网络进步下的产物——边缘云计算

网络进步下的产物——边缘云计算,第1张

随着虚拟人等应用不断发展成熟,对于计算的容量和实时性的要求不断提高。在这种趋势下,我们认为,边缘云计算有望成为元宇宙的重要支撑。作为云计算的延伸,边缘云计算被视为新一轮 科技 革命中必不可少的驱动因素。我们认为,元宇宙对网络传输提出了更大带宽、更低时延、更广覆盖的要求,需要借助边缘计算技术,以保障所有用户获得同样流畅的体验。

1全球数据增长迅速,集中式云计算已无法全面应对,边缘刚需场景涌现,目前中国物联网连接量将从2019年的55亿个增长至2023年的148亿个,年复合增长率达到281%。物联网感知数据量激增,数据类型愈发复杂多样,IDC预测到2025年中国每年产生的数据量将增长486ZB。

2芯片:FPGA同时满足边缘侧对性能、能耗及延迟的要求与集中式云计算不同,边缘云计算所处的物理环境复杂多样,很多时候空间、温度、电源系统都不是最佳的状态。但同时,边缘侧又要求极高的实时性和计算性能,传统CPU架构难以胜任边缘云的需求。英特尔、赛灵思等国际芯片巨头持续加码FPGA芯片,并推出支持CPU+FPGA异构计算的硬件平台,底层芯片产业的繁荣将支撑边缘云计算在各领域的应用,并不断迸发出新的活力。

35G技术的升级加码,Wi-Fi在室内场景形成互补,工信部数据显示,截至2020年中国已开通5G基站超718万个,实现地级以上城市及重点县市的覆盖。预计边缘云计算也会随着5G行业应用的普及分阶段落地。此外,Wi-Fi技术也在向着更高的吞吐量、更大的覆盖面积和更低的时延发展,Wi-Fi在室内场景中的优势使其成为5G的重要补充,两者将共同助力边缘云应用。

4云计算:企业上云常态化,云原生下沉实现云边端一体化,近年来云原生的热度持续高涨,包括容器、微服务、DevOps等在内的云原生技术和理念强调松耦合的架构和简单便捷的扩展能力,旨在通过统一标准实现不同基础设施上一致的云计算体验。相比于虚拟主机,云原生更适合边缘云计算的场景,可以为云边端提供一体化的应用分发与协同管理,解决边缘侧大规模应用交付、运维、管控的问题。

5“新基建”加码,工业互联网等标杆应用引领产业融合,“新基建”是十四五规划的重点方向,通过优化算力资源结构,将高频调用、低时延业务需求分配至边缘数据中心,推动5G承载网络的边缘组网建设,为将算力和网络下沉到边缘创造条件。同时,工业互联网、车联网、远程医疗等产业政策明确提及边缘计算,推动关键技术研究、标准体系建设及软硬件产品研发,促进边缘云在典型产业的融合应用。

应用场景

1视频加速及 AR/VR 渲染

基于移动边缘计算的智能视频加速可以改善移动内容分发效率低下的情况:于无线接入网移动边缘计算服务器部署无线分析应用(Radio Analyticsapplication),为视频服务器提供无线下行接口的实时吞吐量指标,以助力视频服务器做出更为科学的 TCP(传输控制协议)拥塞控制决策,并确保应用层编码能与无线下行链路的预估容量相匹配。另外,由于 AR/VR 信息(用户位置及摄像头视角)是高度本地化的,对这些信息的实时处理最好是在本地(移动边缘计算服务器)进行而不是在云端集中进行,以最大程度地减小 AR 延迟/时延、提高数据处理的精度。

2车联网(智能交通)

将移动边缘计算技术应用于车联网之后,可以把车联网云下沉至高度分布式部署的移动通信基站。移动边缘计算应用直接从车载应用(APP)及道路传感器实时接收本地化的数据,然后进行分析,并将结论(危害报警信息)以极低延迟传送给临近区域内的其他联网车辆,整个过程可在毫秒级别时间内完成,使驾驶员可以及时做出决策。

3工业互联网

边缘计算一直与工业控制系统有密切的关系,具备工业互联网接口的工业控制系统本质上就是一种边缘计算设备,解决工业控制高实时性要求与互联网服务质量的不确定性的矛盾。在基础设施层,通过工业无线和有线网络将现场设备以扁平互联的方式联接到工业数据平台中;在数据平台中,根据产线的工艺和工序模型,通过服务组合对现场设备进行动态管理和组合,并与 MES等系统对接。工业 CPS系统能够支撑生产计划灵活适应产线资源的变化,旧的制造设备快速替换与新设备上线。

4IoT(物联网)网关服务

采取边缘计算技术,边缘计算汇聚节点将被部署于接近物联网终端设备的位置,提供传感数据分析及低延迟响应。其中边缘计算服务器的计算能力和存储能力可为以下5个方面提供服务:业务的汇聚及分发;设备消息的分析;基于上述分析结果的决策逻辑;数据库登录;对于终端设备的远程控制和接入控制。

市场规模

预计2025年规模将超500亿元,年复合增长率达433%,信通院2020年5月调研数据显示,中国企业中仅有不足5%使用了边缘计算,但计划使用的比例高达442%。可以见得,虽然边缘云计算尚处在发展的萌芽期,但未来成长空间非常广阔。根据艾瑞咨询测算,2020年中国边缘云计算市场规模为91亿元,其中区域、现场、IoT三类边缘云市场规模分别达到37亿元、38亿元及16亿元。预计到2025年整体边缘云规模将以440%的年复合增长率增长至550亿元,其中区域边缘云将凭借互动直播、vCDN、车联网等率先成熟的场景实现增速领跑。2030年,中国边缘云计算市场规模预计达到接近2500亿元,2025年至2030年的年复合增长率相比前五年有所下降,现场边缘云中工业互联网、智慧园区、智慧物流等场景将在这一期间快速走向成熟。

相关上市公司

中兴通讯

中兴通讯面向运营商提供全场景MEC解决方案,打破传统封闭的电信网络架构,将移动接入网与互联网深度融合,在网络边缘满足客户的个性化需求。中兴通讯Common Edge边缘计算解决方案包括MEP能力开放平台、轻量化边缘云及面向边缘的全系列服务器和边缘加速硬件,提供通用硬件、专用集成硬件等多种硬件选择,深度融合OpenStack与Kubernetes,为上层MEC应用提供统一的边缘云管理系统,方便运营商因地制宜部署MEC。

网宿 科技

公司的边缘计算平台以云主机、容器、函数计算和网络四大平台作为技术底座,在边缘计算节点上部署边缘云主机、边缘云容器、边缘云函数、SD-WAN、边缘云安全等基础服务,以及内外部的各类应用模块,结合客户的业务场景及需求,尝试进行解决方案的整合和输出。

初灵信息

公司在 5G、AI 技术高速发展的背景下,持续构建以固移智能连接(5G+Fixed)+数据处理(DPI)+AI 为代表的三大边缘计算核心能力。公司多年深耕企业(行业)智能连接网络、垂直行业边缘应用型 DPI(安全、物联网类)、视频及其他行业(企业)的智能应用等技术,初步构成“云边端”协同的边缘计算生态。在市场端,公司除聚焦传统运营商市场外,积极拓展政企行业和大中企业市场,中标多个项目。公司三季度显示,公司与中国联通就边缘计算展开合作,开展了CUNOS在5G环境下的承载能力测试。

引用内容

1 研报《中国边缘云计算行业展望报告》

2 研报《边缘计算:算力网络重要环节,产业方兴未艾》

风险提示

1底层相关技术发展缓慢,边缘计算需求不及预期。

25G 进度不达预期。

“边缘计算”的概念本身并不是一个“新鲜词”。早在2003年,CDN服务商Akamai就与IBM合作推出了最早的“边缘计算”。如果以时间维度看,从亚马逊在2006年推出AWS看作是云计算的起点开始,那么它要比云计算被提出的时间更更加的早。
不过,过去很多年的时间由于技术和应用场景等各种原因,边缘计算一直没有获得太多的关注,直到5G时代的到来,才让一直处在“很边缘”的边缘计算得到了全新的发展良机。
云计算是通过使计算分布在大量的分布式计算机上,而非本地计算机或远程服务器中,企业数据中心的运行将与互联网更相似。这使得企业能够将资源切换到需要的应用上,根据需求访问计算机和存储系统。
云计算vs边缘计算
云计算的不足
随着边缘计算的兴起,在太多场景中需要计算庞大的数据并且得到即时反馈。这些场景开始暴露出云计算的不足,主要有以下几点:大数据的传输问题:据估计,到2020 年,每人每天平均将产生 15GB 的数据。随着越来越多的设备连接到互联网并生成数据,以中心服务器为节点的云计算可能会遇到带宽瓶颈。数据处理的即时性:据统计,无人驾驶汽车每秒产生约 1GB 数据,波音 787 每秒产生的数据超过 5GB;2020 年我国数据储存量达到约 39ZB,其中约 30% 的数据来自于物联网设备的接入。海量数据的即时处理可能会使云计算力不从心。隐私及能耗的问题:云计算将身体可穿戴、医疗、工业制造等设备采集的隐私数据传输到数据中心的路径比较长,容易导致数据丢失或者信息泄露等风险;数据中心的高负载导致的高能耗也是数据中心管理规划的核心问题。
边缘计算的优势和发展
边缘计算的发展前景广阔,被称为“人工智能的最后一公里”,但它还在发展初期,有许多问题需要解决,如:框架的选用,通讯设备和协议的规范,终端设备的标识,更低延迟的需求等。随着 IPv6 及 5G 技术的普及,其中的一些问题将被解决,虽然这是一段不小的历程。相较于云计算,边缘计算有以下这些优势。
优势一:更多的节点来负载流量,使得数据传输速度更快。
优势二:更靠近终端设备,传输更安全,数据处理更即时。
优势三:更分散的节点相比云计算故障所产生的影响更小,还解决了设备散热问题。
两者既有区别,又互相配合上文讲了云计算的缺点以及边缘计算的优点,那么是不是意味着在未来,边缘计算更胜云计算一筹呢?其实不然!云计算是人和计算设备的互动,而边缘计算则属于设备与设备之间的互动,最后再间接服务于人。边缘计算可以处理大量的即时数据,而云计算最后可以访问这些即时数据的历史或者处理结果并做汇总分析。

边缘计算网关(又叫物联网边缘计算网关),简称 Edge-Gateway,是一种可以在设备上运行本地计算、消息通信、数据缓存等功能的工业智能网关,可以在无需联网的情况实现设备的本地联动以及数据处理分析。

智慧眼智脑识别终端是能够运行本地计算、消息通信、数据缓存等功能的工业级物联网边缘计算网关,搭载国产自主研发的TPU,满足网点中各类物联网设备、视频设备的连接管理、设备数据计算等需求,具有高稳定性、高可靠性、高安全性和易扩展性,结合不同的应用场景,搭配多样化算法,实现人脸布控、视频结构化分析、行为分析、轨迹分析、热力分析等应用,为金融行业进行AI赋能。

边缘计算是指在靠近物与数据源头的一侧,采用网络、计算、存储、应用核心能力为一体的开放平台,就近提供最近端服务。对于物联网而言,边缘计算技术取得突破,意味着许多控制将通过本地设备实现而无需交由云端,处理过程将在本地边缘计算层完成。我记得我们公司那会采购服务器的时候,思腾合力还给我们做过一些讲解,具体的也不太了解,有兴趣你可以自己去看看。

边缘计算(Edge Computing)是一种分布式计算范式,它将计算任务从数据中心迁移到靠近数据源的设备上。这种方法可以减少网络延迟、提高数据处理速度,并在一定程度上保护用户隐私。边缘计算可应用于许多领域,包括但不限于:

物联网(IoT):边缘计算可用于实时处理智能家居、工业自动化、智能交通等领域的大量数据,从而提高响应速度和减少数据传输成本。

无人驾驶:通过在车辆本地进行数据处理和决策,边缘计算可以提高自动驾驶汽车的反应速度,从而提高安全性。

增强现实(AR)和虚拟现实(VR):边缘计算可以减少AR和VR设备在渲染图像和处理数据时的延迟,提高用户体验。

智能城市:边缘计算可以帮助处理城市基础设施中的大量数据,例如交通管理、能源管理和公共安全等。

医疗保健:通过实时分析患者数据,边缘计算可以帮助医生及时发现病情变化,提高诊断和治疗效果。

视频监控:边缘计算可在摄像头端实现实时视频分析,提高安全监控效率并保护用户隐私。

零售业:边缘计算可以帮助零售商实时分析顾客数据、库存数据,优化商店布局和库存管理。

能源管理:边缘计算可以实时监测和优化能源系统,提高能源效率。

农业:通过实时监测和分析土壤、气候等数据,边缘计算可以帮助农民提高农业生产效率。

这些只是边缘计算应用领域的一部分,随着技术的发展,边缘计算将在更多领域发挥作用。

边缘计算是指在靠近物或数据源头的网络边缘侧,融合了网络、计算、存储以及应用处理能力的分布式平台,就近提供智能服务。和云计算的区别是:作用的不同。

边缘计算是云计算的一个逆 *** 作,云计算强调的是计算和存储等能力从边缘端或桌面端集中过来,而边缘计算则是将这种计算和存储等能力重新下沉到边缘。

边缘计算和云计算两者实际上都是处理大数据的计算运行的一种方式。边缘计算是对云计算的一种补充和优化,云计算把握整体,而边缘计算更专注局部。

云计算(cloud computing)是分布式计算的一种,指的是通过网络“云”将巨大的数据计算处理程序分解成无数个小程序,然后,通过多部服务器组成的系统进行处理和分析这些小程序得到结果并返回给用户。

云计算的核心概念就是以互联网为中心,在网站上提供快速且安全的云计算服务与数据存储,让每一个使用互联网的人都可以使用网络上的庞大计算资源与数据中心。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/12780031.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-28
下一篇 2023-05-28

发表评论

登录后才能评论

评论列表(0条)

保存