物联网不仅能够让物体联网,还能够使联网的物体智能化,人工智能是一种应用技术,而物联网是一种网络系统架构,物联网的物体智能化解决了人工智能发展的物体智能化的。
物联网的概念是在1999年提出的,它的定义是把所有物品通过射频识别等信息传感设备与互联网连接起来,实现智能化识别和管理。主要用于判断与逻辑分析物联网中所采集到的传感器数据,然后为决策提供依据。
物联网技术的人工智能化也在工业领域发挥着重要作用。以往很多问题我们都依赖于人工技术解决,存在滞后性,假设一个机器出现问题导致整个工厂停工一天,所带来的损失有些可高达数十万。部署物联网之后,器自动化企业通过自动装置自身发送的信息就能及时了解问题,预测成本高昂的故障停机,然后执行远程故障排除,节约技术人员工时和成本。
AI+IoT,指人工智能+物联网。
2018年11月7日,第五届世界互联网大会在乌镇召开,小米集团创始人、董事长兼CEO雷军现场介绍,“AI+IoT”(人工智能+物联网)是未来的风口,也是小米核心战略之一。
今天人工智能+物联网技术已经被广泛应用,大到电视,小到灯泡、闹钟,都可以用AI实现控制,“AI+IoT”带来了生活的便利,让人们感受到了科技带来的美好生活。
运用:
小米已经投资或孵化了超过220家生态链公司,其中100家专注于发展智能硬件和生活消费品,小米人工智能开放平台已连接超过115亿台IoT智能设备,建成了全球最大的消费级IoT平台。
业内人士分析称,依托IoT平台带来的用户、使用场景、流量和大数据,小米AI语音服务“小爱同学”上线一年后月活跃用户已经超过3000万,单月唤醒超过10亿次。
人工智能与物联网的关系:其实是相辅相成、互相联系,两者结合,可以实现物联网和人工智能的利益优势。
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
物联网(Internet of Things,简称IoT)是指通过各种信息传感器、射频识别技术、全球定位系统、红外感应器、激光扫描器等各种装置与技术,实时采集任何需要监控、 连接、互动的物体或过程,采集其声、光、热、电、力学、化学、生物、位置等各种需要的信息。
通过各类可能的网络接入,实现物与物、物与人的泛在连接,实现对物品和过程的智能化感知、识别和管理。物联网是一个基于互联网、传统电信网等的信息承载体,它让所有能够被独立寻址的普通物理对象形成互联互通的网络。
一,人工智能为物联网提供强有力的数据扩展:
物联网可以说是互联设备间数据的收集与共享,而人工智能是将数据提取出来后做分析和总结,促使互联设备间更好的协同工作。
二,人工智能让物联网更加智能化:
人工智能技术可以帮助物联网应用进行智能检测,尤其面对一些突发事件时,可以采取相关措施,提高了处理突发事件的准确度。
三,人工智能有助于物联网提高运营效率:
人工智能通过分析、总结数据信息,从而解读企业服务生产的发展趋势,并且对未来事件做出预测。从数据分析上去发现可能出现问题的几率,并做出预警提醒,这样一来,会从很大程度上减少故障影响,提高运营效率。
人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。物联网即“万物相连的互联网”,是互联网基础上的延伸和扩展的网络,将各种信息传感设备与互联网结合起来而形成的一个巨大网络,实现在任何时间、任何地点,人、机、物的互联互通。人工智能(artificial
intelligence)是计算机科学、控制论、信息论、神经生理学、心理学、语言学等多种学科高度发展、紧密结合、互相渗透而发展起来的一门交叉学科,其诞生的时间可追溯到20世纪50年代中期。人工智门交叉学科,其诞生的时间可追溯到20世纪50年代中期。人工智能研究的目标是:如何使计算机能够学会运用知识,像人类一样完成富有智能的工作。云计算、大数据、人工智能这三者的发展不能分开来讲,三者是有着紧密联系的,互相联系,互相依托的,脱离了谁都不能更好的发展,让我们具体来看一下!
一、大数据
大数据指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样捷径,而采用所有数据进行分析处理。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)。
数据每天都在产生,各行各业都有,数据量也是相当之大,但如何整合数据,清洗数据,然后实现数据价值,这才是当今大数据行业的研究重点。大数据最后要实现的是数据超融合,应用到应用场景,大数据的价值才会体现出来。
人工智能就是大数据应用的体现。
二、云计算
云计算(cloud computing)是基于互联网的相关服务的增加、使用和交付模式,通常涉及通过互联网来提供动态易扩展且经常是虚拟化的资源。云是网络、互联网的一种比喻说法。过去在图中往往用云来表示电信网,后来也用来表示互联网和底层基础设施的抽象。因此,云计算甚至可以让你体验每秒10万亿次的运算能力,拥有这么强大的计算能力可以模拟核爆炸、预测气候变化和市场发展趋势。用户通过电脑、笔记本、手机等方式接入数据中心,按自己的需求进行运算。
对云计算的定义有多种说法。对于到底什么是云计算,至少可以找到100种解释。现阶段广为接受的是美国国家标准与技术研究院(NIST)定义:云计算是一种按使用量付费的模式,这种模式提供可用的、便捷的、按需的网络访问, 进入可配置的计算资源共享池(资源包括网络,服务器,存储,应用软件,服务),这些资源能够被快速提供,只需投入很少的管理工作,或与服务供应商进行很少的交互。
说白了,云计算计算的是什么?云存储存储的是什么?还是大数据!所以离开大数据谈云计算,离开云计算谈大数据,这都是不科学的。
三、人工智能
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。
人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种复杂工作的理解是不同的。
人工智能其实就是大数据、云计算的应用场景。
现在已经比较火热的VR,沉浸式体验,就是依赖与大数据与云计算,让用户能够由更加真切的体验,并且VR技术是可以使用到各行各业的。
人工智能不同于传统的机器人,传统机器人只是代替人类做一些已经输入好的指令工作,而人工智能则包含了机器学习,从被动到主动,从模式化实行指令,到自主判断根据情况实行不同的指令,这就是区别。
大数据的概念在前几年已经炒得火热,但是也就是近两年才开始慢慢落地,依赖于云计算的发展,以及人们对人工智能的预期。人工智能共涉及九大板块,具体包括:1、核心技术板块(AI芯片、IC、计算机视觉、机器学习、自然语言处理、机器人技术、生物识别技术、人脸识别技术、语音识别、大数据处理等)2、智能终端板块(VR/AR、人工智能服务平台、家居智能终端、3G/4G智能终端、金融智能终端、移动智能终端、智能终端软件、智能硬件、软件开发平台、应用系统等)3、智慧教育板块(教育机器人、智慧教育系统、智慧学校、人工智能培训等)4、智能机器人板块(服务机器人、农业机器人、娱乐机器人、排险救灾机器人、医用机器人、空间机器人、水下机器人、特种机器人等)5、智慧城市及物联网板块(智慧交通,智能电网,政务大数据应用,公共安全、智慧能源应用,智慧社区、智慧城建,智慧建筑,智慧家居,智慧农业、智慧旅游、智慧办公、智慧娱乐,智慧物流、智慧健康保障、智慧安居服务、智慧文化服务等)6、智慧医疗板块(医疗影像人工智能、智能辅助诊断提醒/临床决策诊断系统、外科手术机器人、医疗服务机器人、医疗语音识别录入、混合现实技术医疗大数据平台、数据分析系统(BI)、精准医疗等)7、智能制造板块(智能化生产线、工业机器人、工业物联网、工业配件等)8、智能汽车板块(汽车电子、车联网、自动驾驶、无人驾驶技术、激光雷达、整车厂商等)9、智慧生活板块(未来生活模式、智能生活家居、智能家电、3C电子、智能穿戴等)
评论
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)