工业物联网与工业互联网的典型架构

工业物联网与工业互联网的典型架构,第1张

工业互联网不是工业的互联网,而是工业互联的网。它是把工业生产过程中的人、数据和机器连接起来,使工业生产流程数字化、自动化、智能化和网络化,实现数据的流通,提升生产效率、降低生产成本。

从技术架构层面看,工业互联网包含设备层、网络层、平台层、软件层、应用层以及整体的工业安全体系。与传统互联网相比,多了一个设备层。

工业物联网是工业互联网中的「基建」,它连接了设备层和网络层,为平台层、软件层和应用层奠定了坚实的基础。设备层又包含边缘层,总体上,工业物联网涵盖了云计算、网络、边缘计算和终端,自下而上打通工业互联网中的关键数据流。

工业物联网从架构上分为感知层、通信层、平台层和应用层。

当许多非技术人员听到“物联网”(IoT)的时候,他们的眼睛变得呆滞,他们露出困倦或迷惑的表情。对那些在科技行业中的人来说,这是从两个方面看的——对一些人来说,这是一个巨大的炒作,但对另一些人来说,这是一个巨大的经济机会。商机,唯一的问题是“什么”和“什么时候”。

我已经把物联网(IoT)是“什么”分成了两个主要的领域,即人类物联网(人类物联网(HIoT))和工业物联网(IIoT)。

熟悉人类物联网(HIoT)的Nike FuelBand、FITTUS、Nest和RANVV,在工业物联网(IIoT)世界中连接商用HVAC和车队系统的情况也一样。例如Digi International、ELon + 209%梯队和飞思卡尔半导体公司都在大范围地追求这一空间。叶我在工业物联网(IIoT)上发表了一篇深刻的潜水论文,但是我会给你下面的删节版本。

工业物联网(IIoT)和人类物联网(HIoT)在未来几年的主要区别在于工业物联网(IIoT)将包含一个世纪以来存在的“棕色油田”基础设施,如商业锅炉和舰队跟踪,而人类物联网(HIoT)则是一组新的“绿色”服务和技术,它们必须构建INFREST结构随着它的成长。

工业物联网(IIoT)的设计需要对解决空间的深刻理解和连接几十年制造的系统的能力。工业物联网(IIoT)支持解决方案供应商,如Digi、Agelon和FiSele,它们在工业控制领域有扎实的根基。在用户体验(UX)和像Nest、FITBIT和RANVV这样的设备设计方面,EN的飞跃。“足够好”的概念不适用于工业界。

正如我们以前的物联网I(IoT)分割纸中提到的,工业物联网(IIoT)端点必须比人类物联网(HIoT)端点更健壮。如果不能生成和传输的数据用于分析,则嵌入在端点中的传感器没有多大帮助。我把这些集合点称为“网关”。

有许多向量可以用来测量端点的“鲁棒性”。下面的表格总结了这些向量:

· 产品生命周期:工业物联网(IIoT)产品有很长的产品周期, 产品通常必须在极端条件下运行, 例如在锅炉旁边, 在汽车和喷气引擎中, 浸泡在腐蚀性液体中, 位于沙漠、雨林、火山、高空等敌对的地理环境· 市场机会: 工业物联网(IIoT)使用布朗菲尔德来描述将超过一个世纪的在职机械和电气系统连接到互联网的机会, 因此可以提供新的基于云的服务和分析后端。认为100年老锅炉和暖通空调系统在高上升

· 解决方案集成: 在数十年的使用中安装和升级的系统系统 (如旧的暖通空调锅炉) 必须至少可以在许多级别的一个 (物理、电气、ABI、API 和网络协议接口) 上进行互 *** 作

· 安全: 诸如暖通空调和电源控制等工业系统必须是安全的, 以防止未经授权的访问和滥用有形基础设施。即使是像温度控制这样简单的特性也会影响深远的现实世界

· 人工交互: 工业物联网(IIoT)系统是基于规则的。因此 IIoT 数据流是不对称的, 主要是上游的, 从传感器到网关到云服务, 只有较小的控制反馈流回下游

· 可用性: 我们通过计数 "九" 来衡量可用性, 并查看每个可用级别上剩余的可用时间。四到五九通常被称为 "高可用性" (HA), 是您在 IIoT 世界中期望的

· 对 Internet 的访问: 工业物联网(IIoT) 系统无法承担对云的连续互联网访问。网络接口失败, 网络本身有时会失败, 外部干扰可能会暂时压倒通信信道的噪音, 并有效地切断连接等

· 对失败的响应: 由于组件和子系统的故障预期, 工业系统必须能够恢复故障。这些系统的设计, 以优雅和确定性的方式失败-一些拯救生命和健康, 如发电和医疗仪器, 其他节省金钱, 资源和时间, 如航空公司调度系统, 使他们可以重新启动修复后快速

· 网络拓扑: 工业物联网(IIoT) 终端设备通常被设计为与更广泛的社区结盟, 以便利用资源和实现更大规模的目标

· 物理连接: 网关应该是本地物理网络不可知的。工业物联网(IIoT) 使用任何物理网络最适合的: 双绞线、电力线、以太网、无线、蜂窝、卫星等

工业互联网的东西工业物联网(IIoT) 青睐的组件和解决方案供应商, 如数码, 梯队, 和飞思卡尔从工业控制世界谁拥有丰富的经验, 各种遗留的工业连接解决方案。这些供应商专门了解特定的工业使用模型, 然后创建领域专门知识, 将这些使用模型转换为传感器、执行器、控制逻辑、数据聚合、本地网络连接和服务层。他们在过去一个世纪建立的遗留工业设备方面积累了经验, 并在数十年的时间里与客户建立了信任。

以上由物联传媒转载,如有侵权联系删除

工业大数据应用将带来工业企业创新和变革的新时代。通过互联网、移动物联网等带来的低成本感知、高速移动连接、分布式计算和高级分析,信息技术和全球工业系统正在深入融合,给全球工业带来深刻的变革,创新企业的研发、生产、运营、营销和管理方式。这些创新不同行业的工业企业带来了更快的速度、更高的效率和更高的洞察力。工业大数据的典型应用包括产品创新、产品故障诊断与预测、工业生产线物联网分析、工业企业供应链优化和产品精准营销等诸多方面。本文我们讲就工业大数据在制造企业的应用场景进行逐一梳理。

一、加速产品创新

客户与工业企业之间的交互和交易行为将产生大量数据,挖掘和分析这些客户动态数据,能够帮助客户参与到产品的需求分析和产品设计等创新活动中,为产品创新作出贡献。福特公司是这方面的表率,他们将大数据技术应用到了福特福克斯电动车的产品创新和优化中,这款车成为了一款名副其实的“大数据电动车”。第一代福特福克斯电动车在驾驶和停车时产生大量数据。在行驶中,司机持续地更新车辆的加速度、刹车、电池充电和位置信息。这对于司机很有用,但数据也传回福特工程师那里,以了解客户的驾驶习惯,包括如何、何时以及何处充电。即使车辆处于静止状态,它也会持续将车辆胎压和电池系统的数据传送给最近的智能电话。

这种以客户为中心的大数据应用场景具有多方面的好处,因为大数据实现了宝贵的新型产品创新和协作方式。司机获得有用的最新信息,而位于底特律的工程师汇总关于驾驶行为的信息,以了解客户,制订产品改进计划,并实施新产品创新。而且,电力公司和其他第三方供应商也可以分析数百万英里的驾驶数据,以决定在何处建立新的充电站,以及如何防止脆弱的电网超负荷运转。

二、设备故障分析及预测

在制造业生产线上,工业生产设备都会受到持续的振动和冲击,这导致设备材料和零件的磨损老化,从而导致工业设备容易产生故障,而当人们意识到故障时,可能已经产生了很多不良品,甚至整个工业设备已经奔溃停机,从而造成巨大的损失。

如果能在故障发生之前进行故障预测,提前维修更换即将出现问题的零部件,这样就可以提高工业设备的寿命以及避免某个设备突然出现故障对整个工业生产带来严重的影响。随着工业40的到来,智能工厂的工业设备都配上了各种感应器,采集其振动、温度、电流、电压等数据显得轻而易举,通过分析这些实时的传感数据,对工业设备进行故障预测将是一种行之有效的措施。

因此设备故障预测方案成为了制造行业所青睐的解决方案,其具备的核心功能有:

1、故障超前预警,减少设备停机时间;

2、分析结果实时推送,减少人工成本;

3、适用于企业各种类型的设备,通用性强。

三、工业物联网生产线的大数据应用

现代化工业制造生产线安装有数以千计的小型传感器,来探测温度、压力、热能、振动和噪声。因为每隔几秒就收集一次数据,利用这些数据可以实现很多形式的分析,包括设备诊断、用电量分析、能耗分析、质量事故分析(包括违反生产规定、零部件故障)等。

首先,在生产工艺改进方面,在生产过程中使用这些大数据,就能分析整个生产流程,了解每个环节是如何执行的。一旦有某个流程偏离了标准工艺,就会产生一个报警信号,能更快速地发现错误或者瓶颈所在,也就能更容易解决问题。利用大数据技术,还可以对工业产品的生产过程建立虚拟模型,仿真并优化生产流程,当所有流程和绩效数据都能在系统中重建时,这种透明度将有助于制造商改进其生产流程。再如,在能耗分析方面,在设备生产过程中利用传感器集中监控所有的生产流程,能够发现能耗的异常或峰值情形,由此便可在生产过程中优化能源的消耗,对所有流程进行分析将会大大降低能耗。

四、产品销售预测与需求管理

近年来,保险业加速了数字化进程,大数据与保险营销深度融合,成为现代化保险营销的重要武器。慧都大数据助力保险行业精准营销,并成功帮助中意人寿保险有限公司更好地服务客户和发挥忠诚客户,提高销售效率及客户复购率。

五、工业供应链的分析与优化

当前,大数据分析已经是很多电子商务企业提升供应链竞争力的重要手段。例如,电子商务企业京东商城,通过大数据提前分析和预测各地商品需求量,从而提高配送和仓储的效能,保证了次日货到的客户体验。RFID等产品电子标识技术、物联网技术以及移动互联网技术能帮助工业企业获得完整的产品供应链的大数据,利用这些数据进行分析,将带来仓储、配送、销售效率的大幅提升和成本的大幅下降。

六、生产计划与排程

制造业面对多品种小批量的生产模式,数据的精细化自动及时方便的采集(MES/DCS)及多变性导致数据剧烈增大,再加上十几年的信息化的 历史 数据,对于需要快速响应的APS来说,是一个巨大的挑战。大数据可以给予我们更详细的数据信息,发现 历史 预测与实际的偏差概率,考虑产能约束、人员技能约束、物料可用约束、工装模具约束,通过智能的优化算法,制定预计划排产,并监控计划与现场实际的偏差,动态的调整计划排产。帮我们规避“画像”的缺陷,直接将群体特征直接强加给个体(工作中心数据直接改变为具体一个设备、人员、模具等数据)。通过数据的关联分析并监控它,我们就能计划未来。

七、生产质量分析与预测

在工业生产中,设备失效、人员疏忽、参数异常、原材料差异、环境波动等因素而导致质量偏离,引起质量等级的缺陷和损失非常巨大。工艺流程复杂的大型制造业,如钢铁、 汽车 、电子、服装等行业,信息数据孤岛凸显,导致质量问题频发,尤其需要“及时发现和预测异常,迅速控制和分析质量异常的原因,进行生产过程改进,稳定生产过程,减少产品质量波动”。

生产质量分析,从工厂订单下单-订单生产-流入市场, 针对整个生产链进行全面的质量分析。其中,打通质量和人、机、料、法、环等数据,各生产数据环环相扣,聚焦质量管理的全量数据分析,帮助企业快速 探索 缺陷根本原因。

1、打通质量和人、机、料、法、环,对影响质量的全量数据进行交互分析, 探索 相互关系,挖掘数据背后的真实原因,获取结果“是什么”,回答“为什么”。

2、将传统的静态汇报模式,改为交互式动态会议,随时随地可以组织生产、质量相关专题会议。通过对维度展示生产和质量KPI,实时预警、掌握产线运营状况。

3、简单易上手的质量分析工具,员工只需对数据进行选取、拖曳,自助灵活地达成期望的数据结果。

4、摒弃以往静态的数据报表,整合多个业务系统数据,多场景数据大屏,自适应多屏,进行综合展示分析,让决策更清晰。

————————————————

工业物联网,通俗来讲就是智能工业,将具有感知、监控能力的各类采集、控制传感器,以及移动通信、智能分析等技术不断融入到工业生产过程中的各环节,从而大幅提高制造效‎率,改善产品质量,降低产品成本和资‎源消耗,最终取代传统工‎业。国内也有主攻这一块的企业——成‎都万创‎科‎技。万创多年来持续专注于工业物联整体解决方案和智慧化工业场景打造,提供从边缘智能硬件、传感器(设备层)、工业通讯设备(网关层)、到云平台Pa‎aS(云服务层)等多种物联产品及相应服务,实现了对工业物联网基础架构的全面覆盖。

●传感器技术:价格低廉、性能良好的传感器是物联网应用的基石,物联网的发展要求更准确、更智能、更高效以及兼容性更强的传感器技术。智能数据采集技术是传感器技术发展的一个新方向。信息的泛在化对传感器和传感装置提出了更高的要求。具体如,微型化:元器件的微小型化,要求节约资源与能源;智能化:具备自校准、自诊断、自学习、自决策、自适应和自组织等人工智能技术;低功耗与能量获取技术:供电方式为电池、阳光、风、温度、振动等多种方式。
●设备兼容技术:大部分情况下,企业会基于现有的工业系统建造工业物联网,如何实现工业物联网中所用的传感器能够与原有设备已应用的传感器相兼容是工业物联网推广所面临的问题之一。传感器的兼容主要指数据格式的兼容与通信协议的兼容,兼容关键是标准的统一。目前,工业现场总线网络中普遍采用的如Profibus、Modus协议,已经较好地解决了兼容性问题,大多数工业设备生产厂商基于这些协议开发了各类传感器、控制器等。近年来,随着工业无线传感器网络应用日渐普遍,当前工业无线的WirelessHART、ISA100.11a以及wIA—PA3大标准均兼容了IEEE802.15.4无线网络协议,并提供了隧道传输机制兼容现有的通信协议,丰富了工业物联网系统的组成与功能。
●网络技术:网络是构成工业物联网的核心之一,数据在系统不同的层次之间通过网络进行传输。网络分为有线网络与无线网络,有线网络一般应用于数据处理中心的集群服务器、工厂内部的局域网以及部分现场总线控制网络中,能提供高速率高带宽的数据传输通道。工业无线传感器网络则是一种新兴的利用无线技术进行传感器组网以及数据传输的技术,无线网络技术的应用可以使得工业传感器的布线成本大大降低,有利于传感器功能的扩展,因此吸引了国内外众多企业和科研机构的关注。
传统的有线网络技术较为成熟,在众多场合已得到了应用验证。然而,当无线网络技术应用于工业环境时,会面临如下问题:工业现场强电磁干扰、开放的无线环境让工业机器更容易受到攻击威胁、部分控制数据需要实时传输。相对于有线网络,工业无线传感器网络技术则正处在发展阶段,它解决了传统的无线网络技术应用于工业现场环境时的不足,提供了高可靠性、高实时性以及高安全性,主要技术包括:自适应跳频、确实性通信资源调度、无线路由、低开销高精度时间同步、网络分层数据加密、网络异常监视与报警以及设备入网鉴权等。
●信息处理技术:工业信息出现爆炸式增长,工业生产过程中产生的大量数据对于工业物联网来说是一个挑战,如何有效处理、分析、记录这些数据,提炼出对工业生产有指导性建议的结果,是工业物联网的核心所在,也是难点所在。
当前业界大数据处理技术有很多,如SAP的BW系统在一定程度上解决了大数据给企业生产运营带来的问题。数据融合和数据挖掘技术的发展也使海量信息处理变得更为智能、高效。工业物联网泛在感知的特点使得人也成为了被感知的对象,通过对环境数据的分析以及用户行为的建模,可以实现生产设计、制造、管理过程中的人一人、人一机和机一机之间的行为、环境和状态感知,更加真实地反映出工业生产过程中的细节变化,以便得出更准确的分析结果。
●安全技术:工业物联网安全主要涉及数据采集安全、网络传输安全等过程,信息安全对于企业运营起到关键作用,例如在冶金、煤炭、石油等行业采集数据需要长时问的连续运行,如何保证在数据采集以及传输过程中信息的准确无误是工业物联网应用于实际生产的前提。

工业物联网起源:
工业领域的生产设备在以往是没有主动联网功能的,导致生产数据、物料消耗、产品跟踪全部由人工来完成,效率低、错漏多,而且随着产品迭代速度越来越快,需要制造企业拥有极强的敏捷性(例如商家插单生产,可以随时调整生产计划)
物联网的作用就在于能通过硬件技术将设备的生产数据实时获取(这在之前是不可能的),最后经过大数据分析呈现在用户的手机端(例如物料消耗了多少,库存还有多少,每条生产线的生产进度是多少),一旦客户调整需求/插单,就可以通过实时获得的数据合理调整生产计划,达到柔性生产。
工业物联网由大量相连的工业系统所组成,这些系统会相互通讯,并协调数据分析与行动,有助于提升工业效能、有利于整个社会。透过传感器与致动器衔接数字世界与实体世界的工业级系统,可解决更为复杂的控制问题。目前各种系统,正在结合巨量模拟数据,解决方案,希望能透过资料与分析取得更深入的知识。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/12709417.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-27
下一篇 2023-05-27

发表评论

登录后才能评论

评论列表(0条)

保存