使用教材
备注
物联网产业与技术导论
《物联网:技术、应用、标准与商业模式》,电子工业出版社,等教材。
在学完高等数学,物理,化学,通信原理,数字电路,计算机原理,程序设计原理等课程后开设本课程,全面了解物联网之RFID、M2M、传感网、两化融合等技术与应用。
C语言程序设计
《C语言程序设计》,清华大学出版社,等教材。
物联网涉及底层编程,C语言为必修课,同时需要了解OSGi,OPC,Silverlight等技术标准
Java程序设计
《Java语言程序设计教程》,机械工业出版社,等教材。
物联网应用层,服务器端集成技术,开放Java技术也是必修课,同时需要了解Eclipse,SWT, Flash, HTML5,SaaS等技术
无线传感网络概论
《无线传感器网络理论、技术与实现》,国防工业出版社,《短距离无线通讯入门与实战》北京航空航天大学出版社,等教材。
学习各种无线RF通讯技术与标准,Zigbee, 蓝牙,WiFi,GPRS,CDMA,3G, 4G, 5G,Mote等等
TCP/IP网络与协议
《TCP/IP网络与协议》,清华大学出版社,等教材。
TCP/IP以及OSI网络分层协议标准是所有有线和无线网络协议的基础,Socket编程技术也是基础技能,为必修课
嵌入式系统
《嵌入式系统技术教程》,人民邮电出版社等教材。
嵌入式系统是物联网感知层和通讯层重要技术,了解TinyOS等,为必修课
传感器技术概论
《传感器技术》,中国计量出版社,等教材。
物联网专业学生需要对传感器技术与发展,尤其是在应用中如何选用有所了解,但不一定需要了解传感器的设计与生产,对相关的材料科学,生物技术等有深入了解
RFID技术概论
《射频识别(RFID)技术原理与应用》,机械工业出版社,等教材。
RFID作为物联网主要技术之一,需要了解,它本身(与智能卡技术融合)可以是一个细分专业或行业,也可以是研究生专业选题方向。
工业信息化及现场总线技术
《现场总线技术及应用教程》,机械工业出版社,等教材。
工业信息化也是物联网主要应用领域,需要了解,它本身也可以是一个细分专业或行业,也可作为研究生专业选题方向。
M2M技术概论
《M2M: The Wireless Revolution》,TSTC Publishing,等教材。
本书是美国“Texas State Techinical College”推出的M2M专业教材,在美国首次提出了M2M专业教学大纲,M2M也是物联网主要领域,需要了解,建议直接用英文授课。
物联网软件、标准、与中间件技术
《中间件技术原理与应用》,清华大学出版社,《物联网:技术、应用、标准与商业模式》,电子工业出版社,等教材。
物联网产业发展的关键在于应用,软件是灵魂,中间件是产业化的基石,需要学习和了解,尤其是对毕业后有志于走向工业和企业界的学生。花开半夏
面向物联网的21个开源软件项目有哪些,物联网开源平台搭建
admin 07-26 04:41 166次浏览
2019独角兽企业重金招聘Python工程师标准
51CTOcom直译物联网市场呈现碎片化、无定形化、不断变化的特征,其性质通常只需关注互 *** 作性。 难怪开源在这方面不俗。 ——客户犹豫不决,害怕将物联网的未来寄托在可能难以定制或互联的专有平台上。
本文介绍了主要的开源软件项目,重点讨论了面向家庭和工业自动化的开源技术。 我们忽略了专注于垂直领域的物联网项目,如Automotive Grade Linux和Dronecode。 我们还忽略了面向互联网的开源 *** 作系统发行版,包括Brillo、Contiki、Mbed、OpenWrt、Ostro、Riot和Ubuntusnappping。这次,我们将智能
这里介绍的21个项目包括由Linuxfoundation管理的两个大型项目: Allseen(Alljoyn )和ocf (iotivity ),以及物联网传感器的端点和网关我还介绍了几个专门针对物联网生态系统特定领域的小项目。 我们曾介绍过更多的项目,但越来越难分清物联网软件和普通软件的区别。 从嵌入式环境到云,越来越多的项目都带有物联网元素。
您声称这21个项目都是开源的,但请确保完整的名称不在本文的范围内。 它们至少在生态系统的一个部分运行Linux,大多数都完全支持Linux,从开发环境到云/服务器、网关和传感器端点部件。 大多数组件都有可以在Linux开发板(如Raspberry Pi和BeagleBone )上运行的组件,大多数都支持Arduino。
物联网领域仍然有很多专有技术,特别是在自上而下的企业平台上。 但是,其中也提供了部分开放访问权限。 例如,威瑞森的ThingSpace针对4G智慧城市APP应用,拥有一套免费的开发API,支持开发板,尽管核心平台本身是独一无二的。 相似的是,亚马逊的AWS物联网工具包包括部分开放的设备SDK和开源入门工具包。
其他主要的专有平台包括苹果的HomeKit和微软的Azure物联网工具包。 在拥有230个成员的Thread Group中,该组织监督基于6LoWPAN的对等Thread网络协议。 Thread Group由谷歌的母公司Alphbet旗下的Nest设立,没有提供像AllSeen和OCF那样全面的开源框架。 但是,它与Brillo相关,也与Weave物联网通信协议相关。 5月,Nest发布了名为OpenThread的开源版Thread。
介绍21个面向物联网的开源软件项目。
AllseenAlliance(Alljoyn ) )。
由Allseenalliance(asa )监管的AllJoyn互 *** 作系统框架可能是市场上采用最广泛的开源物联网平台。
Bug Labs dweet和freeboard
bugglas是从制造基于模块化Linux的有bugh的硬件设备开始的,但很久以前就演变成了与硬件无关的企业级物联网平台。 Bug Labs提供“dweet”消息、警告系统和“freeboard”物联网设计APP。 dweet使用HAPI Web API和JSON来帮助发布和描述数据。 freeboard是一种拖放式工具,用于设计物联网仪表板和可视元素。
DeviceHive
DataArt基于AllJoyn的设备管理平台可以运行在许多云服务上,包括Azure、AWS、Apache Mesos和OpenStack。 DeviceHive专注于使用ElasticSearch、Apache Spark、Cassandra和Kafka,分析大数据。 有些网关组件可以在运行Ubuntu Snappy Core的任何设备上运行。 模块化网关软件与DeviceHive云软件和物联网协议配合使用,作为Snappy Core服务进行部署。
DSA
分布式服务架构(DSA )便于集中式设备的互 *** 作性、逻辑和APP应用。 DSA项目正在构建分布式服务链接(DSLinks )库,以支持协议转换以及与第三方数据源的数据集成。 DSA提供了一个可扩展的网络拓扑,其中包括多个DSLinks,用于在连接到分层代理分层结构的物理互联网边缘设备上运行。
EclipseIOT(Kura ) )。
Eclipse基金会的物联网主要围绕基于Java/OSGi的Kura API容器和聚合平台,支持在服务网上运行的m2m APP应用。 Kura基于Eurotech的Everywhere Cloud物联网框架往往与Apache Camel集成,后者是基于Java的基于规则的路由和中介引擎。 Eclipse物联网子项目包括Paho消息传递协议框架、面向轻量级服务器的Mosquitto MQTT体系结构和Eclipse SmartHome框架。 有些项目实现名为Californium的基于Java的受限APP应用协议(CoAP )。
Kaa
CyberVision支持的Kaa项目为云互联的大型物联网提供了可扩展的端到端物联网框架。
该平台包括一种支持REST的服务器功能,可用于服务、分析和数据管理,通常部署成由Apache Zookeeper协调的节点集群。Kaa的端点SDK支持Java、C++和C开发,负责处理客户机/服务器通信、验证、加密、持久性和数据编排。SDK包括针对特定服务器、支持GUI的模式,这些模式可转换成物联网物件绑定。模式治理语义,并抽象一组迥异设备的功能。
Macchinaio
Macchinaio提供了一种“支持Web、模块化、可扩展的”JavaScript和C++运行时环境,可用于开发在Linux开发板上运行的物联网网关应用程序。Macchinaio支持一系列广泛的传感器和连接技术,包括Tinkerforge bricklet、XBee ZB传感器、GPS/GNSS接收器、串行和GPIO联网设备以及方向感应器。
GE Predix
GE面向工业物联网的平台即服务(PaaS)软件基于Cloud Foundry。它增添了资产管理、设备安全、实时预测分析,并支持不同数据的采集、存储和访问。GE Predix是GE为内部运营而开发的,它已成为最成功的企业物联网平台之一,收入大约60亿美元。GE最近与HPE达成了合作伙伴关系,HPE将把Predix整合到自己的服务中。
Home Assistant
这个作为后起之秀的草根项目提供了一种面向Python的家居自动化方法。
Mainspring
M2MLabs的基于Java的框架针对远程监控、车队管理和智能电网等应用领域中的M2M通信。与许多物联网框架一样,Mainspring高度依赖REST Web服务,并提供了设备配置和建模工具。
Node-RED
这种面向Nodejs开发人员的可视化布线工具拥有基于浏览器的数据流编辑器,可用于设计物联网节点当中的数据流。然后,节点可以迅速部署成运行时环境,并使用JSON来存储和共享。端点可以在Linux开发板上运行,支持的云包括Docker、IBM Bluemix、AWS和Azure。
Open Connectivity Foundation(IoTivity)
英特尔和三星支持的开放互联联盟(OIC)组织和UPnP论坛组成的这个组织正在努力成为物联网方面领先的开源标准组织。OCF的开源IoTivity项目依赖充分利用的JSON和CoAP。
openHAB
OpenIoT
这款基于Java的OpenIoT中间件旨在使用一种公用云计算交付模式,为开放、大规模的物联网应用提供便利。除了表示物联网物件的本体、语义模型和标注外,该平台还包括传感器和传感器网络中间件。
OpenRemote
OpenRemote为家庭和楼宇自动化而设计,它以广泛支持众多智能设备和网络规范而出名,比如1-Wire、EnOcean、 xPL、Insteon和X10等规范。规则、脚本和事件都得到支持,还有基于云的设计工具,可用于用户界面、安装、配置、远程更新及诊断。
OpenThread
这是Nest最近从基于6LoWPAN的物联网Thread无线网络标准分离出来的开源项目,它还得到了ARM、Microchip旗下的Atmel、Dialog、高通和德州仪器的支持。OpenThread实现了所有Thread网络层,还实现了Thread的端点设备、路由器、Leader和边界路由器等角色。
Physical Web/Eddystone
谷歌的Physical Web让蓝牙低能耗(BLE)信标可以将URL发送到智能手机。它针对谷歌的Eddystone BLE信标经过了优化,这提供了除苹果的iBeacon之外的一种开放技术。其想法是,行人可以与任何具有BLE功能的支持性设备(比如汽车停放计时器、标牌或零售产品)联系。
PlatformIO
基于Python的PlatformIO包括IDE、项目生成器和基于Web的库管理器,它是为访问来自基于微控制器的Arduino和基于ARM Mbed的端点的数据设计的。它为200多种板卡提供了预先配置的设置,并与Eclipse、Qt Creator及其他IDE整合起来。
The Thing System
这种基于Nodejs的智能家居“监管”软件声称支持真正的自动化,而不是简单的通知。其自学习人工智能软件可处理许多协同式M2M *** 作,不需要由人干预。缺少云组件恰恰提供了更好的安全性、隐私性和控制性。
ThingSpeak
成立五年的ThingSpeak项目专注于传感器日志、位置跟踪、触发器及提醒以及分析。ThingSpeak用户可以使用用于物联网分析和可视化的MATLAB版本,不需要向Mathworks购买许可证。
Zetta
Zetta是一种面向服务器的物联网平台,利用Nodejs、REST和WebSockets构建而成,奉行基于数据流的“响应式编程”开发理念,用Siren超媒体API连接起来。设备被抽取成REST API,用云服务连接起来,这些服务包括可视化工具,并支持Splunk之类的机器分析工具。该平台可将Linux和Arduino开发板之类的端点与Heroku之类的云平台连接起来,以便构建地理分布式网络。
转载于:>1、面向连接的:使用TCP协议通信的双方必须先建立连接,然后才能开始数据的读写,TCP连接是全双工的,即双方的数据读写可以通过一个连接进行。完成数据交换之后,通信双方都必须断开连接以释放资源。TCP协议的这种连接是一对一的,所以基于广播和多播(目标是多个主机地址)的应用程序不能使用TCP服。而无连接协议UDP则非常适合于广播和多播。
2、流式服务:TCP的字节流服务的表现形式就体现在,发送端执行的写 *** 作数和接收端执行的读 *** 作次数之间没有任何数量关系,当发送端应用程序连续执行多次写 *** 作的时,TCP模块先将这些数据放入TCP发送缓冲区中。当TCP模块真正开始发送数据的时候,发送缓冲区中这些等待发送的数据可能被封装成一个或多个TCP报文段发出。(下图3-1)
3、UPD的数据报服务:发送端应用程序每执行一次写 *** 作,UDP模块就将其封装成一个UDP数据报并发送之。接收端必须及时针对每一个UDP数据报执行读 *** 作(通过recvfrom系统调用),否则就会丢包(这经常发生在较慢的服务器上)。并且,如果没有指定足够的应用程序缓冲区来读取UDP数据,则UDP数据将被截断。最新的热门技术有:
1、物联网通信协议:主要解决设备的联网、互联互通,安全传输等,包括CoAP、MQTT、NB-IOT、LORA,sigfox等协议。
2、边缘计算:主要解决设备管理和数据分析、汇聚的边缘化,主要解决未来海量设备联网对带宽的冲击,对传输时延的要求,对数据隐私的保护要求。
3、雾计算:边缘各个物联网设备计算节点相互配合,完成复杂计算任务。解决设备资源的重复利用等问题。
4、大数据:分析海量设备的数据分析,支撑快速和精准决策。
5、人工智能:综合利用设备所产生的数据,应用人工智能技术,产生一些列的智能化应用,让物联网的价值充分发挥。物联网的终极目标是智能,大量的智能应用的实现依赖于物联网。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)