物联网有哪七大通信协议?

物联网有哪七大通信协议?,第1张

物联网七大通信协议是:REST/>

特点:

1、REST即表述性状态传递,是基于>

2、CoAP (Constrained Application Protocol),受限应用协议,应用于无线传感网中协议。它适用于在资源受限的通信的IP网络。

3、JMS (Java Message Service),即消息服务,这是JAVA平台中著名的消息队列协议。Java消息服务应用程序接口,是一个Java平台中关于面向消息中间件(MOM)的API,用于在两个应用程序之间,或分布式系统中发送消息,进行异步通信。

4、XMPP(Extensible Messaging and Presence Protocol)可扩展通讯和表示协议,一个开源形式组织产生的网络即时通信协议。

5、AMQP(Advanced Message Queuing Protocol),先进消息队列协议,用于业务系统例如PLM,ERP,MES等进行数据交换。

6、DDS(Data Distribution Service for Real-Time Systems),面向实时系统的数据分布服务。

7、MQTT (Message Queuing Telemetry Transport ),消息队列遥测传输,由IBM开发的即时通讯协议,相比来说比较适合物联网场景的通讯协议。

认知无线网络的频谱感知技术
认知无线电/认知无线网络起源于Joseph Mitola攻读博士期间的研究工作,在其博士论文中,Mitola将认知无线电定义为“the integration of model-based reasoning with software radio technologies”,认为认知无线电是智能计算和无线通信这两个学科交叉融合的产物[1] 。随后,美国的FCC和DARPA分别启动了多项计划,对认知无线电和动态频谱接入问题进行深入研究;欧盟的端到端重配置计划(E2R: End to End Reconfigurability Project)也启动了对认知概念在技术和经济领域等各方面问题的研究。Simon Hakin在2005年发表了关于认知无线电的著名文章“Cognitive radio: brain-empowered wireless communications”[2] ,主要从信号处理和自适应过程的角度对认知无线电技术的框架结构进行了较为完善的分析。此后,许多有名的大学和研究机构也展开了相关技术的研究和实验平台的开发,认知无线电的概念也被扩展为认知无线网络,指利用认知原理来提高各种资源(频谱、功率等)使用效率的无线网络[3] 。在频谱管理部门的带动下,一些标准化组织也先后开展了一系列标准制定工作以推动该技术的发展。目前涉及认知无线电/认知无线网络标准制订的组织和行业联盟主要是美国电气电子工程师学会(IEEE)、国际电信联盟(ITU)和软件无线电论坛(SDR Forum)等。
认知无线网络中,主(授权)用户指那些对某段频谱的使用具有高优先级或合法授权的用户,次级用户是指那些低优先级的用户。次级用户对频谱的使用不得对主用户造成干扰,因此要求其能快速、可靠地感知主用户使用授权频谱的情况。次级用户必须具备认知能力,因而称其为认知用户,在网络结构中则表示为认知节点。认知用户的频谱感知主要包括在某个频段上检测主用户存在与否(主用户信号检测)和估计认知用户对主用户接收机可能造成的附加干扰(干扰温度估计)两个任务[4] 。更进一步的可能要求是频谱感知还应区分主用户信号的种类(空中接口分类)[5] 。目前大部分频谱感知的研究都集中在最重要的主用户信号检测上。
1 频谱感知的基本方法
主用户信号检测的单节点频谱感知基本方法通常分为三类:
第一类为相干检测。如果知道主用户信号的结构特征(如导频、前导或同步消息等),匹配滤波器加门限检测的方法是最优的主用户信号检测方法。相干检测可获得精确的频谱感知结果,但其缺点也很明显,必须知道主用户信号的先验知识,而且当认知无线网络运行在很宽的频段上时,实现许多类型的授权信号的相干检测成本太高,几乎不可实现。
第二类为能量检测。在感兴趣频段上测量某段观测时间内接收信号的总能量,如果能量低于某个设定门限则声明该频段为白空间。与相干检测相比,能量检测需要更长的感知时间以达到同样的感知效果,但低成本、易实现的特性使其受到认知无线网络中频谱感知技术的青睐。
以上基于信号检测技术的两种频谱感知方法,有很好的理论基础[6] ,性能分析已比较完善。
第三类为特征检测[7] 。能量检测的最大缺点是它不能区分接收到的能量是来自主用户信号还是噪声,在低信噪比环境中的频谱感知结果尤其不可靠。在主用户信号的载波频率、调制类型或循环前缀等某些特征已知时,利用信号的期望和自相关函数呈现出来的周期性(循环平稳谱相关特性),可将信号能量与噪声能量区分开来,突破能量检测的瓶颈。文献[8] 还分析实际情况下有限的数据长度对循环谱特征检测的影响。实现复杂度远高于能量检测是制约特征检测在频谱感知中应用的最主要缺点。
此外,2003年底FCC频谱政策工作组提出了干扰温度模型[9] ,意在对无线环境中的干扰源进行量化和管理。干扰温度限提供了特定地理位置在某一感兴趣频段上接收机能够顺利工作的最差环境的特征描述。根据干扰温度模型,认知用户若能确定其对主用户接收机造成的附加干扰量并加以限制,使主用户接收机所受的总干扰(含噪声)不超过干扰温度限,则认知用户可与主用户运行在同一频段上。可以看出,基于主用户信号检测的频谱感知意在避开主用户,而基于干扰温度模型的频谱感知则试图与主用户同时并存于同一个频段,这是两者最大的区别。文献[10] 定义了已知和未知主用户信号参数时干扰温度的理想模型和一般模型,并从通信容量的角度分析了如何来最优地选择认知系统的工作带宽和发送功率。但干扰温度模型存在两个需要解决的难题:其一为在主用户发送信号存在的情况下如何测定其接收机的噪声水平,其二为在主用户接收机位置未知的情况下如何估计认知用户对它可能产生的干扰。降低问题难度的一种可能办法是让主用户系统来辅助认知系统的频谱感知,如文献[11] 中要求主用户接收机在工作过程中持续发送指示信号。另一个需要考虑到的是,认知用户和主用户共存于同一个频段时,认知系统的通信过程中也会受到授权系统的干扰,所以认知系统能获得的通信容量可能非常有限[10] 。
2 协同频谱感知
认知无线网络可通过对多节点感知信息的协同处理来提高频谱感知的效果,这被称为协同(协作、合作)频谱感知。频谱感知性能主要由感知范围、检测时间、检测概率、虚警概率等几个相互关联的指标来衡量,协同频谱感知可利用空间分集增益改善上述指标,解决单节点感知中难以克服的多径深衰落、阴影衰落和隐终端等难题[4] ,同时也可减轻对单个节点感知灵敏度的要求,降低实现成本[12] 。
实现协同频谱感知的方式有两种,即中心式和分布式。
中心式感知:中心单元收集各认知节点的感知信息,负责识别可用频谱,并将频谱可用信息广播给各认知节点或直接控制认知节点的通信参数。文献[13] 中以AP为中心收集、处理各感知节点的硬判决(二进制)结果,通过克服信道衰落效应来提高感知性能,其检测概率和虚警概率的计算在文献[14] 中给出。文献[15] 以主节点(master node)为中心节点合并各感知结果来检测TV信道。文献[16] 则由融合中心(fusion center)根据各认知节点能量检测的结果最终判断主用户在某个频段上的存在与否。
分布式感知:认知节点彼此之间共享感知信息,但独立判断各自的可用频谱。与中心式感知相比,分布式感知的优点是不需要基础结构网络,部署更灵活些。文献[17] 显示一个用户作为另一个用户中继的两用户协同频谱感知可带来35%的捷变增益(所需感知时间减少35%)。文献[18] 进一步将这种分布式感知协议推广到多用户环境中。
无论中心式还是分布式感知,就协同频谱感知的研究内容而言,主要包含以下两个方面:
1)认知节点感知信息的合并处理,即考虑信息融合(fusion)问题。
2)感知信息传递过程的合作,即考虑中继传输问题。

通信单元电路设计
(AM调制)
引言
进入信息时代以来,随着通信技术、计算机技术和控制技术的不断发展与相互融合,极大的扩展了通信的功能,使得人们可以随时随地通过各种通信手段获取和交换各种各样的信息。通信渗入到社会生产和生活的各个领域,通信产品随处可见。通信已经成为现代文明的标志之一,对人们日常生活和社会活动的影响与越来越大。
现代通信从模拟通信方式开始,数字通信着后来居上,已经逐步取代了模拟通信,但数字调制理论是建立在模拟调制的基础上的。而且,在现有的各类通信系统中,仍然还有大量模拟通信设备承担着相当数量的通信任务,由于资金投入以及系统建设、设备更换所需时间等原因,这些模拟设备还将继续使用一段时间。
通信原理课程是一门理论性与实践性都很强的专业基础课。加强理论课程的学习,加深对本课程中的基本理论知识及基本概念的理解,提高理论联系实际的能力,培养实践动手能力和分析解决通信工程中实际问题的能力是通信原理教学的当务之急。而通信原理实验课程就是一种重要的教学手段和途径。通信原理实验系统将通信原理的基础知识灵活地运用在实验教学环节中。可独立也可组合、综合实施多项实验或示教。本实验系统力求电路原理清楚,重点突出,实验内容丰富。其电路设计构思新颖、技术先进、波形测量点选择准确,具有一定的代表性。同时,注重理论分析与实际动手相结合,以理论指导实践,以实践验证基本原理,旨在提高学生分析问题、解决问题的能力及动手能力,并通过有目的地选择并完成实验项目及二次开发,使学生进一步巩固理论基本知识,建立完整的通信系统的概念。
方案论证
通过自己和老师的帮助,自己得到了本实验的电路图。并且,又经过自己看课本和有关资料,对这次的实验理论和基本原理的加深体会,证明了本次电路的电路图是完全合理和准确的,是完全经得起考验的,如果本次实验不成功,只有可能是在画PCB的过程中有错误或电子元件不符合,焊接元件过程中不小心弄错造成的。
设低频信号uΩ和高频载波信号分别为
uΩ= UΩmcosΩt =UΩmcos2πFt (6212)
uc=Ucmcosωct=U cmcos2πfct (6213)
式中,F为低频频率,fc为高频载波频率。为了简化分析,设两者波形的初相角均为零,其波形如图 627(a)、(b)所示。将uc和uΩ分别输入模拟乘法器的X和Y输入端,如图628所示,图中,UYQ为一固定的直流电压,要求UYQ≥UΩm。由此可得输入端总的输入电压为
uY = UYQ+UΩmcosΩt
因此,模拟乘法器的输出电压uO为
式中,ma= 称为调幅系数,它表示载波受低频信号控制的程度。令
(6215)
则式 (6214) 可写成
uo=Um(t)cosωct (6216)
由式(6216)可见,模拟乘法器的输出电压是一个幅度Um(t)随低频信号而变化的高频信号,其波形如图627(c)所示。称它为普通调幅波(简称 AM 波)。将式(6216)展开,并应用三角函数关系,则得

由式(6217)可知,被单频信号调幅后的高频已调波,由幅度为Ucm′、角频率为ωc的载频和两个幅度一样、角频率分别为(ωc+ Ω)、(ωc-Ω)的边频所组成,其频谱分布如图629所示,(fc+F) 称上边频、(fc-F)称下边频,它们对称地排列在载频的两侧,相对于载频的位置仅取决于调制信号的频率。显然,载波分量并不包含信息,调制信号的信息只包含在上、下边频分量内,边频的幅度反映了调制信号幅度的大小,边频的频率虽属于高频的范畴,但反映了调制信号频率的高低。
由于载波本身并不包含信息,因此为了提高设备的功率利用率,可以不传送载波而只传送两个边带信号,这种调制方式称为抑制载波双边带调幅,简称双边带调幅,用DSB表示。将uc和uΩ分别输入模拟乘法器的X和Y输入端,如图6210所示。由此可以得到输出电压uo′为
由式(6218)可见,KUΩmUcmcosΩt是双边带调幅高频信号的幅度,它与调制信号UΩmcosΩt成正比。图6210中带通滤波器调谐在载波频率上,用以滤除无用频率分量。
由于上、下边频带中的任何一个边频带已经包含调制信号的全部信息,因此为了节省占有的频带、提高波段利用率,也可以只传送两个边带信号中的任何一个,称为抑制载波的单边带调幅,简称单边带调幅,用SSB表示。将双边带调幅信号抑制掉一个边频带,就可以得到单边带调幅信号,即
从式(6219)可以看出,单频调制的单边带信号仍是等幅波,但它与原载波不间,SSB信号的幅度与调制信号幅度UΩm成正比,它的频率随调制信号频率的不同而不同。
用MC1496构成的双边带调幅实用电路如图631所示。图中,接于电源电路的电阻R8、R9用来分压,以便提供模拟乘法器内部V1~V4管的基极偏置电压,接在5脚的电阻 R5 用来控制恒流电路的电流值IO/2。接在2、3脚的电阻 RY 用来扩大uΩ的线性动态范围,同时控制乘法器的增益。接于1、4脚的电阻R1、Rp、R2作为载波调零电阻。
根据图631中负电源电压值及 R5 的阻值,可得IO/2≈1mA, 这样不难得到模拟乘法器各管脚的直流电位分别为
U1=U4≈0V,U2=U3≈07V,U8≈U10=6V
U6=U12=VCC-RCIO/2=81V,U5= -R5IO/2=-68V
实际应用中,为了保证集成模拟乘法器MC1496能正常工作,各引脚的直流电位应满足下列要求:
(1)U1=U4,U8=U10,U6=U12;
(2)U6、12-U8、10 ≥2V,U8、10- U1、4≥27V,U1、4-U5 ≥27V。
载波信号 uc 通过电容C1、C3 及R7 加到乘法器的输入端8、10脚,低频信号uΩ 通过 C2、R4、R6 加到乘法器的输入端 1、4 脚,输出信号可由 C4 和 C5 单端或双端输出。调试过程中,由于示波器、毫伏表等测量仪器均为单端式,所以测量输出电压只能取单端输出,两边输出电压应相等。这时的调幅输出波形如图632(c)所示,应为一双边带调幅波形。
为了减小载波信号输出,可先令uΩ=0,即将uΩ输入端对地短路,只有载波uc输入时,调节 Rp 使乘法器输出电压为零。但实际模拟乘法器不可能完全对称,所以调节 Rp,输出电压不可能为零,故只需使输出载波信号为最小(一般为 mV 级 )就行。若载波输出电压过大,则说明该器件性能不好。
低频输入信号uΩ的幅度不能过大,其最大值由IO/2与 RY 的乘积所限定,图631所示电路uΩ的幅度必须小于1V。若低频幅度超过该值,输出调幅波形将会产生严重失真。
载波输入信号 uc 的幅度要求小于26mV, 这种情况常称为小信号状态,输出电压的大小可用式(616)来估算。在工程上,载波信号常采用大信号输入(Ucm>260mV),这时双差分对管在uc 的作用下,工作在开关状态,称为开关调幅。这时调幅电路输出幅度比较大,且幅度不受Ucm的影响
试验原理分析
所谓调制,就是在传送信号的一方(发送端)将所要传送的信号(它的频率一般是较低的)“附加”在高频振荡信号上。所谓将信号“附加”在高频振荡上,就是利用信号来控制高频振荡的某一参数,使这个参数随信号而变化,这里,高频振荡波就是携带信号的“运载工具”,所以也叫载波。在接收信号的一方(接收端)经过解调(反调制)的过程,把载波所携带的信号取出来,得到原有的信息,解调过程也叫检波。调制与解调都是频谱变换的过程,必须用非线性元件才能完成。调制的方式可分为连续波调制与脉冲波调制两大类,连续波调制是用信号来控制载波的振幅、频率或相位,因而分为调幅、调频和调相三种方式;脉冲波调制是先用信号来控制脉冲波的振幅、宽度、位置等,然后再用这已调脉冲对载波进行调制,脉冲调制有脉冲振幅、脉宽、脉位、脉冲编码调制等多种形式。
调幅波的数学表达式与频谱
我们已经知道,调幅波的特点是载波的振幅受调制信号的控制作周期性的变化,这变化的周期与调制信号的周期相同,振幅变化与调制信号的振幅成正比。为简化分析,假定调制信号是简谐振荡,即为单频信号,其表达式为:

如果用它来对载波()进行调幅,那么,在理想情况下,普通调幅信号为:

(5-1)
其中调幅指数为比例系数。图5-1给出了,和的波形图。
图5-1 普通调幅波形
从图中并结合式(5-1)可以看出,普通调幅信号的振幅由直流分量和交流分量迭加而成,其中交流分量与调制信号成正比,或者说,普通调幅信号的包络(信号振幅各峰值点的连线)完全反映了调制信号的变化。另外还可得到调幅指数Ma的表达式:

显然,当>1时,普通调幅波的包络变化与调制信号不再相同,产生了失真,称为过调制,如图5-2所示。所以,普通调
图5-2 过调制波形
幅要求必须不大于1。
式(5-1)又可以写成
(5-2)
可见,的频谱包括了三个频率分量:(载波)、(上边频)和(下边频)。原调制信号的频带宽度是(或),而普通调幅信号的频带宽度是2(或2F),是原调制信号的两倍。普通调幅将调制信号频谱搬移到了载频的左右两旁,如图5-3所示。
被传送的调制信息只存在于边频中而不在载频中,携带信息的边频分量最多只占总功率的三分之一(因为Ma≤1)。在实际系统中,平均调幅指数很小,所以边频功率占的比例更小,功率利用率更低。
为了提高功率利用率,可以只发送两个边频分量而不发送载频分量,或者进一步仅发送其中一个边频分量,同样可以将调制信息包含在调制信号中。这两种调制方式分别称为抑制载波的双边带调幅(简称双边带调幅)和抑制载波的单边带调幅(简称单边带调幅)。本实验模块介绍的是双边带的幅度调制与解调。

图5-3 普通调幅波的频谱

双边带调幅信号的特点
设载波为,单频调制信号为 ,则双边带调幅信号为:
(5-3)其中为比例系数。
可见双边带调幅信号中仅包含两个边频,无载频分量,其频带宽度仍为调制信号带宽的两倍。
双边带调幅信号的产生与解调方法
由式5-3可以看出,产生双边带调幅信号的最直接方法就是将调制信号与载波信号相乘。本实验模块的振幅调制电路的原理框图如图5-4所示:

图5-4 双边带调幅原理框图
图5-5 双边带调幅信号产生电路原理图
双边带调幅信号产生的具体电路原理图如图5-5所示。
图中MC1496是双平衡四象限模拟乘法器,其内部结构和主要性能参数见附录。MC1496可用于振幅调制、同步检波、鉴频。本实验就是采用MC1496作为振幅调制器的。高频载波信号从“载波输入”点输入,经高频耦合电容C105输入至U202(MC1496)的10脚。低频基带信号从“音频输入”点输入,经低频耦合电容C106输入至U202的1脚。C108为高频旁路电容,C104为低频旁路电容。调幅信号从MC1496的12脚输出。实际上,从此脚输出的调幅信号还要经过滤波,这样才能保证调幅信号的质量。滤波电路如图5-6所示。
第四章 电路分析、设计
集成模拟乘法器是实现两个模拟信号相乘的器件,它广泛用于乘法、除法、乘方和开方等模拟运算,同时也广泛用于信息传输系统作为调幅、解调、混频、鉴相和自动增益控制电路,是一种通用性很强的非线性电子器件,目前已有多种形式、多品种的单片集成电路,同时它也是现代一些专用模拟集成系统中的重要单元。
模拟乘法器的电路符号如图611所示,它有两个输入端、一个输出端。若输入信号为uX、uY,则输出信号uO为
uO = kuXuY (611)
式中,K 称为乘法器的增益系数,单位为V-1 。
模拟乘法器电路符号

根据乘法运算的代数性质,乘法器有四个工作区域,由它的两个输入电压的极性来确定,并可用X-Y平面中的四个象限表示。能够适应两个输入电压四种极性组合的乘法器称为四象限乘法器;若只对一个输入电压能适应正、负极性,而对另一个输入电压只能适应一种极性,则称为二象限乘法器;若对两个输入电压都只能适应一种极性,则称为单象限乘法器。
式( 611 )表示,一个理想的乘法器中,其输出电压与在同一时刻两个输入电压瞬时值的乘积成正比,而且输入电压的波形、幅度、极性和频率可以是任意的。
对于一个理想的乘法器,当 uX、uY中有一个或两个都为零时,输出均为零。但在实际乘法器中, 由于工作环境、制造工艺及元件特性的非理想性,当 uX =0,uY=0时,uO≠0,通常把这时的输出电压称为输出失调电压;当 uX=0,uY≠0(或 uY=0,uX≠0) 时,uO≠0,这是由于uY(或uX)信号直接流通到输出端而形成的,称这时的输出电压为uY(或uX)的输出馈通电压。输出失调电压和输出馈通电压越小越好。此外,实际乘法器中增益系数 K 并不能完全保持不变, 这将引起输出信号的非线性失真,在应用时需加注意。
双边带调幅
单片集成模拟乘法器
采用两个差分放大电路可构成较理想的模拟乘法器,称为双差分对模拟乘法器,也称为双平衡模拟乘法器。图613所示(虚线框内)是根据双差分对模拟乘法器基本原理制成的单片集成模拟乘法器MC1496的内部电路。图中,V1、V2、V5 和 V3、V4、V6 分别组成两个基本模拟乘法器,V7、V8、V9、R5等组成电流源电路。 R5、V7、R1为电流源的基准电路,V8、V9均提供恒值电流IO/2, 改变外接电阻R5的大小,可调节IO/2在的大小。图中2、3两脚,即V5、V6 两管发射极上所跨接的电阻 RY,除可调节乘法器的增益外,其主要作用是用来产生负反馈,以扩大输入电压 uY 的线性动态范围。该乘法器输出电压 uO 的表示式为
 
其增益系数为
K=Rc/RY UT
uX必须为小信号,其值应小于UT(≈ 26mV);因电路采用了负反馈电阻RY,uY的线性动态范围被扩大了,它的线性动态范围为

其增益系数

通过调节IO′的大小(由微调R3的阻值实现)可以改变增益系数,MC1595增益系数的典型值为01V-1。 RX、RY 为负反馈电阻,用以扩大uX、uY的线性动态范围,uX、uY的线性动态范围分别为

MC1496型集成模拟乘法器
第五章调试、测试分析及结果

制板成功后,按如下步骤进行调试:
将信号源模块、PAMAM模块、小心地固定在主机箱中,确保电源接触良好。
插上电源线,打开主机箱右侧的交流开关,再分别按下两个模块中的开关POWER1、POWER2,对应的发光二极管LED001、LED002、D200、D201、发光,按一下信号源模块的复位键,两个模块均开始工作。
使信号源模块的信号输出点“模拟输出”的输出为频率2KHz、峰—峰值为05V左右的正弦波, 使“64K正弦波”处信号的峰—峰值为1V。
用连接线连接信号源模块的信号输出点“模拟输出”和AM调制电路板的信号输入点,以及信号源模块的信号输出点“64K正弦波”和AM调制电路板的信号输入点,调节AM调制电路板的电位器,同时用示波器观察波形,直到观察到普通双边带调幅波形。
虽然经过调试,最后的结果并不是非常的准确,波形并没有如实验箱上的那么标准,但是基本上还是成功的,经过分析,可能是由于制板或焊接过程中有一些微小的失误导致的,又或者是由于买的电子元件存在一些不符或问题等,但实验还算可以。
小结

通过这次通信单元电路设计AM调制的实验,不仅增强了自己的动手能力,而且也增强了自己对通信原理中的调制解调的理解。有了这次的自己动手的实验 使自己学会理论分析与实际动手相结合,以理论指导实践,以实践验证基本原理,旨在提高了自己分析问题、解决问题的能力及动手能力,并通过有目的地选择并完成实验项目及二次开发,使自己进一步巩固理论基本知识,建立完整的通信系统的概念。
其次,通过这一次普通双边带调幅(AM调制),自己达到了如下的实验目的 :
掌握普通双边带调幅与解调原理及实现方法。
掌握二极管包络检波原理。
掌握调幅信号的频谱特性。
了解普通双边带调幅与解调的优缺点。
还有,这次的课程设计,再次使自己对动手能力的培养和努力有更深的体会,增强自己的实践 *** 作能力是非常有必要的,也是根本要求,以后还要继续加强。
这次的实验给了自己很多的东西,使自己觉得在以后的课程上应该更加的努力和发奋,不使自己落后。
电路图及元件清单
双边带调制信号产生电路
元件清单:
电阻(14个) :
1K(3个) 33K(2个) 68K(1个)
10K(1个) 100(3个) 510(1个)
750(2个)
滑动变阻 47K(1个)
电容(5个) :
普通电容(3个) 104 100 01uF
极性电容(2个) 20uF/16V 20uF/16V
稳压二极管 82V(1个)
MC1464(1片)


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/12845360.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-28
下一篇 2023-05-28

发表评论

登录后才能评论

评论列表(0条)