湘潭县职业技术学校
中等专业学校 公办 国家级重点学校 省级示范学校
官方地址:湖南湘潭市湘潭县 官方网址: >
湘潭县职业技术学校创办于1984年,是湘潭县人民政府举办的全日制中职学校,是国家级重点职业中专、湖南省示范性中职学校、湖南省示范性县级职教中心牵头学校学校传承爱国、求知、创业、兴工的“楚怡”职教精神,全面落实立德树人根本任务,以服务发展为宗旨,以促进就业为导向,办特色学校,育技能人才办学以来,学校先后被评为全国职业教育先进单位、全国教育系统先进集体、全国农村青年就业转移先进单位、全国国防教育特色学校、湖南省文明标兵校园、湖南省文明卫生单位 学校坐落于湘潭天易经开区,毗邻湘莲大道,交通便捷,区位优势突出学校占地面积117亩,建筑面积94422万㎡校园绿树成荫,花草掩映,环境优美学校教学、实训、培训、阅览、运动等设施设备齐全建有生产性实习实训基地3个,汽车实训室、信息技术实训室、财会模拟室、餐饮实训室、航空实训室等高标准实习实训室62间,装备交互式电子白板教学一体机教室62间学校主动对接区域和产业需求,积极推进产教融合、校企合作育人,是湖南省职业教育产教融合工程规划项目推荐备选中职项目学校 为者常成,行者常至奋进中的县职校在国家大力发展现代职业教育的实践中,积极响应新时代发展呼唤,锐意改革、积极进取,全力打造职业教育新高地,坚定不移地朝着全省一流、全国千强的优质中职校目标奋勇前进
其他信息:湖南职业技术学院的专业主要有:电子信息工程技术、工业机器人技术、应用电子技术、嵌入式技术与应用、现代通信技术、无人机应用技术、物联网应用技术、机械设计与制造、数控技术、汽车检测与维修技术、电气自动化技术、机电一体化技术、工业互联网技术、汽车智能技术、软件技术、数字媒体技术、移动互联应用技术、动漫制作技术、环境艺术设计、移动应用开发、人工智能技术应用、计算机应用技术等。
材料补充:
湖南职业技术学院类学校有很多,主要包括湖南信息职业技术学院、湖南工程职业技术学院、湖南工业职业技术学院、湖南理工职业技术学院等。具体介绍如下:
1、湖南信息职业技术学院院创建于1975年,1991年整体从怀化搬迁到长沙,1999年和电子职工大学合并升格为高等职业院校,是长沙市政府直属的公办高职院校,是湖南省首批经国家教育部批准的高等职业技术学院。
2、湖南工程职业技术学院是国家教育部备案、湖南省人民政府批准、湖南省自然资源厅主管的一所国有公办全日制普通高等学校。
3、湖南工业职业技术学院是1999年经教育部批准设立的高等职业技术学院,学校前身为创办于“一五”期间的湖南工业学校。
4、湖南理工职业技术学院是经省人民政府批准、国家教育部备案设立的全日制公办普通高等院校。
湘潭时变通讯好。根据查相关信息显示:它是一家位于湖南省湘潭市的通讯设备供应商和服务提供商。公司主要从事电力通信、计算机信息化以及智能交通等领域的技术开发、产品生产以及工程设计、安装、维护等服务。公司的主营业务包括电力自动化设备、通讯设备、无线通信产品、安全监控设备、物联网技术产品等。聚羧酸减水剂生产控制系统的工业物联网框架设计与实现严海蓉1,王子明2
(1北京慧物科联科技有限公司,北京 100124,2北京工业大学,北京 100124)
摘要:工业物联网既提供了在生产过程中获取并控制聚羧酸减水剂生产设备的信息的方式,也提供了基本的网络架构,方便系统集成和扩展。该框架在分析了聚羧酸减水剂生产流程的基础上被划分为设备控制层、通讯层和应用服务层。根据实际应用需求,描述了工业物联网架构可以方便接入设备,贴近工艺完成软件,并让机器具有智能。企业应用案例表明该系统能够有效地实现生产状态跟踪监测和生产设备自动控制的目标,对进一步研究工业物联网技术和解决方案具有一定的参考价值。
关键词:工业物联网;自动化控制系统;聚羧酸减水剂生产设备
中图分类号:TP273 文献标识码:A
Theindustrial IOT design of automatic control system for polycarboxylate superplasticizer
YAN Hairong1, Wang Ziming2
(1.Beijing Sophtek Corp,2 Beijing University of Technology,Beijing 100124,China)
0引言
原来的聚羧酸减水剂生产自动化控制不能充分满足生产工艺要求,存在的主要问题是:
1) 新设备接入非常困难;
2) 同类不同厂家设备不方便更换;
3) 匀速滴加过程中不能达到理想的控制速度,传统PID算法波动较大,常需要人工手动干预;
4) 温度控制需要人工参与控制,无法完成全自动;
电话 扣扣53O934955
工业物联网是工业40的支撑框架。物联网被称为继计算机、互联网之后,世界信息产业的第三次浪潮。它的发展离不开应用,面向工业自动化的工业互联网技术是物联网的关键组成部分[1]。工业物联网通过将具有感知能力的智能终端、无处不在的移动计算模式、泛在的移动网络通信方式应用到工业生产的各个环节,提高制造效率,把握产品质量,降低成本,减少污染,从而将传统工业提升到智能工业的新阶段[2]。
工业物联网框架中,整个系统具有强大的数据服务器,能够进行大数据的计算。在数据量足够的时候能够利用网络智能来帮助企业进行决策、配方优化和自动的设备维护等。
整个控制系统具有分布式智能能力。整个系统中,可以把数据都送到中控部分来完成;也可以将一些需要及时处理的,如温度控制等,直接由现场控制来完成。系统通常分为中央控制单元和分布的现场控制单元,中央控制单元由工业控制计算机充当,现场控制单元则由高可靠、抗干扰的工业级微控制器和与当前控制需求相配套的附加电路模块组成。依托微控制器的实时处理能力可以完成对现场生产进行实时调节控制,并且通过总线实现现场控制单元与中央控制单元进行数据交互,使生产过程表现出整体性、协调性,从而优化生产工艺、提高生成效率。
系统通过总线把各个独立的控制模块组织成在一起。控制模块的独立性,使得系统中各个分布的控制模块检修、升级、数量扩充都很方便,也为在生产规模扩大时控制系统扩充预留了接口。
因此工业物联网框架才能彻底解决传统控制的一些问题,真正贴合聚羧酸减水剂生产工艺。
1 系统概要设计
根据聚羧酸减水剂的生产过程,可以将聚羧酸减水剂自动化控制系统分为设备控制层、通讯层和应用服务层,系统框架如图1所示。
图1 系统框架图
图1中,应用服务层主要实现对生产过程中实时数据和生产状态的跟踪监测和管理,同时提供各种应用UI接口,用户可以通过使用计算机、手机等手持设备登录客户端来访问或获取所需要的数据或信息等,从而实现物联网的厂内处处可访问。一旦将企业网络与公共网络连接,用户登录后就可以实现生产数据随处可访问。
应用服务层中还包括有控制逻辑层,控制逻辑层通过与 *** 作人员进行交互,并且汇集、分析、存储和处理生产过程中的实时数据和生产状态,实现生产过程的逻辑控制。
通讯层主要实现设备控制层、控制逻辑层和应用服务层之间的可靠传输。
设备控制层主要实现原始数据的采集与分析、数据和状态的上传、控制指令的接收等。嵌入式控制器内的智能逻辑将和聚羧酸减水剂生产各工序要求的生产工艺(加料、滴加、温度调节、pH调节)等紧密贴合,并与控制逻辑层相互通讯完成所要求的工艺精密控制。
整个系统采用划分层次的设计思路使得系统具有很好的可移植性,各种传感器可以灵活的接入系统。这样新系统的总体实现或者旧系统的扩展可以采用“搭积木”的方式完成构建。
2 系统详细设计
根据以上设计的系统工业物联网框架和体系结构,本研究将以北京某公司的具体项目为例,详细介绍该系统的设计和应用过程。
21设备接入示例
基于工业物联网架构的设计,可以很容易的接入各种设备。比如如图2所示的聚羧酸减水剂自动化控制系统接入了一个服务器、一个 *** 作员站、若干显示器、2个控制站,若干现场设备和用户手机。
图2基于工业物联网架构的设备接入实例
服务器负责存储生产数据,包括生产 *** 作日志和生产过程数据,便于生成台帐和报表。也可以与各种财务、资产管理软件连接。同时,负责承载起局域网与大网络的连接工作。
*** 作员站上运行的软件,方便 *** 作员在中控室来 *** 作现场各种阀门、电机等开停,从而按照工艺过程完成生产。
控制站自动获得 *** 作员 *** 作命令来控制现场设备,比如阀门等,同时也自动从现场设备获取各种状态,比如称重数据等传给控制室控制机器。
现场设备是包括传感器和各类执行器,比如秤、阀门等自动工作。
图中的手机设备是为了表示出工业物联网框架可以任意接入设备的特性。比如,在该框架下,巡视人员可以通过手机进行接入,完整现场紧急控制一些阀门的开或者是关。经理等就可以通过手机来查看每天生产数据。
同时,对于不同厂家的同类设备,该工业物联网框架也有较好的兼容能力。
22贴合工艺的软件设计
软件包括生产线管理软件和工业现场控制软件。生产线管理软件工作于生产管理计算机,主要实现工艺管理、配方管理;通过网络,根据权限,可调出 *** 作人员的现场 *** 作记录,完成对现场的远程管理。工业现场控制软件工作于车间级服务器中,主要通过与工艺以及现场布置相同的画面显示,使得 *** 作人员便于 *** 作,以实现现场设备仪表信号的采集、处理,配方管理和现场数据实时界面显示和控制等功能。
图3 聚羧酸合成控制生产工艺示意图
根据实际生产过程和自动化控制系统的特点,当前聚羧酸生产过程分大单体预化过程、 A、B料预混过程、A、B料计量罐加料过程、碱计量罐加料过程、A、B料滴加过程、反应釜搅拌控制过程、反应釜温度控制过程,针对不同的过程,分别实现其控制目标,从而达到完整生产过程的控制。
下面以工艺中的A、B料计量罐滴加控制为例来说明软件设计功能。
首先控制系统为用户提供友好的A、B滴加控制对话框,方便用户可视化 *** 作。用户可以选择采用以前输入的备用方案进行控制,也可以选择自己新输入方案进行空控制。总之都能够根据配方在规定的时间内,将指定质量的物料匀速加入到对应的反应釜中。
图4 启动已存备用方案滴加
图5 启动自定义方案采用三阶段定量滴加示例
其次控制系统采用分段式匀速滴加模式(图5),启动滴加时,控制系统计算出三个阶段分别的预期流速。控制系统实时读取当前计量罐的质量,并根据当前时间,计算出实时流速。控制系统根据实时流速和预期流速的差值,控制调节阀的开启度,从而控制滴加速度。
图6 滴加控制效果示意图(多阶段不同流速)
最后,显示出实时滴加工作界面(图6),工作工作误差一般不大于1%。
23机器学习的智能能力
原来控制系统由于没有采用物联网框架,数据存储量不充分,从而无法让机器自主学习。各种设备常常需要人来手工调整,设定最高最低值;控制过程需要人工进行干预,来辅助机器完成自动控制。
而现有的工业物联网架构,拥有了专门的数据服务器,从而可以存储较大量的数据。而对于这些数据进行分析而产生的机器智能不可小觑。
比如,以前温度控制时,只能根据人工经验设定一个固定的值。反应釜的材质、容量、夹套、搅拌电机、搅拌桨叶等设备本身因素会影响调温结果。
而往往由于冬夏的自来水、室内温度、物料温度、反应剧烈程度等也会影响调温结果。因此在控制系统安装后要进行长时间的人工参与测试来努力找到一个合适的最大最小值。而测试时间毕竟短,这个值一旦这个值固定后,后续生产时就无法轻易改变,为此生产 *** 作员常需要来观测这个温度控制过程并且来参与控制,否则很难达到理想的控制效果。
再比如对于滴加控制的PID算法,往往由设计者人为给定一个PID参数,也无法完全适应实际设备磨损等情况。
而基于工业物联网架构的控制时,可以在服务器端运行一个智能控件,由它来自动学习历史调温或者滴加流速的变化情况,不断训练软件,让软件重新找到合适的上下调节阈值,这样才可以真正达到完全自动化。整个系统拥有了自己不断学习的机器智能。
3 系统测试结果
基于工业物联网的聚羧酸减水剂自动化控制系统在设计和开发完成后,在北京某工厂的实际生产线上投入使用。目前,该系统运行安全、稳定,大部分功能已经实现,达到了预期的效果。
在系统正式投入使用后,对系统的工业现场控制软件、生产线管理软件和嵌入式控制器进行了长时间的测试。针对实现过程中遇到的问题做了大量的调试工作。下面以实现滴加A料为例对系统的测试进行描述。
*** 作人员在控制室通过点击用户 *** 作界面的A料滴加阀门按钮进行滴加参数的配置,如图7所示。 *** 作人员需要输入的参数为滴加质量和滴加时间,同时系统也支持分阶段滴加。在点击开始滴加按钮后,服务器会向嵌入式控制器发送滴加A料指令。
图7 滴加A料配置界面
嵌入式控制器在接收到服务器下发的滴加A料指令后,会进行自动化控制,实现A料的滴加 *** 作,具体效果如图8所示。
图8 5个反应釜同时进行A料滴加曲线示意图
图8中5条不同颜色的线分别表示5个不同计量罐的A料滴加曲线,系统支持多个计量罐同时进行滴加 *** 作。左侧上升的直线表示向计量罐加入A料的过程,系统支持多个计量罐同时加料,质量控制精确,定量加料的误差在01%以内。右侧下降的曲线表示滴加A料过程,曲线的斜率即为速度。由图可知,系统基本上能够实现匀速滴加A料过程,同时,系统也支持连续4小时的滴加 *** 作,时间误差在1分钟左右。
基于工业物联网的聚羧酸减水剂自动化控制系统投入运行后,提高了聚羧酸减水剂的产品质量,提高了工艺生产的自动化程度,大大减轻了 *** 作人员的劳动强度,提高了企业的竞争力。
4 结束语
本研究基于工业物联网架构设计的聚羧酸减水剂自动化控制系统对聚羧酸减水剂生产过程可以进行高效的跟踪管理,在实际应用中具有重要作用。它使聚羧酸减水剂生产设备具备了一定的数据感知、处理和通信能力,从而为企业制定更好的工艺流程提空帮助。同时,它也促使聚羧酸减水剂生产管理过程更加科学和精细化。该系统的成功开发设计为工业物联网在化工行业的推广打下了基础,做出了积极地探索。
参考文献:
[1]LIANG Wei,ZENGPeng Internet of Things Technology and Application Oriented IndustrialAutomation[J] Instrument Standardization & Metrology,2010:21-24[梁炜,曾鹏面向工业自动化的物联网技术与应用[J]仪器仪表标准化与计量,2010:21-24]
[2] KANGShilong,DU Zhongyi,LEIYongmei,ZHANG Jing Overview of industrial Internet of Things[J]Internet of Things Technologies,2013:80-82,85[康世龙,杜中一,雷咏梅,张璟工业物联网研究概述[J]物联网技术,2013:80-82,85]
[3] BIDongzhen The Design and Realization of Industrial Sewing Machines System Basedon the IoT[D]Shandong: Qingdao University,2012[毕东贞基于物联网的工业缝纫机系统的设计与实现[D]山东:青岛大学,2012]
[4]ZHANG Ximin,WANGGuoqing,DINGXuenian Development of an Internet home automation system[J] Chinese Journalof Scientific Instrument,2009,30(11):2423-2427[张喜民,王国庆,丁学年基于因特网的远程家居自动控制系统研制[J]仪器仪表学报,2009,30(11):2423-2427]
[5]WU Jiaqiang Tracking and quality monitoring system based on IOT industrial forsteel pipe[J] Journal of Mechanical &ElectricalEngineering,2013,30(11):1335-1339[伍家强基于工业物联网的钢管跟踪及质量监测系统[J]机电工程,2013,30(11):1335-1339]
[6]LI Nan,LIUMin,YANJunwei Frame work for industrial internet of things oriented to steel continuouscasting plant MRO[J] Computer Integrated Manufacturing Systems,2011,17(2):413-418[李楠,刘敏,严隽薇面向钢铁连铸设备维护维修的工业物联网框架[J]计算机集成制造系统,2011,17(2):413-418]物联网是在互联网的基础上通过射频识别(RFID)、红外感应器、全球定位系统(GPS)、激光扫描器等信息传感设备达到物物相连,并可进行信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理的一种网络。所以物联网综合了互联网、RFID、GPS、激光扫描器等,其中涉及到不同的专业,从目前来讲不仅是个跨多个专业的行业且是个高新技术的行业。
首批增加该专业的高校:
序号
主管部门、学校名称
专业代码
专业名称
修业
年限
学位授
予门类
工业和信息化部
1
北京航空航天大学
080216S
纳米材料与技术
四年
工学
2
北京理工大学
080640S
物联网工程
四年
工学
3
北京理工大学
081106S
能源化学工程
四年
工学
4
哈尔滨工业大学
080640S
物联网工程
四年
工学
5
哈尔滨工业大学
080643S
光电子材料与器件
四年
工学
6
哈尔滨工业大学
081106S
能源化学工程
四年
工学
7
哈尔滨工程大学
080640S
物联网工程
四年
工学
8
哈尔滨工程大学
080643S
光电子材料与器件
四年
工学
9
哈尔滨工程大学
080644S
水声工程
四年
工学
10
南京航空航天大学
080640S
物联网工程
四年
工学
11
南京理工大学
080216S
纳米材料与技术
四年
工学
12
南京理工大学
080512S
新能源科学与工程
四年
工学
13
西北工业大学
080640S
物联网工程
四年
工学
14
西北工业大学
080644S
水声工程
四年
工学
交通运输部
15
大连海事大学
080641S
传感网技术
四年
工学
教育部
16
中国人民大学
020121S
能源经济
四年
经济学
17
北京科技大学
080216S
纳米材料与技术
四年
工学
18
北京科技大学
080640S
物联网工程
四年
工学
19
北京化工大学
081106S
能源化学工程
四年
工学
20
北京邮电大学
080640S
物联网工程
四年
工学
21
中国传媒大学
050307S
新媒体与信息网络
四年
文学
22
华北电力大学
080217S
新能源材料与器件
四年
工学
23
华北电力大学
080512S
新能源科学与工程
四年
工学
24
华北电力大学
080645S
智能电网信息工程
四年
工学
25
华北电力大学
081106S
能源化学工程
四年
工学
26
中国石油大学(北京)
081106S
能源化学工程
四年
工学
27
南开大学
080218S
资源循环科学与工程
四年
工学
28
天津大学
080215S
功能材料
四年
工学
29
天津大学
080640S
物联网工程
四年
工学
30
天津大学
080642S
微电子材料与器件
四年
工学
31
大连理工大学
080215S
功能材料
四年
工学
32
大连理工大学
080216S
纳米材料与技术
四年
工学
注:专业代码加有“S”者为在少数高校试点的目录外专业。
33
大连理工大学
080640S
物联网工程
四年
工学
34
大连理工大学
080641S
传感网技术
四年
工学
35
大连理工大学
081106S
能源化学工程
四年
工学
36
大连理工大学
081303S
海洋资源开发技术
四年
工学
37
东北大学
080215S
功能材料
四年
工学
38
东北大学
080218S
资源循环科学与工程
四年
工学
39
东北大学
080512S
新能源科学与工程
四年
工学
40
东北大学
080640S
物联网工程
四年
工学
41
吉林大学
080640S
物联网工程
四年
工学
42
华东理工大学
080217S
新能源材料与器件
四年
工学
43
华东理工大学
080218S
资源循环科学与工程
四年
工学
44
东华大学
080215S
功能材料
四年
工学
45
东南大学
080217S
新能源材料与器件
四年
工学
46
东南大学
080641S
传感网技术
四年
工学
47
中国矿业大学
081106S
能源化学工程
四年
工学
48
河海大学
080512S
新能源科学与工程
四年
工学
49
河海大学
080640S
物联网工程
四年
工学
50
江南大学
080640S
物联网工程
四年
工学
51
中国药科大学
081107S
生物制药
四年
工学
52
中国药科大学
100812S
药物分析
四年
理学
53
中国药科大学
100813S
药物化学
四年
理学
54
浙江大学
080512S
新能源科学与工程
四年
工学
55
浙江大学
081302S
海洋工程与技术
四年
工学
56
合肥工业大学
080217S
新能源材料与器件
四年
工学
57
合肥工业大学
080640S
物联网工程
四年
工学
58
山东大学
080218S
资源循环科学与工程
四年
工学
59
山东大学
080640S
物联网工程
四年
工学
60
中国海洋大学
081303S
海洋资源开发技术
四年
工学
61
中国石油大学(华东)
081009S
环保设备工程
四年
工学
62
武汉大学
080640S
物联网工程
四年
工学
63
武汉大学
081107S
生物制药
四年
理学
64
华中科技大学
080215S
功能材料
四年
工学
65
华中科技大学
080512S
新能源科学与工程
四年
工学
66
华中科技大学
080640S
物联网工程
四年
工学
67
华中科技大学
080643S
光电子材料与器件
四年
工学
68
华中科技大学
081107S
生物制药
四年
工学
69
武汉理工大学
080640S
物联网工程
四年
工学
70
武汉理工大学
080716S
建筑节能技术与工程
四年
工学
71
湖南大学
080640S
物联网工程
四年
工学
72
湖南大学
080716S
建筑节能技术与工程
四年
工学
73
中南大学
080217S
新能源材料与器件
四年
工学
74
中南大学
080512S
新能源科学与工程
四年
工学
75
中南大学
080640S
物联网工程
四年
工学
76
重庆大学
080512S
新能源科学与工程
四年
工学
77
重庆大学
080640S
物联网工程
四年
工学
78
西南交通大学
080640S
物联网工程
四年
工学
79
电子科技大学
080217S
新能源材料与器件
四年
工学
80
电子科技大学
080640S
物联网工程
四年
工学
81
电子科技大学
080641S
传感网技术
四年
工学
82
四川大学
080217S
新能源材料与器件
四年
工学
83
四川大学
080640S
物联网工程
四年
工学
84
四川大学
080642S
微电子材料与器件
四年
工学
85
西安交通大学
080512S
新能源科学与工程
四年
工学
86
西安交通大学
080640S
物联网工程
四年
工学
87
兰州大学
080215S
功能材料
四年
工学
国务院侨务办公室
88
华侨大学
080215S
功能材料
四年
工学
北京市
89
北京工业大学
080218S
资源循环科学与工程
四年
工学
90
北京学院
050432S
数字技术
四年
文学
天津市
91
天津理工大学
080215S
功能材料
四年
工学
92
天津中医药大学
100814S
中药制药
四年
理学
河北省
93
河北工业大学
080215S
功能材料
四年
工学
94
石家庄铁道大学
080215S
功能材料
四年
工学
山西省
95
太原理工大学
080640S
物联网工程
四年
工学
96
山西医科大学
081107S
生物制药
四年
理学
辽宁省
97
沈阳工业大学
080215S
功能材料
四年
工学
98
沈阳建筑大学
080215S
功能材料
四年
工学
99
沈阳建筑大学
080716S
建筑节能技术与工程
四年
工学
吉林省
100
长春理工大学
080217S
新能源材料与器件
四年
工学
101
长春理工大学
080643S
光电子材料与器件
四年
工学
102
长春工业大学
080218S
资源循环科学与工程
四年
工学
黑龙江省
103
东北石油大学
080111S
海洋油气工程
四年
工学
104
东北石油大学
081106S
能源化学工程
四年
工学
105
哈尔滨理工大学
080641S
传感网技术
四年
工学
上海市
106
上海理工大学
080512S
新能源科学与工程
四年
工学
江苏省
107
苏州大学
080216S
纳米材料与技术
四年
工学
108
苏州大学
080217S
新能源材料与器件
四年
工学
109
苏州大学
080640S
物联网工程
四年
工学
110
南京工业大学
080643S
光电子材料与器件
四年
工学
111
南京工业大学
080716S
建筑节能技术与工程
四年
工学
112
南京邮电大学
080645S
智能电网信息工程
四年
工学
113
江苏大学
080512S
新能源科学与工程
四年
工学
114
江苏大学
080640S
物联网工程
四年
工学
115
南京中医药大学
081107S
生物制药
四年
理学
116
南京师范大学
081303S
海洋资源开发技术
四年
理学
安徽省
117
安徽大学
080217S
新能源材料与器件
四年
工学
福建省
118
福建师范大学
080218S
资源循环科学与工程
四年
工学
江西省
119
江西中医学院
100814S
中药制药
四年
理学
120
南昌大学
080217S
新能源材料与器件
四年
工学
121
南昌大学
080716S
建筑节能技术与工程
四年
工学
山东省
122
山东科技大学
080640S
物联网工程
四年
工学
123
山东理工大学
080218S
资源循环科学与工程
四年
工学
湖南省
124
湘潭大学
080217S
新能源材料与器件
四年
工学
125
湘潭大学
081009S
环保设备工程
四年
工学
126
湖南师范大学
080218S
资源循环科学与工程
四年
工学
127
南华大学
081008S
核安全工程
四年
工学
广东省
128
广州中医药大学
100814S
中药制药
四年
理学
129
华南师范大学
080217S
新能源材料与器件
四年
工学
四川省
130
西南石油大学
080111S
海洋油气工程
四年
工学
131
西南石油大学
080217S
新能源材料与器件
四年
工学
132
成都理工大学
080217S
新能源材料与器件
四年
工学
云南省
133
昆明理工大学
080215S
功能材料
四年
工学
陕西省
134
西北大学
080640S
物联网工程
四年
工学
135
西北大学
081106S
能源化学工程
四年
工学
136
西安建筑科技大学
080215S
功能材料
四年
工学
137
西安建筑科技大学
080218S
资源循环科学与工程
四年
工学
138
西安石油大学
080111S
海洋油气工程
四年
工学
甘肃省
139
兰州理工大学
080215S
功能材料
四年
工学
新疆维吾尔自治区
140
新疆大学
081106S
能源化学工程
四年
工学物联网就是通过信息传感设备,按照约定的协议,把任何物品与互联网连接起来,进行信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理的一种网络。
通俗地讲,物联网就是“物物相连的互联网”,它包含两层含义:
第一,物联网是互联网的延伸和扩展,其核心和基础仍然是互联网;
第二,物联网的用户端不仅包括人,还包括物品,物联网实现了人与物品及物品之间信息的交换和通信。
物联网作为新一代信息技术的高度集成和综合运用,具有渗透性强、带动作用大、综合效益好的特点,是继计算机、互联网、移动通信网之后信息产业发展的又一推动者。
生产管理上的颠覆!!
哐哐智造(kitweecom)是一款基于物联网技术的云MES生产管理平台。
工业物联网是指将“物联网”的概念与工业相结合,物联网是基于互联网延伸而来,简单来说物联网就是物物相连的互联网。传统机器是死物,数据之间无法互联互通,物联网技术就是打破机器与人之间的隔阂,随时随地管理工厂。
MES是企业生产执行系统,通过物联网的技术将生产设备数字化,再通过云端大数据分析将人-机-企业管理联系起来的系统。
哐哐智造MES系统利用物联网的技术,硬件加软件的方法实现了数据的自动收集与上传,用户可以随时通过手机查看物料消耗、产能以及设备的相关数据,出差也可以通过哐哐云眼监控厂房,加上设备的报警提醒功能,真正实现了生产过程的可视化、实时化和智能化,通过移动监控真正解决用户生产管理难的问题。
1、全面感知
利用无线射频识别(RFID)、传感器、定位器和二维码等手段随时随地对物体进行信息采集和获取。 感知包括传感器的信息采集、协同处理、智能组网,甚至信息服务,以达到控制、指挥的目的。
2、可靠传递
是指通过各种电信网络和因特网融合,对接收到的感知信息进行实时远程传送,实现信息的交互和共享,并进行各种有效的处理。在这一过程中,通常需要用到现有的电信运行网络,包括无线和有线网络。
由于传感器网络是一个局部的无线网,因而无线移动通信网、3G网络是作为承载物联网的一个有力的支撑。
3、智能处理
是指利用云计算、模糊识别等各种智能计算技术,对随时接受到的跨地域、跨行业、跨部门的海量数据和信息进行分析处理,提升对物理世界、经济社会各种活动和变化的洞察力,实现智能化的决策和控制。
扩展资料:
基本功能
在线监测:这是物联网最基本的功能,物联网业务一般以集中监测为主、控制为辅。
定位追溯:一般基于传感器、移动终端、工业系统、楼控系统、家庭智能设施、视频监控系统等GPS(或其他卫星定位,如北斗)和无线通信技术,或只依赖于无线通信技术的定位,如基于移动基站的定位、RTLS等。
报警联动:主要提供事件报警和提示,有时还会提供基于工作流或规则引擎(Rule“sEngine)的联动功能。
指挥调度:基于时间排程和事件响应规则的指挥、调度和派遣功能。
预案管理:基于预先设定的规章或法规对事物产生的事件进行处置。
安全隐私:由于物联网所有权属性和隐私保护的重要性,物联网系统必须提供相应的安全保障机制。
远程维保:这是物联网技术能够提供或提升的服务,主要适用于企业产品售后联网服务。
在线升级:这是保证物联网系统本身能够正常运行的手段,也是企业产品售后自动服务的手段之一。
参考资料来源:百度百科-物联网概念
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)