6G科技是什么情况?

6G科技是什么情况?,第1张

5G将至,6G已在开发的路上,6G是个什么样的技术?什么时候可以商业?也成为人们关心的问题,我将从世界大国对6G的热度和为什么要开发6G开始回答6G究竟是什么样的移动网络。

一、世界大国开启实施6G计划

2018 美国移动世界大会上,美国联邦通讯委员会的一位官员首次在公开场合展望6G。欧盟、美国、芬兰、韩国、俄罗斯多国也已开展6G工作。

2018年芬兰开始研究6G相关技术,年底邀请媒体聆听其针对6G网络所引导的研究与工作进展,2019年3月24日至26日在芬兰拉普兰举行关于6G的国际会议。

2018年3月9日,工信部部长苗圩表示中国已经着手研究6G。

二、为什么要发展6G?超高速度、超大容量、超低延时、全覆盖、低能耗的需求催生6G

大家都知道1G、2G、3G、4G改变生活,而5G改变 社会 。1——4G解决了人与人的信息沟通,从声音、文字、视频等多个方面提升了人与人的接接沟通质量。随着移动通信应用领域的不断扩大,物与物之间、物与人之间的联系,即物联网就成为5G发展的最为重要的内容,5G应用,20%将用于人和人之间的通信,80%用于物和物之间的通信。

5G技术的高速度、大容量、低延时三大特点,为物联网奠定了基础,并使 社会 进入了物联网时代。然而,5G的局限性也表现在,(1) 社会 (医疗手术、大城市的无人驾驶)或工业产生等方面的很多物联网数据之大、传输处理要求之快,5G就显得有些不够了;(2)5G要 大量建设基站,偏远山区和海洋基本是无法做到全覆盖的;(3)5G基站能耗大是4G基站的3倍。这些局限性势必需要发展超高速度、超大容量、超低延时、全覆盖、低能耗的新的通信技术,即6G。

三、6G是什么样的通信技术?

2020年5G开始商用,6G正式投入研发,那么6G是个什么样的呢?

6G时代将迈向太赫兹时代。太赫兹就是“THz”,一般指 300GHz 到 3000GHz 之间的频段。这意味着6G无线波能承载更多的数据量——也就意味着6G网络将有更快的网速,6G的下载带宽为1Tbps——是5G的一百倍,4G的一万倍。

6G网络将是一个天、地、人、海全连接世界。通过将卫星通信整合到6G移动通信,实现全球无缝覆盖,网络信号能够抵达任何一个偏远的乡村和海洋,甚至实现海下连接。6G通信技术不再是简单的网络容量和传输速率的突破,它更是为了缩小数字鸿沟,实现了万物互联这个“终极目标”。

结论:

6G将让人类进入泛在智能化信息 社会 ,6G通信将融合陆地移动通信,中高低轨卫星通信以及短距直接无线通信技术,融合通信、计算、感知、智能等,建立起空、天、地、海泛在移动通信网,实现全球泛在覆盖的高速宽带通信!

我是科盲一个,但有一点可以肯定,那就是6G必定比5G强大。

这个世界变化真快,我等都难以跟上步伐了。

后生们加油啊,祖国强大全靠你们了!

你说的6G 科技 ,我的理解是继5G之后的第六代移动通信标准或者第六代移动通信技术。它发展的目的就是促进物联网的发展。目前,6G网络只是个概念性无线网络。从公开资料显示理论速度达到1TB。

发展状况

美国:今年3月,美国联邦通讯委员会(FCC)开放“太赫兹波”频谱的决定,计划用于6G服务。

中国: 去年3月,工信部部长苗圩表示中国已经着手研究6G技术。 中国通信业观察家官项立刚提出,水下通信将是6G重要领域之一。

韩国:SK集团信息技术中心提出“太赫兹+去蜂窝化结构+高空无线平台(如卫星)”的结构模型;

欧盟:2013年提出METIS项目用于5G研究,有升级到6G的趋势。

除中美两国外,日本、俄罗斯等也正在紧锣密鼓地开展相关工作。

发展焦点

从目前来看,太赫兹波被普遍认为可以用于6G服务,但可行性有待论证。

韩国提出的方案 各方在积极实验。

美国的特斯拉公司提过“一万颗卫星计划”建立围绕地球的Wi-Fi;

我国也提出类似的计划。

发展难点

16G只是个概念性无线网络,没有统一的概念含义;26G网络的关键技术有待 探索 研究,如国际电信联盟(ITU)正式成立Network 2030焦点组,华为描绘6G网络架构;

36G网络的路线方案需验证。各国都提出类似韩国的路线方案但有待验证;

46G网络的研究开发,还需具备人才、技术和金钱。综上所述,目前各国6G网络并无实质性进展,没有巨大突破。我国已在5G拔得头筹,在技术、人才和金钱方面都具备。如果说5G时代,中美并驾齐驱。从发展态势来看,6G很有可能有中国引领世界。

你好!我是康哥!

很多人对于6G的模糊概念就是应该比5G快 ,站在老百姓的角度畅想着是否能够实现更为便捷的网络速度,智能机器人物联网等高 科技 的事物是否能伴随着6G的普及而真正便于我们老百姓的生活?

今年5月份左右美国提出了布局6G计划!而6G是个什么东西呢?就连华为这样的已经研制出5G的公司对于6G的研发还只是初步阶段!

对于6G很多国家是心有余而力不足,为什么这么说呢?

5G都没有研发出来,更何况是6G 那么有人就会说了,直接研发6G不就可以了吗可以是可以,关键是你的技术和经济实力允不允许?

对于6G到底是什么?世界上各个国家众说纷纭,没有标准的定义。

而这个时候世界老大美国站出来说话了,说美国不准备发展5G直接发展6G,美国太空 探索 技术公司的猎鹰9号火箭将60颗卫星发射升空,这项2015年提出的计划,要在2025年前发射近12000颗卫星。

也就是说6G的土壤不在地表,而在太空。 利用卫星形成卫星链将信号连接成网络。通过卫星网络的整合,能够实现渔网一样的全覆盖,就 好比站在高处能看得更远是一个道理。

当然理论是美好的,但是对于大多数国家来说目前的6G仅仅还在研发阶段,就算是以后真的能根据理论发射卫星到太空, 试问一下那得需要多少万棵卫星才能够满足我们信号全覆盖的需求呢太空的变数可比我们地球上的要难得预测得多,以后这些卫星产生的污染如何处理?是否会对我们生活在地球上的人带来不好的影响?

第六代移动通信系统(6th generation mobile networks,或6th generation wireless systems),简称6G,是指第六代移动通信技术,是5G系统后的延伸。仍在开发阶段。6G的传输能力可能比5G提升100倍,网络延迟也可能从毫秒降到微秒级。2018年芬兰开始研究6G相关技术,年底邀请媒体聆听其针对6G网络所引导的研究与工作进展,2019年3月24日至26日在芬兰拉普兰举行关于6G的的国际会议。

基本概念

6G,即第六代移动通信标准,一个概念性无线网络移动通信技术,也被称为第六代移动通信技术。主要促进的就是互联网的发展。

6G网络将是一个地面无线与卫星通信集成的全连接世界。通过将卫星通信整合到6G移动通信,实现全球无缝覆盖,网络信号能够抵达任何一个偏远的乡村,让深处山区的病人能接受远程医疗,让孩子们能接受远程教育。此外,在全球卫星定位系统、电信卫星系统、地球图像卫星系统和6G地面网络的联动支持下,地空全覆盖网络还能帮助人类预测天气、快速应对自然灾害等。这就是6G未来。6G通信技术不再是简单的网络容量和传输速率的突破,它更是为了缩小数字鸿沟,实现万物互联这个“终极目标”,这便是6G的意义。

有关技术

太赫兹频段

6G将使用太赫兹(THz)频段,且6G网络的“致密化”程度也将达到前所未有的水平,届时,我们的周围将充满小基站。太赫兹频段是指100GHz-10THz,是一个频率比5G高出许多的频段。从通信1G(09GHz)到4G(18GHZ以上),我们使用的无线电磁波的频率在不断升高。因为频率越高,允许分配的带宽范围越大,单位时间内所能传递的数据量就越大,也就是我们通常说的“网速变快了”。不过,频段向高处发展的另一个主要原因在于,低频段的资源有限。就像一条公路,即便再宽阔,所容纳车量也是有限的。当路不够用时,车辆就会阻塞无法畅行,此时就需要考虑开发另一条路。频谱资源也是如此,随着用户数和智能设备数量的增加,有限的频谱带宽就需要服务更多的终端,这会导致每个终端的服务质量严重下降。而解决这一问题的可行的方法便是开发新的通信频段,拓展通信带宽。我国三大运营商的4G主力频段位于18GHz-27GHz之间的一部分频段,而国际电信标准组织定义的5G的主流频段是3GHz-6GHz,属于毫米波频段。到了6G,将迈入频率更高的太赫兹频段,这个时候也将进入亚毫米波的频段。中国科学院国家天文台研究员苟利军告诉《互联网周刊》说:“太赫兹在天文中被称为亚毫米,这类天文台的站点一般很高而且很干燥 ,比如南极,还有智利的acatama沙漠。”那么,为什么说到了6G时代网络“致密化”,我们的周围会充满小基站?这就涉及到了基站的覆盖范围问题,也就是基站信号的传输距离问题。一般而言,影响基站覆盖范围的因素比较多,比如信号的频率、基站的发射功率、基站的高度、移动端的高度等。就信号的频率而言,频率越高则波长越短,所以信号的绕射能力(也称衍射,在电磁波传播过程中遇到障碍物,这个障碍物的尺寸与电磁波的波长接近时,电磁波可以从该物体的边缘绕射过去。绕射可以帮助进行阴绕射可以帮助进行阴影区域的覆盖)就越差,损耗也就越大。并且这种损耗会随着传输距离的增加而增加,基站所能覆盖到的范围会随之降低。6G信号的频率已经在太赫兹级别,而这个频率已经接近分子转动能级的光谱了,很容易被空气中的被水分子吸收掉,所以在空间中传播的距离不像5G信号那么远,因此6G需要更多的基站“接力”。5G使用的频段要高于4G,在不考虑其他因素的情况下,5G基站的覆盖范围自然要比4G的小。到了频段更高的6G,基站的覆盖范围会更小。因此,5G的基站密度要比4G高很多,而在6G时代,基站密集度将无以复加。

空间复用技术

6G将使用“空间复用技术”,6G基站将可同时接入数百个甚至数千个无线连接,其容量将可达到5G基站的1000倍。前面说到6G将要使用的是太赫兹频段,虽然这种高频段频率资源丰富,系统容量大。但是使用高频率载波的移动通信系统要面临改善覆盖和减少干扰的严峻挑战。

当信号的频率超过10GHz时,其主要的传播方式就不再是衍射。对于非视距传播链路来说,反射和散射才是主要的信号传播方式。同时,频率越高,传播损耗越大,覆盖距离越近,绕射能力越弱。这些因素都会大大增加信号覆盖的难度。不止是6G,处于毫米波段的5G也是如此。而5G则是通过Massive MIMO和波束赋形这两个关键技术来解决此类问题的。我们的手机信号连接的是运营商基站,更准确一点,是基站上的天线。Massive MIMO技术说起来挺简单,它其实就是通过增加发射天线和接收天线的数量,即设计一个多天线阵列,来补偿高频路径上的损耗。在MIMO多副天线的配置下可以提高传输数据数量,而这用到的便是空间复用技术。在发射端,高速率的数据流被分割为多个较低速率的子数据流,不同的子数据流在不同的发射天线上在相同频段上发射出去。由于发射端与接收端的天线阵列之间的空域子信道足够不同,接收机能够区分出这些并行的子数据流,而不需付出额外的频率或者时间资源。这种技术的好处就是,它能够在不占用额外带宽、消耗额外发射功率的情况下增加信道容量,提高频谱利用率。不过,MIMO的多天线阵列会使大部分发射能量聚集在一个非常窄的区域。也就是说,天线数量越多,波束宽度越窄。这一点的好处在于,不同的波束之间、不同的用户之间的干扰会比较少,因为不同的波束都有各自的聚焦区域,这些区域都非常小,彼此之间不怎么有交集。但是它也带来了另外一个问题:基站发出的窄波束不是360度全方向的,该如何保证波束能覆盖到基站周围任意一个方向上的用户?这时候,便是波束赋形技术大显神通的时候了。简单来说,波束赋形技术就是通过复杂的算法对波束进行管理和控制,使之变得像“聚光灯”一样。这些“聚光灯”可以找到手机都聚集在哪里,然后更为聚焦地对其进行信号覆盖。5G采用的是MIMO技术提高频谱利用率。而6G所处的频段更高,MIMO未来的进一步发展很有可能为6G提供关键的技术支持。

发展状况:2018年3月9日,工信部部长苗圩表示中国已经着手研究6G。

最近有一个很火的 科技 话题,那就是:6g是什么鬼?5G又还在何处。

近期,工信部部长苗圩在接受采访时透露,从2017年底开始,工信部已经开始着手在研究6G发展时代。于是,有人思考5g何时到来。

其实,根据我们国家优良的作风”从来不打没有把握的仗”,可以看出5g商业技术已经成熟,而苗部长也表示近几年会推出5g商业服务。我认为,5g 商业服务会在2020推出,因为2020年是我国进入全面小康 社会 的目标的的第一个一百年!意义重大,5g商业推广可以更加为其增添光彩。

工信部部长苗圩

那么接下来我们来了解一下到底什么是6G网络?

其实6g通信网络在国际上并没有标准定义!!!因为这压根就还只是一个概念,说白了就算是从事通信行业工作的人,也没有听过6g通讯这个技术。然而这并不是虚幻的,因为苗部长已经给了6g互联网的发展方向了,那就是——万物互联!!!万物互联(IoE)定义为将人,流程,数据和事物结合一起使得网络连接变得更加相关,更有价值。万物互联将信息转化为行动,给企业,个人和国家创造新的功能,并带来更加丰富的体验和前所未有的经济发展机遇。举一个简单例子,那就是你有一部手机就可以控制很多东西,如直接呼叫无人车,直接和自己家里的智能家居下达指令,让智能家居机器人做家务,智能监控家庭一举一动。

所以说6g通信技术不再是简单的网络传输速度的突破,更是为了解决万物互联这个难题。也就是从技术角度上说,要完成6g通信技术的TB兆级的突破,也要完成从智能芯片上的研发,从而打破界限完成6g时代“万物互联“理念。

至于6g时代会不会是量子通讯技术,我认为这是一个否命题。因为一旦量子通讯普及,这将是一场通讯变革,因为量子通讯技术有别于现有的通讯技术,它颠覆现有通讯技术和基站。量子通讯是利用了光子等粒子的量子纠缠原理。量子通讯学告诉人们,在微观世界里,不论两个粒子间距离多远,一个粒子的变化都会影响另一个粒子的现象叫量子纠缠,这一现象被爱因斯坦称为“诡异的互动性”。科学家认为,这是一种“神奇的力量”,可成为具有超级计算能力的量子计算机和量子保密系统的基础。所以说我不认为,这是短时间可以实现这种颠覆式的革命。

韩国美国等一些国家已经在抓紧研究6G技术,特别是6G技术目前还处于研究阶段。甚至到现在,5G技术都没有完全普及,6G机技术更像是镜中花,水中月。

6G是什么?6G是指第六代移动通信标准,虽然说现在5G技术并没有完全的普及, 但是我们对于6G技术的期待值却非常之高,按照估计,6G网络的传输速度会是5G网络速度的100倍,网络延迟也会从毫秒降到微秒。

用有关专家来说,如果说5G网络是连接万物,那么6G网络它可能会连接到灵魂,6G可能会连接人和动物。

在6G网络中,将会使用太赫兹频段,到我们周围都会充满了基站。我们知道特朗普曾经说:“我希望美国尽可能快地发展 5G,甚至 6G 技术,美国公司必须加紧努力,否则就会落后。”

实际上,我国在2018 年 3 月,就已经着手研究 6G;而华为任正非告知,华为“一直在做 6G”,其实,任正非所说:“6G 在理论等各方面上还没有突破,因此 6G 被人类使用应该在十年以后。”

美国之所以强调建6G,就是因为华为在5G方面的优势远远高于美国。因此在这种迫于无奈之下,美国又邀请华为参与美国5G标准建设。 这正是说明了美国在5G方面的优势不强,但是对于5G网络来说,目前华为确实所占有的优势,是很多国家所不能比拟的。

而对于6G网络来说,我们现在谈论它还为时过早。

6G网速将会是百兆级别的网速比5G还要快10倍左右,估计能达到300M-1G每秒的传输速度,届时万物互联不是问题至少在网速与可靠性上满足条件。


对于6G,很多文章都对它的未来有着热烈的期盼和愿景,比如它的指标太吸引人:

11Tb/S的传输速率;

2小于1ms的延迟;

3高频及近1THz的大带宽技术;

4高能效物联网技术;

5天地一体化的全球网络;

6具有AI能力及虚化技术的适应各种事件及场景的随愿网络。

尽管多数6G的愿景非常美好,但许多文章在具体探讨中,往往只描绘理想而不结合实际,一味地追求新技术而不去深耕解决技术的核心问题和矛盾。特别是与AI结合的智能化当中尤为突出。虽然AI是6G科研的一个重要方向,但6G的发展在AI领域能否获得如愿的核心地位,能产生多大的经济效益,目前还是未知数。

一、6G面临的频段问题


目前5G已经采用了毫米波频段,很多专家看好太赫兹频段在6G中的使用。不过至于太赫兹的潜力,是否会被6G采纳,还要看以后能不能解决高昂的太赫兹器件成本问题。成本太高显然无法商用。6G初步估计还将集中在完善毫米波频段的应用。

二、6G面临的功率问题

手机端由于电池的瓶颈一直无法突破,发射功率因此受限。在基站端,虽然发射功率不受限制,但发射功率的成倍增大带来的是电费成本的提高,5G已经面临这个问题,再不解决这个问题,恐怕很难发展下去。

三、6G能否与卫星通信融合,还有待于技术和商业的突破



对于6G,融合卫星通信目前是一个炒的很热的话题。如果能将卫星难集成进手机里无疑是一个非常吸引人的举措,再也不用担心信号覆盖问题了。

对于5G来说,目前如此显然卫星通信还没有集成到手机里,主要由于卫星成本,功率链路衰减和卫星的通信容量问题,不过最近几年,这些领域都有所突破,卫星的发射成本越来越低,在空间组成卫星网络成为商业可能。在功率问题上,低轨道卫星能大减少传输时延和衰减。

然而从目前情况来看,将卫星通信引入6G,也不是板上钉钉的事情,仍然面临着极大的挑战。

(1)目前为止,卫星服务仍是通过专用手机开展的,主要因为卫星制造、发射及运营成本还超出普通消费者的预算范围,如果卫星想融入6G手机,成本需要大幅降低,目前的情况还无法满足。

(2)卫星容量,卫星的容量远远小于地面基站,由于频谱效率和卫星数量的限制,卫星通信的用户速率局限为语音及较低速的应用。怎么降低成本已经成为当务之急。

加上卫星发射的信号必须还要通过谈判来获得相应国家的牌照许可,方能到达地面,估计短时间内仍然只能在本国使用。

四、芯片技术问题



未来估计6G芯片至少需要2nm的技术支撑,由于2nm技术超高的复杂度,目前看来其芯片的发展仍然掌握在少数商业巨头手里,华为的5G芯片生产问题已经如此。

实现6G愿景的技术目前看来不在于其新颖性和技术的理想高度,而在于其是否能为6G创造性价比高、可商业化的产品和服务。

6g很有可能是利用卫星实现高速率通信,毕竟5g也是同4 g一样建立地面基站,然后拉远天线,只是延迟更低,带宽更大,单个天线覆盖范围可能会变小,所以会有大量的5g天线点位,甚至一个路灯杆挂一个,这存在什么问题,较偏远地区很难实现覆盖,毕竟需要大量的立杆和基站以及通信线路。

所以6g很有可能直接发射卫星覆盖全球,形成一个个太空信号基站。

从5G到6G应该与从1G到5G的前几次移动通信技术换代类似,6G的绝大多数性能指标相比于5G将提升10到100倍。现有的5G信号传输速度大概是10G,而6G信号传输速度将会达到100G到1TB。

这个对于普罗大众来说最直观的感受,而实际上6G网络时延将会降低到01毫秒,是现有5G网络的十分之一,同时可靠性也比5G高出许多倍,网络信号中断几率远低于5G,并且6G将会采用太赫兹频段通信,频率为100GHz-10THz,要比毫米波的频段更高,网络容量会有较大幅度提升。

不过电磁信号频率越高,电磁波长就越短,信号传输范围也就越小,这意味着基站的覆盖范围随之缩小,也就是说6G信号的传播距离没有5G信号那么远,这就需要更多的基站完成信号的接力传递,需要比5G网络更多的基础设施才行。

但是6G无线网络会实现5G网络达不到的万物互联,不再局限于地面,可以与卫星和机载网络无缝连接,超高的定位精度可以对物联网设备精准定位,可以全面展开无人驾驶,以及无人机快递。

超快的信号传输速度让云端处理成为现实可能,所有手机将不会再受制于芯片,只需要能够连接网络,能够显示就行。毕竟现在的手机芯片已经逼近物理极限,继续提升难度极高,不如依靠云端处理传输数据回来。

再加上现在已经在推行的智能家居以及人工智能技术,网络世界将与物理世界深度融合,同时6G时代带来的万物互联,必将产生海量数据信息,这些数据关乎个人隐私,也就是说6G网络必定要比5G网络更加安全可靠。

1、在规定的时间内完成对该事件的处理,并控制所有实时任务协调一致地运行。虽然,多道批处理系统和分时系统已能获得较为令人满意的资源利用率和响应时间,从而使计算机的应用范围日益扩大,但它们仍然不能满足以下某些应用领域的需要。

2、实时控制系统,当把计算机用于生产过程的控制,以形成以计算机为中心的控制系统时,系统要求能实时采集现场数据,并对所采集的数据进行及时处理,进而自动地控制相应的执行机构,使某些(个)参数(如温度、压力、方位等)能按预定的规律变化,以保证产品的质量和提高产量。

3、也可将计算机用于对武器的控制,如火炮的自动控制系统、飞机的自动驾驶系统,以及导d的制导系统等;实时信息处理系统,该系统由一台或多台主机通过通信线路连接到成百上千个远程终端上,计算机接收从远程终端上发来的服务请求。

根据用户提出的请求对信息进行检索和处理,并在很短的时间内为用户做出正确的响应。如:网上订票,网上购物等。

扩展资料

在系统构架方面,主要分为三层、设备接入层、数据平台层以及基础应用层。其中设备接入层主要负责的是系统与其他设备之间的数据交换及命令出口。

数据平台层是系统数据集成与处理的核心,用于处理和存储实时的和历史的,结构化和非结构化数据。基础应用层是针对物联网应用常用的基础物可视功能,提供2D/3D图形组态工具、可自定义格式的报表工具、执行用户自定义逻辑的脚本系统,以及常用的图表展示工具。

参考资料来源:百度百科-实时 *** 作系统

WiFi技术:

WiFi方案的优势是技术成熟,单独的产品就可以接入公网,成本也是相对较低。

缺点则是WiFi设备一般功耗较大,在物联网领域中,供电是一个问题;

WiFi接入数量相对有限,一个家庭路由器一般只能接入几十个设备;

当然,WiFi方案在物联网初级阶段有较大优势,单独的WiFi模块依托路由器即可入网,优势明显,虽然接入数量不多,但是在物联网、智能家居未大规模普及的情况下,也可以满足大多数需求。

所以基于IoT UART串口WiFi模块WG219/WG229/WG231/LCS6260的WiFi方案更适用于对功耗要求不明显,不会大量部署的物联网产品,例如:智能电饭煲,智能空调、冰箱、洗衣机等传统家电设备接入物联网。

蓝牙技术:

蓝牙方案的主要优势在于蓝牙模块的超低功耗,而且通过app打开蓝牙与手机的交互比较简单。

目前随着蓝牙50模块SKB501、以及更多蓝牙50产品的上市,蓝牙技术的数据传输速度和覆盖范围等得到了巨大的提升,更加适用于物联网的要求。

所以,蓝牙方案适用于对功耗有要求,和手机可以直接交互的物联网产品,例如:智能门锁,智能秤,智能电动牙刷等,也适用于大规模蓝牙mesh灯控、蓝牙传感器网络的部署。

UWB技术:

超宽带技术是近年来新兴一项全新的、与传统通信技术有极大差异的通信无线新技术。它不需要使用传统通信体制中的载波,而是通过发送和接收具有纳秒或微秒级以下的极窄脉冲来传输数据,从而具有31~106GHz量级的带宽。目前,包括美国,日本,加拿大等在内的国家都在研究这项技术,在无线室内定位领域具有良好的前景。

UWB技术是一种传输速率高,发射功率较低,穿透能力较强并且是基于极窄脉冲的无线技术,无载波。正是这些优点,使它在室内定位领域得到了较为精确的结果。

超宽带室内定位技术常采用TDOA演示测距定位算法,就是通过信号到达的时间差,通过双曲线交叉来定位的超宽带系统包括产生、发射、接收、处理极窄脉冲信号的无线电系统。而超宽带室内定位系统则包括UWB接收器、UWB参考标签和主动UWB标签。定位过程中由UWB接收器接收标签发射的UWB信号,通过过滤电磁波传输过程中夹杂的各种噪声干扰,得到含有效信息的信号,再通过中央处理单元进行测距定位计算分析。

超宽带可用于室内精确定位,例如战场士兵的位置发现、机器人运动跟踪等。超宽带系统与传统的窄带系统相比,具有穿透力强、功耗低、抗干扰效果好、安全性高、系统复杂度低、能提供精确定位精度等优点。因此,超宽带技术可以应用于室内静止或者移动物体以及人的定位跟踪与导航,且能提供十分精确的定位精度。根据不同公司使用的技术手段或算法不同,精度可保持在01 m~05 m。

这个问题,建议你先从底层有个认知,便于理解实质性的区别。

一、技术原理

1)UWB、蓝牙,是一种通信技术于标准,各有其标准协议,两者应用频段也不相同,UWB遵循IEEE 802154A,蓝牙发展至今已到51代标准。

2)AOA、AOD、TOF、TDOA等,皆为定位方法,AOA可配合蓝牙应用,也可配合UWB应用,而蓝牙,目前不会配套TOF,TDOA应用,此点由硬件底层技术决定了。

3)AOA方法:简化理解,就是通过测量标签与基站的角度,进行换算得出两者的距离,因而两者的角度辨识度是关键。

AOA示意

4)TOF、TDOA方法,简化理解,就是通过时间进行测量,什么时间呢,是标签与基站之间的信号飞行时间,无线信号的飞行速度近似光速,所以测量精度要求会高。

TOF示意

二、应用特性

由上可知,UWB技术,通常指的是采用TOF、TDOA方法的,蓝牙AOA,字面已可以理解,采用AOA方法。

1)安装特性:

    安装上,UWB整体更优。UWB采用飞行时间且无线频段基于超宽带脉冲波技术,抗干扰性能更优,安装时环境可选择性更宽,而AOA因与角度有关,基站安装要求具备一定高度范围,否则需要安装的基站数量成倍增长。

2)成本特性:

     成本上,蓝牙通常更优。单体硬件成本而言,UWB的标签成本通常为蓝牙标签成本的2~3倍。单体基站成本差异较小。但遇到高度受限场景,蓝牙所需部署基站激增,则整体成本优势可能逆转。

3)维护特性:

     维护上,蓝牙更优,但对于使用者的影响,多数场景差异不大。通常应用于人的,是充电方式,UWB一次可用1~3个月,蓝牙通常用换电方式,一次半年~1年。对于物品,则基本都可做到1~3年。故依据使用场景不同,对于维护的判定则有所偏倚。

4)群体特性:

    群体上,UWB目前更广泛的适用于工业场景,其工业应用保障性也已经受众多案例验证和认可。蓝牙更多使用于商业环境,目前基于手机都具备蓝牙功能,其也有独特的标签(终端)自由特性,部分场景可自然融入消费者。

5)供应关系特性:

    目前国内乃至全球,UWB方案厂商都基于Decawave芯片研发,故产品性能特性上区别有限,更多的区别是基于落地案例经验而优化的算法及整体服务,如WEWILLS众志基于1200+的落地经验,以物联网大平台及贴地气服务根基。蓝牙AOA,目前国内厂家较少,仍处于萌芽阶段,需要更多的落地案例推动厂家丰富化及技术成熟化。

三、全面性

     另,建议除了UWB及蓝牙AOA,可以全面的了解物联网相关技术,在不同的应用场景,采用单技术或多技术特点融合的方式,将会是更好适配需求的不二法宝。以下共享部分分析。

物联网技术对比


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/12893097.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-28
下一篇 2023-05-28

发表评论

登录后才能评论

评论列表(0条)

保存