跟国外不太一样,就是强调支援资讯化的应用。但云计算从一开始就支援广泛企业计算、Web应用,普适性更强。
第三,在对待异构性方面,二者理念上有所不同。网格计算用中介软体遮蔽异构系统,力图使使用者面向同样的环境,把困难留在中介软体,让中介软体完成任务。而云计算实际上承认异构,用映象执行,或者提供服务的机制来解决异构性的问题。当然不同的云端计算系统还不太一样,像Google一般用比较专用的自己的内部的平台来支援。
第四,网格计算用执行作业形式使用,在一个阶段内完成作用产生资料。而云计算支援持久服务,使用者可以利用云端计算作为其部分IT基础设施,实现业务的托管和外包。
第五,网格计算更多地面向科研应用,商业模型不清晰。而云计算从诞生开始就是针对企业商业应用,商业模型比较清晰。
总之,云端计算是以相对集中的资源,执行分散的应用(大量分散的应用在若干大的中心执行);而网格计算则是聚合分散的资源,支援大型集中式应用(一个大的应用分到多处执行)。但从根本上来说,从应对Inter的应用的特征特点来说,他们是一致的,为了完成在Inter情况下支援应用,解决异构性、资源共享等等问题。
那么,网格计算和云端计算有没有可能取长补短、互为补充呢?钱教授提到,如果这两者结合起来,也许可以聚合大量分散的资源,从而支援各种各样的大型集中应用以及分散的应用。
最后,钱教授还谈到,在云端计算技术方面,有三个需要关注的问题。第一是安全,因为要想作为公共基础设施必须取得使用者的充分信任。第二是标准化,不能再走中介软体的老路。第三是开源,要走开放的平台,这样才有发展。
简明的描述,看了有茅塞顿开的感觉。
观点一:网格计算主要关注如何把一个任务分配到它所需要的资源上(一般来说是一个远端可用的),在这里一个大的计算任务可以被分成多个小任务,然后被分配到这些伺服器上执行;而云计算则强调把资源动态的从硬体基础架构上产生出来,以适应工作任务的需要,云端计算可以支援网格计算,也可以支援非网格计算。(简单理解,即动态产生的计算资源是来自一台伺服器还是多台,是否使用了网格计算的演算法。本人的理解)
观点二:网格计算与云端计算主要有三点区别,第一,网格主要是通过聚合式分布的资源,通过虚拟组织提供高层次的服务,而云计算资源相对集中,通常以资料中心的形式提供对底层资源的共享使用,而不强调虚拟组织的观念;第二,网格聚合资源的主要目的是支援挑战性的应用,主要面向教育和科学计算,而云计算一开始就是用来支援广泛的企业计算、web应用等;第三,网格用中介软体遮蔽异构性,而云计算承认异构,用提供服务的机制来解决异构性的问题。
网格计算与云端计算的关系如下表所示。
表 1 网格计算与云端计算的比较
网格计算
云端计算
目标
共享高效能运算力和资料资源,实现资源共享和协同工作
提供通用的计算平台和储存空间,提供各种软体服务
资源来源
不同机构
同一机构
资源型别
异构资源
同构资源
资源节点
高效能运算机
伺服器/PC
虚拟化检视
虚拟组织
虚拟机器
计算型别
紧耦合问题为主
松耦合问题
应用型别
科学计算为主,计算密集
资料处理为主,资料密集
使用者型别
科学界
商业社会
付费方式
免费( 出资)
按量计费
标准化
有统一的国际标准OGSA/WSRF
尚无标准,但已经有了开放云端计算联盟OCC
网格计算走的是学院派的路子:在概念上争论多年,在体系结构上三次伤筋动骨,在标准规范上花费了大量的心力,所设定的目标又非常远大--要在跨平台、跨组织、跨信任域的极其复杂的异构环境 享资源和协同解决问题,所要共享的资源也是五花八门--从高效能运算机、资料库、装置到软体、甚至知识;云端计算走的是现实派的路子:暂时不管概念、不管标准,Google云端计算与Amazon云端计算的差别非常大,云端计算只是对他们以前做的事情的新的共同的时髦叫法;所共享的储存和计算资源暂时仅限于某个企业内部,省去了许多跨组织协调的问题;以Google为代表的云端计算在内部管理运作方式上的简洁一如其介面,能省的功能都省了,Google档案系统甚至不允许修改已经存在的档案,大大降低了实现难度,却借助其无与伦比的规模效应释放前所未有的能量。
网格计算与云端计算的关系,就像是OSI与TCP/IP之间的关系:ISO制定的OSI(开放系统互联)网路标准,考虑得非常周到,也异常复杂,在多年之前就考虑到了会话层和表示层的问题。很有远见,但过于阳春白雪了,实现的难度和代价也非常大。当OSI的一个简化版--TCP/IP冒出来之后,将七层协议简化为四层,内容也大大精简,因而迅速取得了成功。在TCP/IP一统天下之后多年,语义网等问题才被提上议事日程,开始为TCP/IP补课,增加其会话和表示的能力。因此,OSI是学院派,TCP/IP是现实派。OSI是TCP/IP的基础,TCP/IP又推动了OSI的发展。不是成者为王、败者为寇的问题,而是滚动发展的问题。

详细阐述大资料,云端计算和物联网三者之前的区别和联络

1.物联网产生大资料,大资料助力物联网。目前,物联网正在支撑起社会活动和人们生活方式的变革,被称为继计算机、网际网路之后冲击现代社会的第三次资讯化发展浪潮。物联网在将物品和网际网路连线起来,进行资讯交换和通讯,以实现智慧化识别、定位、跟踪、监控和管理的过程中,产生的大量资料也在影响着电力、医疗、交通、安防、物流、环保等领域商业模式的重新形成。物联网握手大资料,正在逐步显示出巨大的商业价值。
2.大资料是高速跑车,云端计算是高速公路。在大资料时代,使用者的体验与诉求已经远远超过了科研的发展,但是使用者的这些需求却依然被不断地实现。在云端计算、大资料的时代,那些科幻片中的统计分析能力已初具雏形,而这其中最大的功臣并非工程师和科学家,而是网际网路使用者,他们的贡献已远远超出科技十年的积淀。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/12649162.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-27
下一篇 2023-05-27

发表评论

登录后才能评论

评论列表(0条)

保存