实现工业40,需要高度的工业化、自动化基础,是漫长的征程。工业大数据是未来工业在全球市场竞争中发挥优势的关键。无论是德国工业40、美国工业互联网还是《中国制造2025》,各国制造业创新战略的实施基础都是工业大数据的搜集和特征分析,及以此为未来制造系统搭建的无忧环境。不论智能制造发展到何种程度,数据采集都是生产中最实际最高频的需求,也是工业40的先决条件。
数字化工厂不等于无人工厂,产品配置,制造流程越复杂越多变,越需要人的参与;在数字化工厂当中,工人更多地是处理异常情况,调整设备。但数据采集一直是困扰着所有制造工厂的传统痛点,自动化设备品牌类型繁多,厂家和数据接口各异,国外厂家本地支持有限,不同采购年代。即便产量停机数据自动采集了,也不等于整个制造过程数据都获得了,只要还有其他人工参与环节,这些数据就不完整。
工业数据采集类型
互联网的数据主要来自于互联网用户和服务器等网络设备,主要是大量的文本数据、社交数据以及多媒体数据等,而工业数据主要来源于机器设备数据、工业信息化数据和产业链相关数据。
从数据采集的类型上看,不仅要涵盖基础的数据,还将逐步包括半结构化的用户行为数据,网状的社交关系数据,文本或音频类型的用户意见和反馈数据,设备和传感器采集的周期性数据,网络爬虫获取的互联网数据,以及未来越来越多有潜在意义的各类数据。主要包括以下几种:
1、海量的Key-Value数据。在传感器技术飞速发展的今天,包括光电、热敏、气敏、力敏、磁敏、声敏、湿敏等不同类别的工业传感器在现场得到了大量应用,而且很多时候机器设备的数据大概要到ms的精度才能分析海量的工业数据,因此,这部分数据的特点是每条数据内容很少,但是频率极高。
2、文档数据。包括工程图纸、仿真数据、设计的CAD图纸等,还有大量的传统工程文档。
3、信息化数据。由工业信息系统产生的数据,一般是通过数据库形式存储的,这部分数据是最好采集的。
4、接口数据。由已经建成的工业自动化或信息系统提供的接口类型的数据,包括txt格式、JSON格式、XML格式等。
5、视频数据。工业现场会有大量的视频监控设备,这些设备会产生大量的视频数据。
6、图像数据。包括工业现场各类图像设备拍摄的(例如,巡检人员用手持设备拍摄的设备、环境信息)。
7、音频数据。包括语音及声音信息(例如, *** 作人员的通话、设备运转的音量等)。
8、其他数据。例如遥感遥测信息、三维高程信息等等。
数据采集的方法
传统的数据采集方法包括人工录入、调查问卷、电话随访等方式,大数据时代到来后,一个突出的变化是数据采集的方法有了质的飞跃,下面所介绍的数据采集方式的突破直接改变着大数据应用的场景。
1、传感器
传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。在生产车间中一般存在许多的传感节点,24小时监控着整个生产过程,当发现异常时可迅速反馈至上位机,可以算得上是数据采集的感官接受系统,属于数据采集的底层环节。
传感器在采集数据的过程中主要特性是其输入与输出的关系。
其静态特性反映了传感器在被测量各个值处于稳定状态时的输入和输出关系,这意味着当输入为常量,或变化极慢时,这一关系就称为静态特性。我们总是希望传感器的输入与输出成唯一的对照关系,最好是线性关系。
一般情况下,输入与输出不会符合所要求的线性关系,同时由于存在这迟滞、蠕变等因素的影响,使输入输出关系的唯一性也不能实现。因此我们不能忽视工厂中的外界影响,其影响程度取决于传感器本身,可通过传感器本身的改善加以抑制,有时也可以加对外界条件加以限制。
2、RFID技术
RFID(Radio Frequency Identification,射频识别)技术是一种非接触式的自动识别技术,通过射频信号自动识别目标对象并获取相关的数据信息。利用射频方式进行非接触双向通信,达到识别目的并交换数据。RFID技术可识别高速运动物体并可同时识别多个标签, *** 作快捷方便。
在工作时,RFID读写器通过天线发送出一定频率的脉冲信号,当RFID标签进入磁场时,凭借感应电流所获得的能量发送出存储在芯片中的产品信息(Passive Tag,无源标签或被动标签),或者主动发送某一频率的信号(Active Tag,有源标签或主动标签)。
阅读器对接收的信号进行解调和解码然后送到后台主系统进行相关处理;主系统根据逻辑运算判断该卡的合法性,针对不同的设定做出相应的处理和控制,发出指令信号控制执行机构动作。
RFID技术解决了物品信息与互联网实现自动连接的问题,结合后续的大数据挖掘工作,能发挥其强大的威力。
数据采集技术难点
在当今的制造业领域,数据采集是一个难点。很多企业的生产数据采集主要依靠传统的手工作业方式,采集过程中容易出现人为的记录错误且效率低下。
有些企业虽然引进了相关技术手段,并且应用了数据采集系统,但是由于系统本身的原因以及企业没有选择最适合自己的数据采集系统,因此也无法实现信息采集的实时性、精确性和延伸性管理,各单元出现了信息断层的现象。
技术难点主要包括以下几方面:
1、数据量巨大。任何系统,在不同的数据量面前,需要的技术难度都是完全不同的。
如果单纯是将数据采到,可能还比较好完成,但采集之后还需要处理,因为必须考虑数据的规范与清洗,因为大量的工业数据是“脏”数据,直接存储无法用于分析,在存储之前,必须进行处理,对海量的数据进行处理,从技术上又提高了难度。
2、工业数据的协议不标准。互联网数据采集一般都是我们常见的>●传感器技术:价格低廉、性能良好的传感器是物联网应用的基石,物联网的发展要求更准确、更智能、更高效以及兼容性更强的传感器技术。智能数据采集技术是传感器技术发展的一个新方向。信息的泛在化对传感器和传感装置提出了更高的要求。具体如,微型化:元器件的微小型化,要求节约资源与能源;智能化:具备自校准、自诊断、自学习、自决策、自适应和自组织等人工智能技术;低功耗与能量获取技术:供电方式为电池、阳光、风、温度、振动等多种方式。\x0d\●设备兼容技术:大部分情况下,企业会基于现有的工业系统建造工业物联网,如何实现工业物联网中所用的传感器能够与原有设备已应用的传感器相兼容是工业物联网推广所面临的问题之一。传感器的兼容主要指数据格式的兼容与通信协议的兼容,兼容关键是标准的统一。目前,工业现场总线网络中普遍采用的如Profibus、Modus协议,已经较好地解决了兼容性问题,大多数工业设备生产厂商基于这些协议开发了各类传感器、控制器等。近年来,随着工业无线传感器网络应用日渐普遍,当前工业无线的WirelessHART、ISA100.11a以及wIA—PA3大标准均兼容了IEEE802.15.4无线网络协议,并提供了隧道传输机制兼容现有的通信协议,丰富了工业物联网系统的组成与功能。\x0d\●网络技术:网络是构成工业物联网的核心之一,数据在系统不同的层次之间通过网络进行传输。网络分为有线网络与无线网络,有线网络一般应用于数据处理中心的集群服务器、工厂内部的局域网以及部分现场总线控制网络中,能提供高速率高带宽的数据传输通道。工业无线传感器网络则是一种新兴的利用无线技术进行传感器组网以及数据传输的技术,无线网络技术的应用可以使得工业传感器的布线成本大大降低,有利于传感器功能的扩展,因此吸引了国内外众多企业和科研机构的关注。\x0d\传统的有线网络技术较为成熟,在众多场合已得到了应用验证。然而,当无线网络技术应用于工业环境时,会面临如下问题:工业现场强电磁干扰、开放的无线环境让工业机器更容易受到攻击威胁、部分控制数据需要实时传输。相对于有线网络,工业无线传感器网络技术则正处在发展阶段,它解决了传统的无线网络技术应用于工业现场环境时的不足,提供了高可靠性、高实时性以及高安全性,主要技术包括:自适应跳频、确实性通信资源调度、无线路由、低开销高精度时间同步、网络分层数据加密、网络异常监视与报警以及设备入网鉴权等。\x0d\●信息处理技术:工业信息出现爆炸式增长,工业生产过程中产生的大量数据对于工业物联网来说是一个挑战,如何有效处理、分析、记录这些数据,提炼出对工业生产有指导性建议的结果,是工业物联网的核心所在,也是难点所在。\x0d\当前业界大数据处理技术有很多,如SAP的BW系统在一定程度上解决了大数据给企业生产运营带来的问题。数据融合和数据挖掘技术的发展也使海量信息处理变得更为智能、高效。工业物联网泛在感知的特点使得人也成为了被感知的对象,通过对环境数据的分析以及用户行为的建模,可以实现生产设计、制造、管理过程中的人一人、人一机和机一机之间的行为、环境和状态感知,更加真实地反映出工业生产过程中的细节变化,以便得出更准确的分析结果。\x0d\●安全技术:工业物联网安全主要涉及数据采集安全、网络传输安全等过程,信息安全对于企业运营起到关键作用,例如在冶金、煤炭、石油等行业采集数据需要长时问的连续运行,如何保证在数据采集以及传输过程中信息的准确无误是工业物联网应用于实际生产的前提。工业数据采集体系包括设备接入、协议转换、边缘计算。设备接入是工业数据采集建立物理世界和数字世界连接的起点。设备接入利用有线或无线通信方式,实现工业现场和工厂外智能产品/移动装备的泛在连接,将数据上报到云端。工业数据采集发展了这么多年,存在设备接入的复杂性和多样性。
数据接入后,将对数据进行解析、转换,并通过标准应用层协议如MQTT、>
真实有效的现场数据给农场业主管理上带来的可追溯、可衡量的标准,降低了管理的难度,实现让更少的人管理更多的设备。对历史运行数据和安全警戒值进行扫描判断,当变化达到临界值时会自动通过手机短信方式通知用户,让用户及时对设备和安全隐患进行及时处理。
工业互联网体系架构。根据查询相关资料信息显示,在工业互联网体系架构中,数据采集属于工业物联网的范畴,是工业互联网体系架构的一个重要模块。工业物联网是指基于物联网技术,将工业设备、工业数据、工业控制等资源进行互联互通和数据共享,实现生产过程全面数字化、智能化和自动化的一种新型工业模式。在工业物联网中,数据采集是指通过各种传感器、监测设备等实现对生产过程中各种物理量、参数、状态等信息的获取和采集,并将这些数据传输到云平台或数据中心进行处理和分析。物联网智能网关要接入MES系统,需要从下面几个方面讨论:1、多种采集协议的适配:车间设备一般具有多种接口和多种自动化协议,常见的有modbus、PPI、MPI、Profinet、hostlink等,接口一般为RS485、以太网、can口等。
2、具备边缘计算能力:物联网智能网关必须具备边缘计算能力,而不是傻瓜式的透传。可以对数据进行本地化预处理,然后再与MES服务器交互,这样能极大减轻MES服务器的压力。
3、与MES服务器间的通信规约和数据格式:物联网网关与MES服务器见需要支持实时性非常强的通信规约,如MQTT、DICP等,而不是普通的自动化协议。同时约定好传输的数据格式,以被MES服务器解析。
帝图数据采集器适合于用在MES系统的数据采集,比如汽车生产线的数据采集、变电站的数据采集等。
智能农业物联网便是农牧业在生产制造、运营、生产制造、服务项目中的运用。是用各种各样认知机器设备,收集 检测农作物生产制造中的信息内容。再运用无线通信机器设备,将信息发送至数据管理平台,完成海量数据的归纳梳理和结合,完成对每个环节的监管,为农业给出的数据适用。
水肥一体化喷灌系统:智能控制系统机器设备电源开关的起停,可以根据手动式和自动化技术二种方式 *** 纵,在移动端或是pc端一键 *** 纵。工作员设置一个安全性标值,当数值或高或低时,全自动浇灌。当标值高于缓冲区值时,系统软件会发出声响,将非常的数据信息转发给工作员的手机上。可以立即做调节。与此同时可以完成数据采集归纳,将检测到的数据信息归纳梳理,提交,还能够对数据储存,随时随地对数据资料开展抽样检查。
温智温室大棚自动控制系统:传统式的温室大棚一直欠缺科学论证,对阳光照射、环境温度、环境湿度的检测不及时,因此当强降雨下雪来临时性,防护措施一直不立即,导致一些财产损失。而智能温室可以使温棚内长期维持一个恒温恒湿的情况。一年四季可以开展生产制造,提升了经济收益。
智能监控系统:手机上可查询温室大棚内的各类状况,即时把握棚里状况。可以在移动端、pc端开展查询。智能农业在许多地区已经逐渐运用,坚信在不久的未来,智能农业会更为智能化。全套系统关键一部分主要是由这一些构成。智能农业物联网系统还能够依据用户需求订制开发设计版本号,而且可以扩充版面,依据要求,提升,商品知识库系统,产品溯源,监管平台这些。全套系统覆盖了农牧业里边的各行各业版面,推动在我国的农业现代化,现代化前行的脚步。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)