区块链技术的应用已经延伸到了数字资产交易、物联网、商品追溯、数字文化、数字医疗、网络安全、医药大 健康 等多个领域,推动着 社会 生产、生活方式和生产关系的重大变革。
HBA 公链的研发开始于 2019 年 2 月,核心团队由海外早期区块链参与者组成,同时全球有多个去中心化分布式社区共同维护。创新的提出了 3R 循环经济模型(Reduce、Renue、Racycle),通证采用 POC+POS 机制逐步奖励给在生态中做贡献的每一个人,不会像其他公链无成本生成大量代币,有效打击了行业乱象,确保每个生态参与者的公平。
HBA 通过大量的技术积累实现了真正意义上的去中心化区块链,开发源代码,并建立了完善的区块链浏览器。用户可以查询每一个区块的产生,每一笔交易的过程。提供了一个真正公平、公开的环境,没有任何人可以在这个环境下弄虚作假,每个人都可以真正成为体系的监督者。
HBA 公链的生态应用场景包括数字身份、人工智能、供应链金融、DEFI 平台、跨链支付、 健康 医疗、食品安全、教育。目前已完成公链、区块链浏览器、去中心交易所的开发。HBA 公链将于 2020 年 10 月份主网测试上线!
同时,在 HBA 公链的生态中还有一群自发组织的布道人、专业讲师服务 HBA 会员生态,为 HBA 生态的社区提供“孵化、培训、市场开发”等一条龙服务。
澳大利亚人,在多个商会担任高级管理要职, 从 2013 年开始做区块链,2014 年申请了第一个 钱包找回专利,2015 年到政府部门讲区块链,专 利排名全球第五。同时在澳大利亚拥有自己的理财 公司并开创了 chain33 区块链底层架构,具有非常 多的技术储备和应用,并持有 BCS、TELC 资格证 书,出版过 4 部作品,拥有数百万读者和粉丝。
在医疗领域,目前面临两大挑战:一是医疗体系复杂,涉及制药商、医疗服务提供者以及患者等,因此需要连通各方、准确传递信息;二是医疗供应链缺乏追溯性。区块链技术具有可追溯性,无需协调各方,而且准确度和可信度高,因此具有解决以上问题并创造全新医疗模式的潜力。
HBA 基于区块链技术并结合大数据、人工智能及物联网等技术,覆盖医疗、医药、医保、养老、医疗仪器、生物、保险、金融、政府及 社会 等领域的公链。
HBA 在全球新医疗 健康 方面拥有丰富的国际医疗经验,能够满足各种用户精准高效的治疗方法的 健康 需求,提供 健康 相关的多种联动服务,这是因为他们十分了解当前医疗 健康 模式中的不足。整合资源,打造新医疗体系,解决百姓看病难,看病贵,利用 5G 技术高效地使医生资源不浪费。以“快速、便捷、精准”的智能化技术特性,为人们提供“一站式”医疗 健康 服务解决方案。
IPFS 中文名称星际文件系统,是一种点对点的分布式文件系统,是一个基于内容寻址、版本化、点对点的超媒体传输协议,其目的就是要补充甚至取代用了 20 多年的传统的中心化存储 >
随着国内企业数字化转型加速,企业纷纷上云,数据存储量呈爆发式增长。传统存储扩展性差、成本高等局限性愈发明显。软件定义存储(Software Defined Storage,以下简称SDS)以虚拟化方式将各种存储资源抽象化、进行池化整合,通过智能化管控软件实现存储资源的按需分配。软件定义存储重新定义了存储架构,以扩容便捷、成本较低等优势,成为存储领域的重要发展方向之一。
深圳市杉岩数据技术有限公司(以下简称“杉岩数据”或“杉岩”)是国内软件定义存储领域的领导者之一。IDC最新发布的《2019 Q4 中国SDS市场报告》中,杉岩数据在对象存储市场份额第三,占比163%;在块存储市场份额第四,占比69%。
杉岩数据成立于2014年9月,公司以新一代智能分布式存储技术为核心,致力于提供领先的面向不同业务环境的企业级存储方案,帮助用户轻松应对IT向云迁移的存储挑战,为大数据时代的商业决策提供智能存储,打造云计算、人工智能、物联网等领域的数据存储基石。
杉岩数据致力于帮助用户应对数据存储量、访问量以及数据管理复杂度,帮助用户建立以存储虚拟化和计算虚拟化为核心的云计算基础设施环境,并逐步提供数据处理、挖掘、智能分析等方面的大数据专业系统和服务。
2020年7月8日,公司宣布获得B+轮15亿元最新融资,本轮融资由大型央企中远海运领投,襄禾资本、无锡金投跟投。借助本轮融资,公司将围绕数据存储、数据管理、数据价值的客户价值模型,持续加大产品关键技术的研发投入、垂直领域的市场拓展、人才引入以及产业生态链的建设,为用户的数字化转型提供全面赋能。
杉岩数据融资情况
数据来源:IT桔子
杉岩数据创始团队来自华为,目前员工近200名,超过60%为研发人员。公司基于分布式存储架构,提供海量对象存储(StandStone MOS)、统一存储平台(StandStone USP)、超融合一体机(StandStone HyperCube)、安全存储一体机(SandStone HuaYan)四款产品。
海量对象存储(StandStone MOS)是面向企业级海量非结构化数据的全分布式存储产品,在海量数据时代,典型应用场景包括企业内容管理、影音数据存储分析、大数据存储与分析、人工智能应用等。
统一存储平台(StandStone USP)提供标准的块存储和文件存储服务,可以同时支持各种虚拟化应用、数据库的事务处理和文件资源的共享存储,满足关键业务和众多应用的不同存储需求。
超融合一体机(StandStone HyperCube)是基于超融合架构的IT基础设施平台,遵循开发架构标准,融合计算、存储为一体,形成标准化的超融合单元,多个超融合单元通过网络汇聚成数据中心的基础架构。超融合一体机预集成和优化了主流虚拟化和数据服务,通过一站式交付,实现企业业务快速上线。
安全存储一体机(SandStone HuaYan),是杉岩在国产替代趋势下推出的高性能存储服务器。该服务器基于国产化软硬件生态,集成杉岩自主研发的分布式存储软件,广泛适用于政府、国防军工、航空航天、金融、教育、医疗等多个应用领域。
杉岩数据通过4款产品,以用户真实需求为导向,满足多业务场景用户的存储需求,成立近六年,实现2500PB+交付容量数据零丢失的成绩,以高质量的产品和服务赢得客户信赖。目前,杉岩数据已服务10余行业的500+用户。
杉岩数据软件定义存储产品、场景与行业
近日,融中研究采访了杉岩数据创始人兼CEO陈坚,就杉岩数据的产品及技术、市场应用、存储行业格局及未来发展趋势进行了深度交流。
访谈内容分享如下:
1
不只是存储优化
以数据为中心的客户价值金字塔模式
将智能存储的进阶赋能演绎到极致
融中研究:
“SandStone是一种橙红色石头,由沙粒经过多年不断沉积重新排列而成。SandStone 生动地诠释了‘分布式架构’的形成。”为什么用这个比喻来强调“分布式架构”?有什么特殊含义?
陈坚:
SandStone对我们确实意义深远。实际上,我们公司名称的来源与“Sand Stone”紧密相关。杉岩二字,来源于Sand的音译杉,以及Stone的意译岩。取名“SandStone”是因为我们做的是基于P2P的分布式存储架构,分布式存储的本质就是把分散的磁盘硬件聚合起来,形成一个很大的存储资源池。“SandStone”生动地诠释了“分布式架构’的形成,每个磁盘所在的服务器节点就像一粒沙子,通过杉岩数据的软件聚沙成石,形成一个稳定可靠的存储系统。
SandStone不仅代表了产品的特点,实际也代表了我们的文化、经营理念。从公司内部来看,每一个员工就像一粒沙子,大家团结奋斗、紧密协作,凝聚成一个有机整体,使得整个公司像石头一样坚不可摧;从外部合作伙伴的拓展来看,以杉岩为中心,将周围的合作伙伴聚在一起形成生态圈,每一个伙伴也是一粒沙子,通过不断吸纳聚合,构建稳定的生态圈。因此,SandStone所代表的团结奋斗与凝聚力内核,已内化成了公司企业文化的一部分;SandStone蕴含的分布式理念,也切合了公司与合作伙伴的生态建设理念。
融中研究:
杉岩是做存储的,为什么公司取名为杉岩数据而不是杉岩存储呢?智能存储与传统存储的主要区别是什么?杉岩的智能存储方案有什么特点?
陈坚:
之所以叫杉岩数据而不是杉岩存储,是因为我们带给客户的价值不只是存储的优化,而是以数据为中心的智能存储赋能,通过我们的存储系统,解决客户在AIoT、5G时代海量数据的存储、管理以及使用方面的问题。
针对智能存储,杉岩数据构建了一套以数据为中心的客户价值金字塔模型,最底座是存储,作为数据的抓手;中间层是数据的管理,作为内涵;最顶层为未来的智能化应用提供准备及服务,我把它叫做外延。
具体来说,第一层即数据存储的智能化。存储侧的智能,就是让客户使用更加简单。传统存储像烟囱,每一个业务系统配一套存储,客户的运维非常困难。分布式存储则是一个存储池,客户面向的是一套承载了不同应用数据的存储集群,孤立的烟囱不再存在。在存储集群里面的故障、性能、容量等告警,都是由存储系统内部智能化完成,同时还保障数据的可靠性、安全性以及访问性能。
第二层,数据管理的智能化。用户存数据后,要管数据。我认为数据是有生命力的,像人一样有从生到死的过程。医疗影像数据是一个典型的例子:病人拍完CT、X光产生的影像数据马上要被用于辅助医生寻找病症、病灶,这时数据是“热”的。这一次病好后,数据访问频率下降,“热”数据变为“温”数据。病人彻底康复后,数据变“冷”。对“热”数据,为了保证访问性能,相应的软硬件配置都非常高,价格也高。“冷”数据如果同“热”数据一样存储,性价比较低。医院一般将冷数据归档到公有云或蓝光等单位存储成本相对较低的存储介质中。这个例子正好反映了数据全生命周期的智能化管理。
在未来海量数据时代,数据的管理非常关键。除了数据全生命周期的管理,杉岩还能实现数据智能化的统一管理,包括:对客户的传统存储和杉岩的分布式存储的统一管理,保护客户对传统存储的原有投资;对公有云、私有云数据的统一管理,实现数据的自由流动;对边缘设备与中心设备数据的统一管理,实现数据的相互协同。
第三层,金字塔的顶端,是数据挖掘的智能化。数据被存储、管理,最终都是为了信息和价值的挖掘。目前越来越多的企业借助AI、机器学习、深度学习这些算法来使用和挖掘数据价值。杉岩的存储系统,包括我们的对象存储,都为海量数据的挖掘和使用去赋能。当然,杉岩不是要做AI,而是为智能化去赋能。这体现在两个方面,第一,我们的存储系统里面自带数据处理引擎,对业务需要使用的数据进行预先处理。第二,我们为AI的训练、数据清洗、数据的准备阶段提供了友好的统一管理、存储平台——数据处理引擎“AI in MOS”,还有面向需要对AI进行训练、学习、应用的公司提供的存储平台——“MOS for AI”。
融中研究:
杉岩在数据的存、管、挖各个层面的资源投入如何?杉岩在技术底层的优势有哪些?
陈坚:
在存、管、挖三个层面,杉岩起步聚焦于“存”,致力于为客户提供一个高可靠、高安全、高性能、高可扩展性的分布式存储系统,“存”也是目前投入最大的一块。在“存”方面,目前我们的核心竞争力主要体现在产品性能更高,可用性、可维性更强,特别是在数据的安全性方面,我们积累了很多经验。
在管方面,随着客户持续增加,杉岩面临的需求也不断增加,我们通过与客户的互动交流,了解客户实实在在的需求与痛点,并提出创新的解决方案。目前我们一些特有的产品功能已经落地了,这是很多企业包括一些大厂都不具备的,比如说我们对传统存储与分布式存储的统一管理、对数据的全生命周期管理等等。
最上层,未来数据的智能应用层面,在智能数据处理引擎“AI in MOS”产品上,我们也在加大投入,今年就会有实际的项目落地。
融中研究:
您刚才讲到,在数据挖掘上会加大投入,那么杉岩在这一块的发展目标如何?如何与数据挖掘专业公司竞争?
陈坚:
我先做一个澄清,杉岩的产品是有边界的,我们不会像大数据公司一样,比如也去做一个精准营销,我们是为精准营销赋能。像之前提到的数据处理,即使杉岩不做,这些公司还是要做的,杉岩其实是在帮这些公司做加速。另一方面,在赋能大数据挖掘的过程,杉岩主要针对非结构化数据赋能。以前的基于数据库的结构化数据,像BI、数据仓库,这类数据的挖掘已经有非常成熟的解决方案,杉岩的目标不在于此。我们强调对象存储就是因为对象存储是存储非结构化数据最佳的载体。我们通过对非结构化数据的AI挖掘、使用赋能实现差异化。
融中研究:
在当前软件定义存储,存在哪些技术局限,大概何时能够突破?杉岩在这块有哪些领先优势?
陈坚:
软件定义存储的概念相对于传统存储,其设计哲学和传统存储刚好相反。传统存储以硬件为核心,存储系统的数据可靠性高度依赖硬件架构的设计。软件定义存储,假设硬件是不可靠的或可靠性没那么高。
软件定义存储的性能更高、扩展性更强、更灵活。但任何一个架构、系统都会有自己的优缺点。软件定义存储在技术上的局限性:第一,难以将硬件的性能发挥到极致。第二,在存储集群大了以后,整个集群的管理、运维也是一个挑战。一般的企业没有专门的IT运维人员或运维水平有限,在海量数据时代,存储产品能不能让企业实现简单运维,也是一个挑战。
杉岩对传统存储和分布式存储都有很深入的理解,既有传统存储最核心的架构师和工程师,也有深耕分布式存储领域近10年的架构师。面对这些局限,杉岩也在做一些事情,比如在软硬结合方面,与硬件供应商一起做软硬垂直优化;在大规模集群存储系统的管理和运维上,借鉴一些AI的算法能力,让运维更加智能化、自动化。
2
立足场景寻找最佳匹配行业
以质量和服务构建客户信任
加速市场拓展
融中研究:
杉岩已服务10+行业的500+客户,从市场策略来看,杉岩数据在这些行业是齐头并进还是有所侧重?主要的优势行业有哪些?未来发展或者延伸的重点行业还有哪些?
陈坚:
存储系统作为一个标准化产品,没有太多的行业属性。但是软件定义存储有它的最佳应用场景。
杉岩数据依托场景构筑产品和解决方案,再通过最佳应用场景去寻找最佳匹配行业,进行市场开拓。例如,杉岩智慧视频云存储的解决方案,可以在安防、轨道交通、能源、电力、金融等等行业领域使用。另外,我们还推出了一个更加通用化、平台式的私有云产品,适用于金融、政府、教育、医疗等多个行业。
目前,杉岩市场突破的重点在于有大量场景和需求的政府、金融、教育、医疗、交通、能源、制造等行业。市场开拓方面,杉岩在大部分行业齐头并进,对小部分行业有所侧重,例如金融行业将是杉岩数据始终关注的重点行业。
作为存储厂商,杉岩产品的行业属性不强,但在产品智能化层面,实际上我们有一些场景化和行业属性的定制,但这种定制不是为某一客户定制,而是为一个行业定制,并且可以批量复制和推广。
融中研究:
杉岩数据如何切入客户,并获得客户的信任?在客户关系维护和服务方面,杉岩数据采取哪些措施?
陈坚:
从0到1的突破是非常难的。杉岩数据以产品为客户带来的价值来切入市场,早期的客户包括中国移动、中国电信、广发证券、深圳市供电局等。对TOB市场,标杆的意义重大。杉岩切入市场后,依托案例与标杆客户在同行业去推广复制。
杉岩数据依靠高质量的产品和切实的服务获取客户的信任。目前为止,我们存储了2500+PB的数据,从没丢失过数据,这一点让用户非常放心。服务,是创业公司最具竞争力的优势之一,而大厂流程非常复杂,对TO B客户服务的理念和经验也比较缺乏。杉岩与客户的运维人员紧密沟通,对他们进行多维培训赋能,客户能够亲身感受到杉岩对他们的重视。
3
疫情期间,驰援武汉
推出免费服务平台
苦练研发内功蓄势待发
融中研究:
此次疫情对杉岩数据带来什么影响?杉岩数据采取哪些行动?
陈坚:
这次新冠疫情对杉岩数据是一把双刃剑,但总体来说是利好的局面。一方面,疫情对公司短期的获客、工作开展产生了一定的冲击和影响;另一方面,疫情也让新一代信息技术的价值被充分认识,例如远程医疗、远程诊断等会涉及到大量的数据存储和应用,轨迹、跟踪、健康码等其实也都是基于数据的存储和使用。很多行业对于新一代信息技术的接受程度更高了,特别是政府的智慧城市、医疗领域的远程医疗、教育领域的远程教育发展等,带来的数据存储机会更多了。
作为一家创业公司,疫情期间,我们也秉承一贯的家国情怀和责任,进最大的努力为抗疫提供支持。2月份,我们给武汉大学人民医院捐献了一套分布式存储产品,助力提升医院的医疗质量和效率。同时,为了帮助用户解决疫情期间存储问题,我们推出了供用户免费使用的「统一存储平台软件SandStone USP」。
此外,我们在产品研发、市场开拓上没有丝毫懈怠。在产品研发端,我们借机苦练内功、打磨产品,为疫情过后的市场反d做好准备;在市场开拓方面,我们的销售团队通过远程电话保持与客户、合作伙伴的紧密互动与沟通,努力介绍杉岩的产品方案和价值亮点,积极拓展新客户、挖掘老客户新需求等。
4
分布式存储市场将形成寡头垄断格局
杉岩将始终以差异化取胜
融中研究:
当前存储市场竞争格局怎么样?主要玩家类型有哪些?
陈坚:
从市场格局来说,存储行业技术门槛很高,需要大量的经验积累和打磨,大浪淘沙之后,最终玩家不会很多。在传统存储领域,全球TOP6的公司占据市场百分之八十几的份额。在分布式存储领域,经过五年多的发展,与杉岩数据同期创立的公司中,很多技术不成熟的公司已经慢慢被淘汰了。我相信经过震荡式的发展后,分布式存储的市场格局会趋于稳定,也会变成一个寡头垄断的格局,未来会有一家或几家来占领市场绝大部分的份额,杉岩肯定是其中之一。
从竞争来说,杉岩的优势还是产品。创业公司没有捷径可走,品牌、资金都比拼不过大厂,生存发展一定是靠差异化的竞争力。杉岩的差异化竞争优势主要体现在客户价值金字塔模型的“管”和“挖”,“存”大家都在做,如果这一层都做不好自然会被淘汰;“管”层面,大厂的产品很全,内部对于传统存储和分布式存储会有一些博弈和竞争,但对于垂直用户定制化以及工业化需求领域不一定愿意涉足,而杉岩独特的价值和优势正体现于此。数据智能层面,杉岩的价值和优势更加明显。杉岩的设备产品有一些特殊的功能,这是很多大厂不会去做的事情,他们提供的主要是面向全球市场的标准化产品,聚焦于存储产品的完善。杉岩则是针对垂直细分市场进行产品差异化。
在市场竞争格局中,同类创业公司竞争方面,从目前来说,2013到2015年成立的一批公司,现在的竞争格局越来越清晰了。当前,软件定义存储处于繁荣发展期,蛋糕还没有定型,在不断扩展、挖掘客户新场景、新需求的阶段,都在共同培育市场。所以,我们正在共创生态链,携手合作伙伴建设新型IT基础设施建设。
融中研究:
大型厂商加码存储,例如华为、华三等大厂也开始发力对象存储,对杉岩数据的发展会有冲击吗?杉岩数据如何平衡与基础设施合作伙伴华为的竞争与合作?
陈坚:
大厂确实在加大对存储领域的布局,但我们也看到一个趋势,大厂现在主要在公有云方面布局,而在私有云方面,可能更多的是以传统存储、分布存储的架构来拓展市场。与大厂的竞争要避免正面交锋,走差异化路线。比如在金融领域,杉岩在智能化数据处理方面独具特色,这是我们带给客户的独特价值。
物联网架构中智能公交实例中的四个层次分别是感知层、网络层、数据处理层和应用层。
感知层:感知层是物联网架构的最底层,包括传感器、执行器等各类物联网设备,用于采集各种物理量、环境数据和状态信息等。在智能公交实例中,感知层包括GPS定位、车载摄像头、气象传感器、车载计算机等设备,用于实时采集公交车运行的位置、状态、路况、天气等信息。
网络层:网络层是物联网的中间层,主要负责数据的传输和处理,将感知层采集到的数据传输到数据处理层进行分析和处理。在智能公交实例中,网络层包括无线通信网络和互联网,用于连接各个公交车辆和数据处理中心。
数据处理层:数据处理层是物联网实现数据智能分析和决策的核心层次,主要由数据存储、数据分析、数据挖掘等组成,用于对感知层采集到的海量数据进行处理和分析。在智能公交实例中,数据处理层包括云端服务器、物联网平台等设施,用于对公交车的实时位置、车速、路况等信息进行处理、分析和预测。
应用层:应用层是物联网架构的最高层,主要是由各种智能应用程序组成,用于实现物联网数据的应用和展示。在智能公交实例中,应用层包括公交车调度和管理系统、智能导航系统、乘客安全监控系统等应用程序,用于指导公交车的运行、改善乘客出行体验等。
总之,物联网架构中智能公交实例的四个层次,构成了一个完整的物联网生态系统,涵盖了物联网系统的各个方面,为智慧城市的建设和公共交通业的发展提供了有力的支持。
目前是以云存储主要载体存储数据,本地存储已经落伍了~企业可以通过
1 组建私有云,进行数据存储,好处是数据管控强,差是成本、管理是难题
2 公有云存储,好处是稳定、高效,差是对数据的管控能力差
看自己的需求而定吧
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)