十大网络安全公司排名

十大网络安全公司排名,第1张

“大数据”近几年来可谓蓬勃发展,它不仅是企业趋势,也是一个改变了人类生活的技术创新。大数据对行业用户的重要性也日益突出。掌握数据资产,进行智能化决策,已成为企业脱颖而出的关键。因此,越来越多的企业开始重视大数据战略布局,并重新定义自己的核心竞争力。

国内做大数据的公司依旧分为两类:一类是现在已经有获取大数据能力的公司,如百度、腾讯、阿里巴巴等互联网巨头以及华为、浪潮、中兴等国内领军企业,做大数据致店一叭柒叁耳领一泗贰五零,涵盖了数据采集,数据存储,数据分析,数据可视化以及数据安全等领域;另一类则是初创的大数据公司,他们依赖于大数据工具,针对市场需求,为市场带来创新方案并推动技术发展。其中大部分的大数据应用还是需要第三方公司提供服务。

越来越多的应用涉及到大数据,这些大数据的属性,包括数量,速度,多样性等等都是呈现了大数据不断增长的复杂性,所以,大数据的分析方法在大数据领域就显得尤为重要,可以说是决定最终信息是否有价值的决定性因素。基于此,对大数据进行分析的产品有哪些比较倍受青睐呢

而在这里面,最耀眼的明星当属Hadoop,Hadoop已被公认为是新一代的大数据处理平台,EMC、IBM、Informatica、Microsoft以及Oracle都纷纷投入了Hadoop的怀抱。对于大数据来说,最重要的还是对于数据的分析,从里面寻找有价值的数据帮助企业作出更好的商业决策。下面,我们就来看看以下十大企业级大数据分析利器吧。

随着数据爆炸式的增长,我们正被各种数据包围着。正确利用大数据将给人们带来极大的便利,但与此同时也给传统的数据分析带来了技术的挑战,虽然我们已经进入大数据时代,但是“大数据”技术还仍处于起步阶段,进一步地开发以完善大数据分析技术仍旧是大数据领域的热点。

在当前的互联网领域,大数据的应用已经十分广泛,尤其以企业为主,企业成为大数据应用的主体。大数据真能改变企业的运作方式吗答案毋庸置疑是肯定的。随着企业开始利用大数据,我们每天都会看到大数据新的奇妙的应用,帮助人们真正从中获益。大数据的应用已广泛深入我们生活的方方面面,涵盖医疗、交通、金融、教育、体育、零售等各行各业。

可视化分析
大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。


2 数据挖掘算法
大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计

学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如
果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。

3 预测性分析
大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。

4 语义引擎
非结构化数据的多元化给数据分析带来新的挑战,我们需要一套工具系统的去分析,提炼数据。语义引擎需要设计到有足够的人工智能以足以从数据中主动地提取信息。

5数据质量和数据管理。 大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。
大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。

大数据的技术
数据采集: ETL工具负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。
数据存取: 关系数据库、NOSQL、SQL等。
基础架构: 云存储、分布式文件存储等。
数据处理:
自然语言处理(NLP,Natural Language
Processing)是研究人与计算机交互的语言问题的一门学科。处理自然语言的关键是要让计算机”理解”自然语言,所以自然语言处理又叫做自然语言理解也称为计算语言学。一方面它是语言信息处理的一个分支,另一方面它是人工智能的核心课题之一。
统计分析:
 假设检验、显著性检验、差异分析、相关分析、T检验、 方差分析 、
卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测与残差分析、岭回归、logistic回归分析、曲线估计、
因子分析、聚类分析、主成分分析、因子分析、快速聚类法与聚类法、判别分析、对应分析、多元对应分析(最优尺度分析)、bootstrap技术等等。
数据挖掘:
分类 (Classification)、估计(Estimation)、预测(Prediction)、相关性分组或关联规则(Affinity
grouping or association rules)、聚类(Clustering)、描述和可视化、Description and
Visualization)、复杂数据类型挖掘(Text, Web ,图形图像,视频,音频等)
模型预测 :预测模型、机器学习、建模仿真。
结果呈现: 云计算、标签云、关系图等。

大数据的处理
1 大数据处理之一:采集
大数据的采集是指利用多个数据库来接收发自客户端(Web、App或者传感器形式等)的

数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。比如,电商会使用传统的关系型数据库MySQL和Oracle等来存储每一笔事务数据,除
此之外,Redis和MongoDB这样的NoSQL数据库也常用于数据的采集。
在大数据的采集过程中,其主要特点和挑战是并发数高,因为同时有可能会有成千上万的用户

来进行访问和 *** 作,比如火车票售票网站和淘宝,它们并发的访问量在峰值时达到上百万,所以需要在采集端部署大量数据库才能支撑。并且如何在这些数据库之间
进行负载均衡和分片的确是需要深入的思考和设计。

2 大数据处理之二:导入/预处理
虽然采集端本身会有很多数据库,但是如果要对这些海量数据进行有效的分析,还是应该将这

些来自前端的数据导入到一个集中的大型分布式数据库,或者分布式存储集群,并且可以在导入基础上做一些简单的清洗和预处理工作。也有一些用户会在导入时使
用来自Twitter的Storm来对数据进行流式计算,来满足部分业务的实时计算需求。
导入与预处理过程的特点和挑战主要是导入的数据量大,每秒钟的导入量经常会达到百兆,甚至千兆级别。

3 大数据处理之三:统计/分析
统计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行普通

的分析和分类汇总等,以满足大多数常见的分析需求,在这方面,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及基于
MySQL的列式存储Infobright等,而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。
统计与分析这部分的主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。

4 大数据处理之四:挖掘
与前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,主要是在现有数

据上面进行基于各种算法的计算,从而起到预测(Predict)的效果,从而实现一些高级别数据分析的需求。比较典型算法有用于聚类的Kmeans、用于

统计学习的SVM和用于分类的NaiveBayes,主要使用的工具有Hadoop的Mahout等。该过程的特点和挑战主要是用于挖掘的算法很复杂,并
且计算涉及的数据量和计算量都很大,常用数据挖掘算法都以单线程为主。

全国排名前十的数据库培训机构哪家比较好?
北大青鸟以完善的标准化管理为依托,通过院校合作和授权合作两大经营模式,实现了体系的规模化发展,得到了社会各界广泛的认可;以永不妥协的教育品质,致力于让广大学子成为受人尊重的专业人才,并成为全球专业的职业教育产品提供商和服务商;以匠心和探索精神,为社会培养和输送大量高质量的技术技能型人才,为改善就业领域人才供给的结构性矛盾做出应有贡献。
北大青鸟研发适应互联网时代需求的职业教育产品,目前推出BCSP软件开发专业、BCNT网络运维专业、BCUI全链路UI设计、BCVE视频特效专业等课程。课程研发团队均由学术界权威学者、互联网IT领域技术专家、教育行业研究者共同组成,确保了课程内容的岗位适用性、技术性、先进性。
北大青鸟以“支持每一位学员成为受人尊重的专业人才”为使命,始终践行“职业教育就是就业教育”的教育本质,坚持帮助学员成功就业,永远是硬道理;始终保持回归职业教育的本真,即坚守“教育为本,师爱为魂”的教育理念,以及“内育职业素养,外塑专业技能”的青鸟校训。
北大青鸟始终以岗位需求为本,立足于行业岗位技能,以永不妥协的教育品质,为学员提供优质、全面的教学资源,为企业输送符合岗位要求的亟需人才,让学员学有所成、企业用有所用。

物联网时代,大量的数据从不同的设备传感器产生,单机数据库系统肯定无法存储这么大量的数据,在选择数据库方面,肯定要选择具有分布式能力存储的数据库。

在物联网时代,数据之间还有一个非常重要的特性,那就是数据之间的关联性。不同的数据从相互连接的互联网设备传感器中产生,由于不同的传感器相互连接,协同工作和采集数据,如何将大量具有相互关联的数据保存在数据库,这里我推荐使用图数据库来进行存储。

图数据库相对于其他数据库来说,最大的优势就是查询数据之间的关联性会更加快速,消耗的时间会更短。打个比方,在社交网络中,我们想要查询在用户A的粉丝中,粉丝关注了B的用户。如果使用传统关系型数据库来存储用户的关注关系,在上面的数据统计中,要使用两层Join才能算出结果,而关系型数据库Join *** 作会很慢。使用图型数据库存储数据的话,图中的点为用户,边为用户的关注关系,在查询A的粉丝,同时粉丝也关注B的用户,只需要遍历两层关注关系就能很快查询到结果。

图数据库也属于NoSql数据库的一种,常用的图形数据库有,JanusGraph、Neo4j、Cayley、dgraph。不同的图数据库,底层实现也不尽相同。

JanusGraph是一种分布式图数据库,由Java语言开发,可以使用Hadoop生态存储系统作为数据源,构建出数据大图。是TiTan图数据库的开源版本,支持事务的ACID。

Neo4j是一种单机的图数据库,其优势就是能够快速安装并且使用,便于新同学上手。你的数据量一般不大的话,我推荐使用Neo4j,直接使用Neo4j相关的API就可以将数据模型图构建而出,然后使用Neo4jCypher查询语言,就可以分析数据,Cypher是一种类SQL的语言。

Cayley和Dgraph都是使用Go语言实现的图数据库,Go语言的最大特性就是其编译速度和开发便捷性,Cayley和Dgraph都支持分布式存储,不过都不支持SQL语言查询数据,Dgraph不支持事务,而Cayley支持事务,不过在开源社区,Dgraph比Cayley更加活跃,这里优先建议使用Dgraph作为物联网的存储数据库。

总体来说,在物联网时代,一定要学会使用图数据库,在分析大量数据之间的关联性时,图数据库就能够派上用场,图数据库最大的优势就是分析不同数据之间的关联性。

IBM

老牌大数据企业,从微软时代过来的核心,是全球最大的信息技术和业务解决方案公司。

2 惠普

会最为知名的是它的Vertical分析平台,而且在2012年的营收中排名第二,当之无愧的老牌商业数据库品牌。

3 Teradata

凭借自身硬件和数据库而声名远播。

4 甲骨文

在数据库领域,甲骨文一直都是鼎鼎大名的存在,而且它也是大数据领域最大的几个玩家之一。

5 SPA

在商业数据中,SPA推出了最为知名的HANA内存内数据库

6 EMC

EMC 的主要业务时帮助客户保存并分析大数据,另外也充当着大数据分析智囊营销科学实验室的所在地,它们专门分析营销类数据。

7 Amazon

时至今日,Amazon 已经成为了全球大数据领域当之无愧的王者,这一切源于它的CEO贝索斯的远见与无与伦比的魄力

8 微软

微软在数据方面有着雄厚的实力和强大的野心,它的商业数据业务也在蓬勃发展

9 谷歌

作为全球搜索业务的老大,谷歌旗下的大数据平台凭借其身后的技术积累,成为商业数据领域内一股不可小觑的力量。

10 VMware

VMware向来以云计算虚拟化解决方案著称


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/12797630.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-28
下一篇 2023-05-28

发表评论

登录后才能评论

评论列表(0条)

保存