电力通信,以太网与物联网三者有何关系

电力通信,以太网与物联网三者有何关系,第1张

电力通信网是为了保证电力系统的安全稳定运行而产生的。其通信电缆、电力线载波、光纤、微波、卫星等多种通信手段并用。
当然,如果问的是电力线通信(Power Line Communication,简称PLC),那是指利用低压配电线路传输高速数据、语音、图象等多媒体业务信号的一种通信方式。
以太网是ethernet,其运行速率有10Mbps,100Mbps,1Gbps,10Gbps,传输介质采用双绞线,光纤。和因特网不是一个概念,以太网是一种局域网技术。
物联网是基于互联网的万物(包含物体和人)相连的网络。
从概念上看,三者之间没有太必然的联系,只能说物联网可以使用电力通信和以太网。

在电力系统内部来讲没有什么区别,配电网和配电系统都是相对于输电系统来讲,但是从具体的定义上讲,有一定的区别,具体的讲:配电网是指向220KV以下的负荷区域供电的网络,包括配电变电站,开关站,电缆和架空线路等一次系统;配电系统则复杂的多,除了上述之外还包括一切二次设备,以及电力系统所涉及的处理软件系统,甚至包括电力人员的硬件系统。

综合以上的情况,我建议采用智能化代运维方案:
线上:运行数据检测并上传至云平台,一方面检测异常数据,减少安全隐患,尤其是针对电气火灾;另外一方面是为了节省能源提供参考数据。在安全上可以预防故障发生及危险情况。
线下:首先解决配电房长时间没有维保的问题,制定定期维保计划,找出故障并重点监控。

偶认为都很重要,因为,由发电、变电、输电、配电和用电等环节组成的电能生产与消费系统。它的功能是将自然界的一次能源通过发电动力装置(主要包括锅炉、汽轮机、发电机及电厂辅助生产系统等)转化成电能,再经输、变电系统及配电系统将电能供应到各负荷中心,通过各种设备再转换成动力、热、光等不同形式的能量,为地区经济和人民生活服务。由于电源点与负荷中心多数处于不同地区,也无法大量储存,故其生产、输送、分配和消费都在同一时间内完成,并在同一地域内有机地组成一个整体,电能生产必须时刻保持与消费平衡。因此,电能的集中开发与分散使用,以及电能的连续供应与负荷的随机变化,就制约了电力系统的结构和运行。据此,电力系统要实现其功能,就需在各个环节和不同层次设置相应的信息与控制系统,以便对电能的生产和输运过程进行测量、调节、控制、保护、通信和调度,确保用户获得安全、经济、优质的电能,所以我认为都是很重要的。 电力系统(system), 由发电、变电、输电、配电和用电等环节组成的电能生产与消费系统。它的功能是将自然界的一次能源通过发电动力装置(主要包括锅炉、汽轮机、发电机及电厂辅助生产系统等)转化成电能,再经输、变电系统及配电系统将电能供应到各负荷中心。由于电源点与负荷中心多数处于不同地区,也无法大量储存,电能生产必须时刻保持与消费平衡。因此,电能的集中开发与分散使用,以及电能的连续供应与负荷的随机变化,就制约了电力系统的结构和运行

配电网工程类型可以分为以下几种:
1 城市综合配电网工程:主要是为城市居民配电,采用架空线路和地下输电线路相结合的方式,涉及中小型变电站建设、街道电缆敷设等工程。
2 农村电网改造工程:为了解决农村供电不足的问题,需要进行农村电网改造工程。该工程包括新建或改造变电站、架设或敷设输电线路、完成农村电网中低压配电线路的改建等。
3 工业用电配电网工程:主要为工矿企业和大型商业企业提供用电服务。该工程需要根据企业的用电需求,设计中高压变电站和其它配电设备。
4 新能源电网工程:随着可再生能源的发展,需要建设新能源电网工程。该工程包括风力发电、太阳能发电等,需要建设相关的变电站和输电线路。
5 智能电网工程:智能电网工程采用物联网技术,将传统的电网升级为数字化的智能电网。该工程可以实现更加灵活的供电方式、实时监控电网数据、提高电网安全性等。
以上是常见的几种配电网工程类型,每种类型会有其独特的技术和工程特点,需要根据实际情况进行设计和施工。

(1)电力系统之间的互联可以有三种方式,即:①传统的交流输电同步联网方式,联网后将形成更大的同步运行电网;②直流输电非同步联网方式,联网后将形成非同步联合运行的大电网,其中包括不同频率的联合大电网;③交、直流并联输电同步联网方式,联网后将形成可以利用直流输电的快速控制改善电网运行性能的同步运行的大电网。

其中,直流输电非同步联网的方式常用背靠背直流输电系统来实现,其主要的优点是:背靠背直流输电的直流侧可以选择低电压大电流(因无直流输电线路,直流侧的损耗较小),可充分利用大截面晶闸管的电流值,同时与直流电压有关的设备(如换流变压器,换流阀,平波电抗器等)绝缘也相应较低,从而使这些设备的造价明显降低。

该相关问题可以在微信公众号“直流偏磁”里查阅,每天都有新的关于直流偏磁知识进行分享。若您觉得还不错,请将它分享到您的朋友圈中让更多的人了解并关注直流偏磁。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/12891140.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-28
下一篇 2023-05-28

发表评论

登录后才能评论

评论列表(0条)

保存