做好大数据分析 城市安防才有保障
随着云端运算及物联网等科技的不断发展,大数据(Big Data)在智慧城市扮演的角色也越来越重要。但事实上,数据本来就是城市治理非常重要的依据,尤其是与城市安防的相关业务,举凡人口统计、犯罪率、交通流量等数据,政府治理单位本来就会定时蒐集并加以分析,作为施政的参考,如果不能先了解大数据与传统数据的差别,掌握大数据的分析与工具的特性,就算拥有大数据,也可能只是「入宝山空手而回」,无法将数据转换成价值,自然也无法对城市安防产生贡献。
了解大数据才能有效运用
相较於传统数据,大数据至少具有三个差异极大的特性。首先是数据量(Volume),如果换算成数位数据单位,基本单位通常已经是TB、PB等级,不但要考量收集及储存成本,如何迅速传递这麽庞大的数据,也是大数据应用必须思考的重点;其次是时效性(Velocity),即使是这麽大的数据量,仍然要在最短的时间内产生分析结果,如传统的年报统计,往往是在今年收集去年的数据,却在隔年才出版,旷日废时的结果,往往会让数据分析结果失真。
PredPol应用大数据分析技术,预测出犯罪机率高甚至下一次可能发生犯罪情况的区域,并於地图上标示出一块块500平方英尺的区域,供警察参考。Predpol
最後也是最大的差别,就是数据的多样性(Variety),传统的数据通常有明确的结构性,选项也比较少,如年龄、性别、等级等,但大数据可能会有各种形式,包括文字、影音、图像、网页等,不但没有明显的结构,而且大数据还常常出现形式交错的现象,如Youtube上的影片除了有点击数外,同时还有留言讨论。
由此可知,传统的数据收集方式,显然已经不能满足城市安防对於大数据的需求,所幸在物联网(Internet of Things;IoT)、云端运算及4G无线宽频等技术的发展下,要取得物与物、物与人、人与人的互联互通数据,技术上已不是问题,但必须得先迅速建构起收集、传递及储存大数据的基础建设,才有可能建立全面感知的能力,成为城市安防决策的最佳後盾。
但只是从感知层获取资讯是不够的,因为想要做好大数据深度分析,就必须要有能力针对复杂且开放式的问题寻找答案,并藉由视觉化分析工具,透过连续性的筛选和抽象化,才能洞悉重要资讯。然而大数据具有的超大量半结构化/非结构化数据的特性,往往会造成传统关联式数据库管理系统(RDBMS)的运作瓶颈,必须要导入全新的大数据分析工具,方能真正灵活运用大数据。
此外,大数据的价值既然远超过传统数据,大数据的真实、安全及稳定性,就必须加以重视。尤其是现在的网路应用无所不在,举凡机场、银行、捷运、车站、水电油气供应机制等,都可能被骇客入侵,加上政府为了能让掌握的数据更有价值,必须要采取公开透明的数据使用机制,当公共事业的数据开放愈多,可能被入侵的机会也愈高,因此想要利用大数据来解决城市安防的问题,首先就得先做好大数据的保护,因此资安技术的导入及专业人员的配置,绝对不能轻忽。
大数据对城市公共卫生及治安的帮助
目前已有许多欧美城市开始藉由蒐集及分析大量数据、预知可能出现的危机,进而作为城市安防的参考。如纽约的康乃尔大学威尔医学院(Weill Cornell Medical College)计算与系统生物医学助理教授Christopher E Mason的研究团队,花了18个月的时间在纽约400多个地铁站的车厢、楼梯扶手、座椅、灯杆、垃圾桶等地方蒐集样本,总共发现15,152种微生物,其中来自於人类的DNA只占02%,将近一半的样本是人类未知的有机生物,27%是活性且具有抗生素抗药性的细菌,所幸其中仅有12%会让人生病。
这项名为PhthoMap的研究计画,还透过华尔街日报网站提供互动地图,让使用者可以用来观看特定车站的研究成果,如收集的样本来源、微生物来源比例、细菌种类与说明等,也可利用搜寻细菌的种类,了解那些车站有这些细菌的存在,等於也展示了公卫数据开放使用的过程。
有趣的是,在研究过程中也发现在某些地铁站找到的DNA,与其周围的人口状况相符合,这些都是过去从来没有想过的资讯,未来若能将以分门别类,并且深入研究,对於城市公共卫生的防护工作,将会有莫大的助益。
洛杉矶警局则是导入预测性警务软体「PredPol」,用来预测可能发生犯罪情况的地点。据PredPol(名称取自「预测监控」Predictive Policing)团队指出,该公司先是蒐集过去10年的公开犯罪统计数据,以及从大量的新闻中蒐集犯罪的发生状况及时间,可预测的犯罪行为除了自杀外,还包括q杀、闯空门、窃盗、窃车等,再根据前述数据中的犯罪行为模式,开发出独特的运算系统,再将犯罪机率高甚至下一次可能发生犯罪情况的区域,於地图上标示出一块块500平方英尺的区域,供警察参考,就是典型的将传统数据变成大数据加以运用的范例。
事实上,许多城市的治安单位早已拥有累积数十年的犯罪记录数据档,甚至早己针对犯罪可能性较高的区域或场所加强巡逻。但PredPol利用大数据分析技术,从容易滋养犯罪事件的场所(如曾经发生斗殴事件的酒吧)、多次受害地区(如屡遭窃贼闯空门的社区)及受害地区的邻近地区,计算出10至20个最有可能发生犯罪的地点。PredPol宣称,警察只要在地图标明的区域,只需要花过去巡逻时间的5%至15%,就能够阻止更多犯罪活动。
目前全美共有将近60间警局使用Predpol,其中规模最大的是洛杉矶警局和亚特兰大警局。其中加州Santa Cruz闯空门的窃盗案在系统建置第一年就下降了11%、抢劫案更减少了27%。洛杉矶Foothill区在2011年导入PredPol後,4个月後的犯罪率就降低了13%,反观没有导入PredPol的区域,还微幅增加了04%。
在2012年一项针对美国近200所警局的研究指出,有70%的警局计画在未来2至5年开始或增加使用类似PredPol的预测性警务技术,包括IBM、Palantir及Motorola也开始涉足相关领域。
虽然将大数据分析技术应用在犯罪治安方面,还不是百分之百的准确,经验丰富的警察可能也不见得需要预测性警务技术,但对於新进的警务人员而言,预测性警务技术可以帮助他们及早进入状况,尤其在城市预算吃紧之际,人力又相对缺乏的情况下,运用大数据显然可以提升城市安防的工作效率。
更多数据关联产生更多的价值
城市安防建设至今,影像监控的重要性也日渐提升,但庞大的影像数据要如何分析,却也成为城市治理者的一大难题。所幸大数据技术,正可以针对影像这种非结构性数据加以分析,让视讯监控数据得以有效利用。
大数据可说是智慧城市运作的基础,除了城市安防,其他如智慧交通、智慧医疗等应用,也都需要以大数据为基础,而这些不同类型的数据产生更多的关联,自然也需要更深入的数据分析能力,如智慧交通与智慧安防相结合,可以指引警消人员在最短的时间内赶到事故现场,更可看出大数据在城市安防的应用潜力。
以上是小编为大家分享的关于做好大数据分析 城市安防才有保障的相关内容,更多信息可以关注环球青藤分享更多干货
人工智能、大数据、云计算、物联网、互联网的关系简单解释一下上图(从下往上看,本人也是吃瓜群众,不保证专业性,仅作为通俗理解用):
IoT和IoI
IoT,Internet of Things,物联网;IoI,Internet of Information,互联网;
这两张网是用来将所有事物和信息联系起来,为何要联系起来呢?因为将事物和信息联系起来后,数据才有了关联,数据有了关联才能产生更大的价值。例如一辆车的位置数据没有太大价值,但几千辆车的位置数据关联起来,就可以用来判断路面拥堵情况,也可以用于交通调度。
云计算
物联网和互联网产生大量的数据,这些数据肯定要找一个地方集中存储和处理,这就必须要有云计算了。如果没有云计算,一台冰箱产生的数据都要部署独立一台后台服务器来接收,成本和便利性无法接受。云计算的作用就在于将海量数据集中存储和处理。
大数据
海量数据上传到云计算平台后,自然而然的就需要对数据进行深入分析和挖掘了,这就是大数据的目的。将几千辆车的位置信息综合起来分析出某条路的拥堵状况;将某个城市几百万人的健康状况综合分析,也许就可以得出某个工厂周围某种疾病的发病率比较高的结论。。。。。。这些都是大数据做的事情。
人工智能
大数据是基于海量数据进行分析从而发现一些隐藏的规律、现象、原理等,而人工智能在大数据的基础上更进一步,人工智能会分析数据,然后根据分析结果做出行动,例如无人驾驶,自动医学诊断。数字化供应链在企业中的应用有哪些?随着消费者需求升级,市场竞争愈发激烈,传统企业的发展需要跳出“成本思维”的局限,通过人工智能、数字化供应链、物联网等新技术进行企业管理和运营,为产业发展决策提供优化的依据。那数字化供应链在企业中的应用有哪些?数字化供应链在企业中的应用:
1、顶层设计
将顶层设计和管理层的支持作为充分必要条件,自上而下、小步快跑地推进数字化进程,切勿单一模块、单一部门推进。需立足企业自身的资源禀赋,结合业务现状、组织现状、行业趋势、技术成熟度等进行全面构架来确认数字化转型的远景目标。
2、系统协作
企业包含部门间、业务间甚至海内外的沟通协作,在系统建立前要充分考虑多主体间原有系统和新系统间的协同,和不同数据格式间的互认,避免出现数据孤岛。同时注意将系统进行盘整,从不盲目扩散系统逐渐转变为精简合并,后期在数据类型变更时快速增加系统的数据采集和分析功能,以数据流带动生产、销售等各个环节对于研发的数据反哺。
3、人才引进
在多数传统企业内部通常缺乏数字化相关人才,导致现有人才难以和服务商对话甚至过渡依赖服务商,以至于重过程轻结果。同时部分中层由于事务繁杂在推行数字化时往往忽略掉了某些不该忽略掉的因素,难以看到数字化整体蓝图,也难以带给高层数字化战略思维,导致无法形成专业团队进行数字化的推进。
4、流程梳理
需认清数字化本质,引进数字化功能配置并非引进了技术本身,而是利用技术能力促进研发流程的变革和再梳理,业务流程在线下没有理清的状态下只能让数字化理念变得更加苍白,因此需要将僵化的业务流程灵活化才能发挥出数字化的大潜力。
5、组织构架
数字化的进程结合了业务、IT等多部门,跨部门的长期协作需要更别的数字化部门进行支撑,特别要包含懂业务、懂技术、懂战略的复合型人才,既保证集团内部的全面协同,也保证数字化落地后的精准赋能。
凡事预则立,不预则废。须知数字化的关键因素不在技术,而在于企业的流程与制度革新。因此需要从以上5个方面着手,携手并进完成数字化发展。
什么是大数据
规模(Volume)
通
过许多年来基于交易的存储,越来越多的传感器和机器的数据被收集,诸多因素导致数据量增加。在过去,过多的数据量存储是一个问题,但是随着存储成本的降
低,大数据存储得以成功解决。然而现在,其他问题又逐渐出现了,包括怎样从大量的数据中确定其相关性,怎样从相关数据中分析并创造价值等。
快速(Velocity)
大数据以前所未有的速度传输,必须及时处理。射频识别标签、传感器和智能计量正在推动着瞬间处理海量数据的需求。而对于大多数公司组织来说,实现对数据的快速处理,还是一个挑战。
多样(Variety)
今天,所有这些格式类型的数据,包括文本文档、电子邮件、视频、音频、股票数据和金融交易等,其管理、合并以及不同类型数据资源间的整合,对许多公司组织来说也是一个需要应对的问题。
参考资料:
大数据趋势分析
在大数
据时代,因为数据的价值最大一部分体现在二级用途上,而收集数据时并未做这种考虑,“告知和许可”就不能起到很好的作用。在大数据时代,我们需要设立一个
不一样的隐私保护模式,这个模式更应该着重于数据使用者为其行为承担责任,而不是将重心放在收集数据之初取得个人同意上。所以大数据也将加强必要的数据质
量和治理,用于嵌入正在运行的系统安全性、私密性和法规的遵从性问题。
大数据分析的未来图景:万物皆可分析
在云计算、大数据之后物联网成为新晋热点话题,物联网改变了我们看待世界的方法,改变了我们做业务的方法,甚至改变我们的生活方式。但是即使是最精通技术的企业也承认,从物联网生成的数据中获取价值非常困难,需要大量技巧。
Teradata认为的数据分析未来图景是“万物皆可分析”,所以在本次大会上也发布了Teradata Listener,其是一款具有实时“听取”功能的自助式智能软件,对客户而言可跟踪他们世界各地存放的多条传感器和物联网数据流,并将该数据传送到分析生态系统中的多个平台,使得我们能够在数据源的发生地就可以进行分析。
Teradata天睿公司大中华区首席执行官辛儿伦
同时Teradata也强调,在建设数据分析系统中,要避免数据孤岛。由于单一技术无法解决全面数据分析的需求,必须简化各种技术难度,创建统一生态数据管理系统。简化是非常重要的需求,任何数据分析系统都要使得架构简化。所以,在本次大会上,Teradata还更新了其统一数据架构(UDA),推出了在单一机箱内整合Teradata数据仓库、Teradata Aster Analytics和Hadoop系统,使用户能够在更小的数据中心空间内发挥整个分析生态系统管理的优势。
在本次大会上,ZDNet采访了Teradata天睿公司大中华区首席执行官辛儿伦,以下为访谈实录:
ZDNet:2015年的大会以Breaking Big为主题,请问其寓意是什么?这是否代表Teradata对于大数据认知在概念上的颠覆?
辛儿伦:Breaking Big这个主题,我理解最核心的应该是“打破束缚和限制”,不管是企业还是个人应该探索和追求“创新、差异化、勇气、重大进展和卓越表现。”
第一,在大数据时代,企业必须坚持创新和追求创新,不管技术上寻找突破,还是从业务流程、商业模式、组织架构、企业的分析文化上,都可进行积极的创新。例如,去年我们刚刚收购的Think Big公司,帮助我们增强对Hadoop的咨询、顾问和实施能力, 以及与其它分析平台的交互能力。在本次大会上,我们刚宣布Think Big成为业内首个能够为Hadoop数据湖(数据资源池)提供全面的管理服务,这将帮助企业非常便利地创建数据分析的生态系统,确保数据质量、可靠性、实时性以及日常的运营任务。
我强调一下,我们的Think Big公司支持主要的Apache Hadoop,包括Cloudera、Hortonworks、MapR、Spark、Kafka、NoSQL以及其他开源技术,非常全面。而且更重要的是,我这里也是首次宣布,我们的Think Big业务已经确定引入到大中华区,目前已经在完成人员的配备。
第二,我觉得企业中在数据分析上的务实和积极进取的文化非常重要。其中,这个主题中提到“勇气”是企业实现大数据项目成功的重要保证。很多的企业,曾经面对大数据项目的投资犹豫、徘徊,其实这就需要更大的勇气支持。Teradata以及广大客户的反馈已经看到,我们是时候积极行动了。我们也理解,文化上的转变可能比技术和分析流程上的转变历时更久,但是我们一直强调,大数据从小做起,相信你也能很快看到大数据的价值,看到大数据分析在商业变革中带来的不可替代的驱动力。
ZDNet:每年的全球用户大会,Teradata都会发布业界注目的新产品。今年发布的产品中,您认为哪些是最具亮点的?
辛儿伦:今年,我们在大数据技术、开源技术的支持以及咨询服务上都有重要的更新和发布。这里,我特别强调一下,本次大会上最亮点的应该是针对物联网的传感器数据的分析能力,甚至实现了万物皆可分析(Analytics of Everything)。Teradata Listener技术能够通过整合开源技术,帮助客户分析物联网中不计其数的数据源,简化数据分析的难度。Teradata QueryGrid技术能在统一数据架构上快速有效地进行主题分析或查询多元化的大数据,以取得业务需要的信息。
同时,Teradata Aster新的版本能直接交互Hadoop数据资源池或数据仓库平台,帮助客户进行实时的数据探索,例如高效营销中进行客户路径和消费模式分析,等等
ZDNet:最近,Gartner发布了2016 年可能影响企业的十大技术趋势,其中万物信息化以及物联网等技术入选。在目前发展出现这些趋势之时,您怎们看技术的发展趋势?如果时间放长远一点,据您观察未来5年甚至10年,那些技术可能会成为影响企业比较显著的技术趋势?
辛儿伦:我们看到这些十大技术趋势,这些都是战略性大趋势,其中包括Information of Everything(万物信息化)以及物联网架构和平台。其实,我认为这不仅是趋势,而是新的IT现实。
关于万物信息化,可以理解为我们身处在一个数字网格之中,这个环境会产生、使用其产生的无计其数的信息。在这些数据和信息的海洋中,不管是企业还是个人,必须学会判断和识别哪些信息能够带来战略性的价值,掌握如何访问这些不同的数据源,并通过各种分析方法和算法找出其中的业务价值。
其实,这些预测也是真实IT现实的写照。实现万物皆联网或者信息化,最主要之一靠传感器技术。在我们目前生活的时代,传感器技术结合大规模并行处理能力,使我们能够测量并整体分析几乎所有现象。先进的仪器使我们能够跟踪万物的变化,例如天气变化模式、汽车驾驶习惯、乃至快餐店冰箱的温度、医院里(或家里)病人的生命体征。将这些数据采集至数据库,并运用广泛的统计、分析及可视化工具对这些数据进行细致的分析。
正是由于这些传感器,我们的生活、工作中产生了新的数据源。例如,通过射频识别读取器,我们能够进行零售库存跟踪与控制、医疗测试采样跟踪、预防欺诈行为等;通过GPS定位跟踪器,能够进行车队管理和交通运输和货运管理;通过数据采集传感器,我们就能在制造业、环境保护、交通运输系统中采集到实时的数据用于分析。
例如,西门子公司就通过部署Teradata技术提升其制造流程及产品质量。西门子首次实现了整合来自传感器、制造流程、机器生成数据,以及各种源系统的数据。西门子技术领域商业分析及监测总监Michael May博士对此说:“现在,我们可以更快、更有效地获得数据中的价值。把大数据转换为智能数据,我们将能够优化产品质量,为客户提供更加优质的服务。”
关于物联网我提两点:《2014-2015年中国物联网发展年度报告》中指出,物联网技术与云计算、大数据、移动互联网等新兴一代信息技术的协同创新进一步深化,与农业、制造业、服务业等传统产业,与新能源、新材料、先进制造业等新兴产业的“双向融合”不断加强。物联网加快向经济、社会、生活众多领域渗透,不断催生新变革、新应用和新业态。这些都是非常可喜的发展成绩。现在快速发展的物联网,以及未来的“万物皆联网”,任何人、事、物之间将能实现连接,这将带来沟通模式的变化、业务模式的变化,甚至发展模式的变化。
但是,我们更要强调,要想让物联网发挥出价值,企业必须对传感器数据进行整合和分析,并把分析结果利用到生产流程中来,而由大数据驱动的物联网才是有价值的物联。
由于物联网数据都是非结构化数据,这种JSON数据的分析都非常复杂。在今年5月,我们就宣布首次在同一数据库实现三大JSON数据格式的原生存储,这将为客户提供更强的查询性能。通过对Teradata数据库升级,能够帮助业务用户充分利用网页应用、传感器和物联网机器生成JSON数据的商业价值。而Teradata数据库具备分析JSON数据、 *** 作数据和历史业务数据的强大功能,而这一顶级查询性能使其成为物联网分析枢纽。此外,本次大会上发布的Teradata Listener是一款自助式智能软件,具有实时“听取”功能,可协助客户跟踪他们世界各地存放的多条传感器和物联网数据流,并将该数据传送到分析生态系统中的多个平台,这些都是巨大的技术突破。
针对未来更长时间的趋势预测,如果从更加宏观的角度看,我们先梳理一下整个IT 行业的发展,然后就能看到未来的发展趋势。过去从70或者80年代开始,对整个IT产业的关注,不管是产业给予的专注,还是IT供应商的专注,或是企业对于成立自己的IT部门的专注,更多的是一种小I大T的专注,什么叫小I大T?小的专注于Information能够体现的价值,而大量专注于运用用和研发Technology方面的议题。这就是小I大T,更多地认为IT就只是Technology这个课题,但是我们要注意IT不仅仅是Technology,IT是两个课题,是Information和Technology。
随着技术的发展,现在的技术能够承载的Information的价值度是迅速提升的,,未来更多的机会会更多在Information这个主题,延伸出来未来10年、20年、30年的前景。特别是未来这30年,这个时代将会是大I小T的时代,更多的主轴是在Information主题。,
ZDNet:从Teradata以及服务客户的经验看,如果让您建议一个企业要建立起自己的大数据战略,应该要去准备什么战略?
辛儿伦:首先建议客户要先问自身几个问题,那就是为什么要建立自己的大数据战略?是什么业务发展方向需要数据驱动型战略?。大数据战略要针对具体的业务场景,有了明确的业务场景目标,建设驾驭大数据的能力才有针对性性和使命感。
例如某企业要提升他的客户价值贡献度,希望建立起大数据战略,能够通过与客户的多种互动渠道的信息中获得洞察例如通过360度的统一客户视图等,在正确的时间、正确的地点、适当的方式,提供这位客户需要的服务或产品。又如金融机构通过建立起针对风险控制的大数据战略,能够发现和判断自己企业面对的风险以及危害程度,如担保圈分析等。如电信运营商可以通过建立针对客户服务品质优化的大数据战略,发现即将离网的用户等,提高自己的业务支持并挽留用户。
但是,在这里我要强调一点,数据驱动型战略不等同于数据收集战略,目前企业应尽量避免“存而不用”,建立大数据能力绝不是收集数据、存数据。
根据我们协助全球许多客户建设高效的大数据战略呢?,我想分享几个成功的关键:
第一,全面。企业需要采取宏观视角来识别构成高效体系的诸多不同要素,将不同的数据集(比如内部和外部数据流,或来自企业不同职能部门的信息)链接起来,通过关联分析,找出富有意义的信息。
第二,以业务为核心。针对大数据的战略规划应当以业务为导向,大数据战略并非科学项目,而是必须以满足实际的业务需求为核心。
第三,灵活。必须考虑到未来的使用情形,大数据战略和大数据分析方法论应避免常见的限制,比如过多地依赖于单一技术或单一平台模式或过于制式的流程等;由于数据驱动的转型不会一步到位或立刻传遍整个企业,因此在制定战略时,必须认识到价值是逐步创造出来的,并将整个演变过程考虑在内。
第四,有条理且可扩展。要确保大数据战略能够得到全面贯彻,而不是导致另一大群数据孤岛的产生。
第五,数据分析、科学决策。形成以分析为导向的思维方式,并培养真正的数据驱动文化。
以上是小编为大家分享的关于大数据分析的未来图景 万物皆可分析的相关内容,更多信息可以关注环球青藤分享更多干货
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)