物联网体系结构如何,是用什么协议和标准,如何收集、处理、发射、接收信息?

物联网体系结构如何,是用什么协议和标准,如何收集、处理、发射、接收信息?,第1张

物联网的英文名称为"The Internet of Things” 。由该名称可见,物联网就是“物物相连的互联网”。这有两层意思:第一,物联网的核心和基础仍然是互联网,是在互联网基础之上的延伸和扩展的一种网络;第二,扩展到了任其用户端延伸和何物品与物品之间,进行信息交换和通信。因此,物联网的定义是通过射频识别(RFID)装置、红外感应器、 全球定位系统、激光扫描器等信息传感设备,按约定的协议,把任何物品与互联网相连接,进行信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理的一种网络。
物联网的整个结构可分为射频识别系统和信息网络系统两部分。射频识别系统主要由标签和读写器组成,两者通过RFID空中接口通信。读写器获取产品标识后,通过internet或其他通讯方式将产品标识上传至信息网络系统的中间件,然后通过ONS解析获取产品的对象名称,继而通过EPC信息服务的各种接口获得产品信息的各种相关服务。整个信息系统的运行都会借助internet的网络系统,利用在internet基础上的发展出的通信协议和描述语言。因此我们可以说物联网是架构在internet基础上的关于各种物理产品信息服务的总和。从应用角度来看,物联网中三个层次值得关注,也即是说,物联网由三部分组成:一是传感网络,即以二维码、RFID、传感器为主,实现对“物”的识别。二是传输网络,即通过现有的互联网、广电网络、通信网络等实现数据的传输与计算。三是应用网络,即输入输出控制终端。
EPC系统是一个非常先进的、综合性的和复杂的系统。其最终目标是为每一单品建立全球的、开放的标识标准。如图2.4所示,它主要由全球产品电子代码(EPC)体系、射频识别系统及信息网络系统三大部分组成[17]。

图24 EPC系统的构成图
(1)EPC编码标准
EPC编码是EPC系统的重要组成部分,它是对实体及实体的相关信息进行代码化,通过统一并规范化的编码建立全球通用的信息交换语言。
(2)EPC标签
EPC标签是装载了产品电子代码的射频标签,通常EPC标签是安装在被识别对象上,存储被识别对象相关信息。标签存储器中的信息可由读写器进行非接触读/写。
32 EPC系统特点
(1)开放的体系结构
EPC系统采用全球最大的公用的刀又TERNET网络系统。这就避免了系统的复杂性,同时也大大降低了系统的成本,并且还有利于系统的增值。梅特卡夫(Metcalfe)定律表明,一个网络大的价值是用户本系统是应该开放的结构体系远比复杂的多重结构更有价值。
(2)独立的平台和高度的互动性
EPC系统识别的对象是一个十分广泛的实体对象,因此,不可能有那一种技术适用所有的识别对象。同时,不同地区,不同国家的射频识别技术标准也不相同。所以开放的结构体系必须具有独立的平台和高度的交互 *** 作性。EPC系统网络建立在INTERNET网络系统上可以与INTERNET网络所有可能的组成部分协同工作
(3)灵活的可持续发展的体系
EPC系统是一个灵活的开放的可持续发展的体系,可在不替换原有体系的情况下就可以做到系统升级。整体的EPC网络 *** 作依赖于RFID系统和网络应用系统的介入,使产品信息有效的传播。安装在不同需求链环境的解读器可以读取标签中储存的产品数据。因此供应链数据可以通过网络及时地检查、更新或者交换信息。
33 EPC编码编码标准
EPC码是新一代与EAN/UPC码兼容的编码标准,在EPC系统中EPC编码与现行GTIN相结合,因而EPC并不是取代现行的条码标准,而是由现行的条码标准逐渐过渡到EPC标准或者是在未来的供应链中EPC和EAN.UCC系统共存。EPC中码段的分配是由EAN.UCC来管理的。在我国,EAN.UCC系统中GTIN编码是由中国物品编码中心负责分配和管理。同样,ANCC也即将启动EPC服务来满足国内企业使用EPC的需求。
EPC码是由一个版本号加上另外三段数据(依次为域名管理者、对象分类、序列号)组成的一组数字。其中版本号标识EPC的版本号,它使得EPC随后的码段可以有不同的长度;域名管理是描述与此EPC相关的生产厂商的信息。
第四章 物联网在家庭中应用
随着时代的发展,中国已经逐步进入了老龄化社会,以后我们社会面临的现状将是一对年轻的夫妻,在照看自己小孩的同时,还要照看2~6对老人,这就为全社会出了一个难题。每家都雇保姆,显然不现实;那么,只能通过科技的手段来解决这个问题了,靠提高家庭的生活品质、方便家庭与外界的信息交互、用传感节点感知家里发生的情况等,这就为家庭物联网的实现奠定了社会基础。
物联网的概念正大行其道,也使人们看到了社会未来的发展趋势,然而物联网大部分却停留在概念阶段,真正规模应用还有待时日。家庭区域相对狭小、需求比较明确,最有可能优先实现物联网的应用。它不只是现代家庭现实的需要(照看老人、孩童),更是人们日益增强的家庭安全
41家庭物联网应用领域
寒冷的冬季,供暖系统使北方城市家庭充满温暖,而当白天大部分人离家上班的时候,空空的房间仍温暖如春。我们需要一个智能化的供暖控制系统。在生产安全领域,在食品卫生领域,在工程控制领域,在城市管理领域,在人们日常生活的各个方面,甚至在人们的娱乐活动中,都需要建立随时能与物体沟通的智能系统。通过装置在各类物体上的电子标签(RFID),传感器、二维码等经过接口与无线网络相连,从而给物体赋予智能,可以实现人与物体的沟通和对话也可以实现物体与物体相互间的沟通和对话。在电度表上装上传感器,供电部门随时都可知道用户的用电情况,实现用电检查、电能质量监测、负荷管理、线损管理、需求侧管理等高效一体化管理,一年来降低电损。在电梯装上传感器,当电梯发生故障时,无需乘客报警、电梯管理部门会借助网络在第一时间得信息,以最快的速度去现场处理故障。
42发展历程
1999年,物联网的概念就已被提出,10年间,世界各国都在加紧研究。物联网的发展共分为四个阶段:第一个阶段是大型机、主机的联网,第二个阶段是台式机、笔记本与互联网相联,第三个阶段是手机等一些移动设备的互联,第四阶段是嵌入式互联网兴起阶段,更多与人们日常生活紧密相关的应用设备,包括洗衣机、冰箱、电视、微波炉等都将加入互联互通的行列,最终形成全球统一的“物联网”。
对于互联网来说,20世纪80年代是黄金时代,这段时间出了一个知名的人物——鲍勃•卡恩(BobKahn),他被人们称为互联网之父(被赋予同样称呼的人还有好几个)。在为互联网做出卓越贡献的同时,他也非常有远见的为另一个始于上世纪80年代的项目——分布式传感网(DistributedSensorNet,简称DSN)——做了奠基。在那个年代,传感器远比我手上的这个大得多,要用一辆卡车来拉。这么大的传感器作为一个个节点组织在一起,通过微波彼此相连,就组成了传感网。
庞大的传感器在体积方面跟不上人们对其功用上的期望,于是研究者们就开始思考能不能把它做得小一点、再小一点。于是,在上世纪90年代,“智能微尘”(SmartDust)这个很有意思的概念出现了,提出者是KrisPister,他是加州大学伯克利分校的教授。这一概念认为可以将计算和通讯集成在约1~2平方毫米的超微型传感器中,用以对周围环境的参数进行探测。其核心的成分是微电机系统(Micro-Electro-MechanicalSystem,简称MEMS;这个概念在当时引起非常大的轰动),该系统中可以集成很多和机械有关的传感器。
当时KrisPister这批人有一个幻想——在蒲公英上面悬挂一个传感芯片,蒲公英飞到哪里就探测哪里的信号,再把信号传递回来。虽然只是一个假想,但当时真有科学家信心百倍地投入其中,并且还把所需的数据算出来了。比如有空气动力学专家计算出了芯片应有的重量等等。在2001年,加州大学伯克利分校的实验室真做出了这种理想中的芯片雏形,比米粒还小,可谓“细如发丝,薄如蝉翼”。他们送给了我一个,当时我还精心包装了一下。可惜最近找不到了,特别遗憾。倘若芯片里面还有电留存的话,说不定我就能通过网络定位到它的“安身之所”了。
在这一时期,有三所高校和研究机构在传感器领域处于领军地位,一是加州大学伯克利分校(以KrisPister为代表,他们提出了“智能微尘”理论),另外两个是加州大学洛杉矶分校(他们提出了“微无线技术”)和施乐帕克研究中心(XeroxPARC)。施乐帕克研究中心的团队主要由我带领,我们做的是传感信息处理和“智能物质”(SmartMatter),希望能把计算、微电机系统放到物理世界中,与“智能微尘”也有非常紧密的联系。
自本世纪初以来,对于传感的研究越来越受到人们的重视,有很多学校和大公司的研发机构开始进行了类似的研究,并有许多新兴公司借此东风异军突起。将传感器连接成“网”或“系统”,就成了传感网。除了传感网以外,类似的概念也相继提出,比如“CyberPhysicalSystem”和“InternetofThings”(简称IOT)。相较而言,IOT的概念在提出的初期更接近于日常生活,比如常见的RFID(RadioFrequencyIdentification,射频识别)技术就是它的一部分。
关于传感网和物联网的历史,若从大的传感器开始算起,传感网诞生至今应有30年了;而若从微传感网(MicroWirelessSensorNetwork)来说,应该仅有15至20年:微传感网始于上世纪90年代,那个时期的人们刚刚提出“微电机系统”的概念,试图把传感器和计算机处理和通讯全部都集成在一个芯片上,即“智慧微尘”。
其实传感器的历史,归结起来就八个字——从大到小,以点到面。这八个字看似简单,但做起来却是困难重重——要想让传感器真正“飞入寻常世界中”,它必需在体积、造价、能耗等方面进行“瘦身”,这样它才真正能够进入到物理世界。
然而,造型的缩小并不是传感进入生活的唯一条件,还需要互联网技术的配合以实现从点到面的网际联系。就IP地址而言,物联网应采用IPv6(IPv4必然不够),它有128位两进制的IP网址数,这相当于给世界上的每个沙粒都赋予了一个 IP地址。唯有当所有的物体都有一个属于自己的IP的时候,物联网才能真正实现。总而言之,物联网的实现需要这两方面的相辅相成:一是利用微处理技术(micro-fabrication),提高集成度;其二是运用IP技术,以提供足够丰富的网址。
43面临的问题
国内智能家居市场存在很多问题。1、进入门槛较高,一般一次性投入要1、2万元,这就大大限制了中等收入以下人群的购买需求。2、功能华而不实,很多都是遥控个灯光、音响,需求跟投入不成比例。3、生搬硬套,将原来很多工业上使用的东西直接照搬到家庭里,缺少人性化,不能完全适合家居生活需要。4、很多智能家居企业缺少核心技术,东拼西凑,组成个系统就推广,导致成本增高、企业竞争力下降。
RFID超高频技术在我国的应用尚处于起步阶段,一些项目的应用只是试点,还没有得到广泛应用,也没有在供链上应用。比如,只在某一个仓库里应用,或只在生产线上应用。应该说,这些试点项目全
都属于闭环状态的应用,在供应链上串起来应用的案例国内还没有出现。
物联网发展潜力无限,但物联网的实现并不仅仅是技术方面的问题,建设物联网过程将涉及到许多规划、管理、协调、合作等方面的问题,还涉及标准和安全保护等方面的问题,这就需要有一系列相应的配套政策和规范的制订和完善。
首先是技术标准问题。标准是一种交流规则,关系着物联网物品间的沟通。各国存在不同的标准,因此需要加强国家之间的合作,以寻求一个能被普遍接受的标准。
其次是安全的问题。物联网中的物品间联系更紧密,物品和人也连接起来,使得信息采集和交换设备大量使用,数据泄密也成为了越来越严重的问题。如何实现大量的数据及用户隐私的保护,成为待解决的问题。
第三,协议问题。物联网是互联网的延伸,在物联网核心层面是基于TCP/IP,但在接入层面,协议类别五花八门,CPRS、短信、传感器、TD-SCDMA、有线等多种通道,物联网需要一个统一的协议基础。
第四,终端问题。物联网终端除具有本身功能外还拥有传感器和网络接入等功能,且不同行业需求各异议,如何满足终端产品的多样化需求,对运营商来说的一大挑战。
第五,地址问题。每个物品都需要在物联网中被寻址,就需要一个地址。物联网需要更多的IP地址,IPv4资源即将耗尽,那就需要IPv6来支撑。IPv4 向IPv6过渡是一个漫长的过程,因此物联网一旦使用IPv6地址,就必然会存在与IPv4兼容性问题。
第六,费用问题。目前物联网所需的芯片等组件的费用较高,若把所有物品都植入识别芯片花费自然不少,如何有效解决这一问题仍需考虑。
第七,规模化问题。规模化是运营商业绩的重要指标,终端的价格、产品多样性、行业应用的深度和广度都会地用户规模产生影响,如何实现规模化是具有待商讨的问题。
第八,商业模式问题。物联网在商业应用方面的业务模式还不是很明朗,商业模式问题值得更进一步探讨。
第九,产业链问题。物联网所需要的自动控制、信息传感、射频识别等上游技术和产业已成熟或基本成熟,而下游的应用也单体形式存在。物联网的发展需要产业链的共同努力,实现上下游产业的联动,跨专业的联动,从而带动整个产业链,共同推动物联网发展。
要建立一个有效的物联网,有两大难点必须解决:一是规模性,只有具备了规模,才能使物品的智能发挥作用;二是流动性,物品通常都不是静止的,而是处于运动的状态,必须保持物品在运动状态,甚至高速运动状态下都能随时实现对物品的监控和追踪。
实现物联网,首先必须在所有物品中嵌入电子标签等存储体,并需安装众多读取设备和庞大的信息处理系统,这必然导致大量的资金投入。因此,在成本尚未降至能普及的前提下,物联网的发展将受到限制。已有的事实均证明,在现阶段,物联网的技术效率并没有转化为规模的经济效率,目前的所谓物联网应用也没有一个在商业上获得了较大成功。例如,智能抄表系统能将电表的读数通过商用无线系统(如GSM短消息)传递到电力系统的数据中心,但电力系统仍没有规模使用这类技术,原因在于这类技术没有经济效率。
物联网的关键在于RFID、传感器、嵌入式软件及传输数据计算等领域,包括“云计算”、无线网络的扩容和优化等均是物联网普及需解决的问题。只有通过“云计算”技术的运用,才能使数以亿计的种类物品的实时动态管理变得可能。从目前国内产业发展水平而言,传感器产业人水平较低,高端产品为国外厂商垄断。

工业物联网网关集通讯管理、数据接收、协议转换、数据处理转发等功能,支持手机WiFi现场调试,也叫无线网关,工业物联网智能网关,工业通信网关,无线传感管理主机等,属于无线传感器网络产品。XL90工业物联网智能网关,可同时接收多个无线传感器数据,支持2路以太网口(Ethernet)、RS485和1路RS232串口、无线传输等上行方式, 可选GPRS,433MHZ,24GHZ,WI-FI等无线传输方式。
工业物联网网关的应用范围广,无需布线,减少运维成本,安装便捷,即插即用,适用于机房、机站动力、环境监控系统,低压配电监控系统,电能数据监控系统,工厂机器设备、生产线运行状态监控系统,生产信息采集系统等无线监测与预警。

物联网有四层平台:设备连接平台、设备管理平台、应用分析平台、应用开发平台,提供Paas服务。这都是使能平台。选择现有的IOT使能平台可以通过平台开发厂商的影响力、成功案例、全球通用性、服务持续提供能力、开发水平、方案解决能力等多方面综合考虑。
一、 提供统一的终端接入
通过使能平台,为不同业务类型的所有物联网应用终端提供统一的数据接入方案,极大降低了终端接入的难度和成本。终端数据接入支持多种通讯设备、通讯协议,对接收到的数据进行辨识、分发以及报警分析等预处理。
二、 提供统一的应用基础运行平台
物联网应用软件与传统的应用软件应用相比,有底层终端类型及数量多、行业应用复杂的特点,各种行业终端数量规模通过一定的发展往往能达到百万甚至更高级别,要求使能平台能维护大量共享数据和控制数据,提供物联网应用的统一运行环境,从概念、技术、方法与机制等多个方面无缝集成数据的实时处理与历史记录,实现数据的高时效调度与处理,并保证数据的一致性,以便能够支撑所有连接终端所需要呈现的各种应用。
三、 提供统一的安全认证
以用户信息、系统权限为核心,集成各业务系统的认证信息,提供一个高度集成且统一的认证平台。
四、 统一的数据管理及数据交换
不同种类及数终端的海量数据在平台上得以集中管理并且提供统一的数据交换功能,通过平台连接各种业务相关的异构系统、应用以及数据源,满足重要系统之间无缝共享和交换数据的需要。彻底解决了由于业务不同、应用不同、系统不同所导致的信息孤岛问题,数据平台的统一性让大数据分析成为可能,让更多的应用能够因数据的开发性得以实现。
五、 提供统一的门户支撑
提供一个灵活、规范的信息组织管理平台和全网范围的网络协作环境,实现集成的信息采集、内容管理、信息搜索,能够直接组织各类共享信息和内部业务基础信息,面向不同使用对象,通过门户技术实现个性化服务,实现信息整合应用。
六、 提供多种业务基础构件
为各行业应用业务提供开发辅助工具、快速定制、地理信息服务、权限管理、数据展现及挖掘等多种平台支撑服务。通过这些基础构件,实现系统的松散耦合,提高系统的灵活性和可扩展性,保障快速开发、降低运营维护成本。

通信世界消息(CWW)物联网是“中国制造2025”的核心组成部分,而NB-IoT是目前物联网众多标准技术当中最热门、最被看好的一项技术。窄带物联网(NB-IoT)成为万物互联网络的一个重要分支。NB-IoT构建于蜂窝网络,只消耗大约180kHz的带宽,可直接部署于GSM网络、UMTS网络或LTE网络,以降低部署成本、实现平滑升级。

全球范围内的运营商都在寻找新的应用模式,物联网的迅猛发展给通信产业带来新的生机。与传统的蜂窝通信不同,物联网要求有海量的连接数、低的终端成本、低的终端功耗和超强的覆盖能力。物联网通信能否成功发展的一个关键因素是标准化。这些年来,不同行业和标准组织都制定了一系列物联网通信方面的标准,大的就有LTE

R12和R13的低成本终端Category0及eMTC,小的更是难以计数。但从至今的部署情况来看,无论从终端成本、终端能耗和穿透覆盖等方面,这些技术标准都难以与免授权频谱的LoRA,
Sigfox等技术相竞争。

NB-IoT的出现一下子带来了希望。NB-IoT从2015年9月在3GPP

RAN立项以后,得到全球大多数的运营商、系统设备商、终端厂商的关注和响应。R13的NB-IoT协议于2016年6月冻结,这标志着一个具有巨大商业前景的、世界范围统一的物联网通信标准已经产生,为今后物联网的发展提供了广大的先机。

三位作者针对中国的NB-IoT、乃至物联网的产业链发展会起到积极的作用创作的《窄带物联网:标准与关键技术》对LTE
R13
NB-IoT的整体协议做了比较详尽和全面系统的描述,涉及网络架构、物理层的各类信道、空口控制面、空口用户面、关键过程、射频指标和后续演进。不仅讲述协议中涉及的关键技术,而且对重要的、但未被采纳的候选技术也进行了对比,呈现部分标准化的过程。书中还配有大量的性能分析。

lot gateway物联网网关实质上就是指集成了WiFi和蓝牙BLE两种无线通信方式的蓝牙网关(蓝牙探针),WiFi与蓝牙之间通过串口通信,可灵活应用于各种场景,例如:远程控制BLE装置,接收BLE设备发送的数据,并将其发送给服务器……

lot gateway物联网网关TD05A实际应用

(1)应用于室内定位,可以实现后台的主动定位,在后台看到被定位对象的位置,移动轨迹,历史轨迹回放等;

(2)应用于数据抓取,比如养老行业,用于抓取老人佩戴的手环、胸卡等数据上传后台等。

物联网网关作为一个新名词,将在未来物联网时代发挥非常重要的作用。它将成为感知网络和传统通讯网络之间的纽带。物联网网关作为一种网关设备,能够完成感知网络与通讯网络以及不同类型感知网络之间的协议转化。

网关既能够完成广域互连,也能够完成局域网互连,具备设备办理功能。运营商能够办理底层传感节点,了解每个节点的相关信息,经过物联网网关设备完成长途 *** 控。

物联网云网关

这一部分强调了一个要害点,即物联网网关完成感知网络与通讯网络的互联,但感知网络中有许多不同的协议,如LonWorks、ZigBee、6LoWPAN、rubee等来完成这种互联网,网关有必要具有协议转化才能。一起,网关有两个要害点,即完成广域互联。当广域网不行用时,网关往往能完成局域网互连,即近端之间的交互与协作。

主要功能:

一广泛的访问才能

现在,短程通讯的技能规范许多,只有LonWorks、ZigBee、6LoWPAN、rubee等常用的无线传感器网络技能,各种技能主要是针对某一应用开发的,缺少兼容性和体系规划。现在,国内外现已开展了物联网网关的规范化作业,如3GPP、传感器作业组等,以完成各种通讯技能规范的互联互通。

二可办理性

强壮的办理才能关于任何大型网络都是必不行少的。首先,需要对网关进行办理,如注册办理、权限办理、国家监管等。网关完成了子网中节点的办理,例如获取节点的标识、状况、特点、能量等,以及因为子网的技能规范和协议复杂性的不同,唤醒、 *** 控、确诊、升级和保护等的长途完成,网关具有不同的办理功能。根据物联网的模块化网关来办理不同感知网络、不同应用,保证使用一致的办理接口技能来办理终端网络节点。

三协议转化才能

不同感知网络到接入网络的协议转化,低规范格局的数据一致封装,保证不同感知网络的协议能够成为一致的数据和信令;将上层宣布的数据包分析成可由感知层协议识别的信令和 *** 控指令。

总结这些基本网关才能没有问题,但关于物联网网关来说,要害点之一是网关本身是完成感知层和通讯层的仅有入口和出口通道。外部只需要处理网关,而网关用于调度和 *** 控下面访问和注册的各种类型的传感设备。

因而,网关具有相似于API网关的要害才能,即对传感层中各种传感设备供给的不同类型的协议进行接入和适配,一起在协议接入后能够转化为规范接口协议和通讯层交互。关于实时接口,它能够选用相似的>

一般来说,物联网网关在架构和实现进程中会提供硬件设备,实现协议转化、路由、转发、自动注册办理、南北一体化的接口才能。这个网关通常是布置在局域网端的设备。对于整个云架构,只有网关设备和云能够交互。

边缘计算的终究落地能够在物联网网关层实现,即进一步提高物联网网关的存储和核算才能。一方面,在网关层实现本地收集后的数据自动收集,二次处理后收集上传到云端。另一方面,将云的要害核算规矩和逻辑散布到网关层,支撑网关层的本地化核算。这也是网关层功用的一个要害扩展。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/12867729.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-28
下一篇 2023-05-28

发表评论

登录后才能评论

评论列表(0条)

保存