NB-IOT是一种物联网实现技术 同zigbee及wifi一样 属于物联网的重要分支 NB-IOT是基于基于蜂窝的窄带物联网,它拥有低功耗的特点 跟zigbee一样 但是传输速率要大于zigbee 而wifi则消耗较大的功耗 但是传输速率比它们都要大
NB-IoT是IoT领域一个新兴的技术,支援低功耗装置在广域网的蜂窝资料连线,也被叫作低功耗广域网(LPWA)。NB-IoT支援待机时间长、对网路连线要求较高装置的高效连线。据说NB-IoT装置电池寿命可以提高至至少10年,同时还能提供非常全面的室内蜂窝资料连线覆盖。
都是远距离无线传输,只是各自的应用领域不同而已。
LoRa比较适合区域网,自己管理资料,自己架设基站进行资料处理,比如一个农场、一个蔬菜基地等。
NB-IoT较适合广域网部署,应用领域比较适合广泛部署,一个特征应用比如共享单车就比较适合NB而不适合LoRa,比较像是3/4G跟WiFi的关系。
LoRa:基站需要自己管理,可以类比为自己家里WIFI路由器,手机连结WIFI上网
NB-IoT:基站运营商已经给你建好,要传输付钱即可,资料走运营商网路,可以类比为目前的手机3/4G上网
LoRa、SigFox因为出现的时间较早,且较基于授权频谱的LPWA技术更为成熟,也可以规模商用,能够满足当时部分使用者的需要,因此获得了运营商的选择。在市场上,基于非授权频谱的LPWA技术,主要是LoRa、SigFox为主。
随着技术的进步和发展,到了2016年,NB-IoT和eMTC这两项技术出现了,并且这两项技术都采用统一的3GPP标准来扩充套件物联网。这项技术具有行业标准的属性,是开放的,并且采用的技术方向是向5G进行逐步演进,标准会不断的提升和演进。
一篇文章看懂什么是工业40 这篇接地气的文章告诉你——什么叫工业40 导读:工业40到底是个啥,本来答应给他单独讲一遍,后来一想,不如整理下材料和思路,一块分享给大家,所以今天就跟大家谈谈这个神秘的工业40吧。
早年从事过工业自动化行业,后来为了赚点讲课费做零花。
工业40第一重天:智慧生产
之前我们说过,生产装置和管理资讯系统也各自连线起来,并且装置和资讯系统之间也连线起来了。你有没有觉得还缺点什么?没错,就是生产的原材料和生产装置还没有连线起来。
这个时候,我们就需要一个东西,叫做RFID,射频识别技术。估计你听不懂,简单来说,这玩意儿就相当于一个二维码,可以自带一些资讯,他比二维码牛叉的地方,在于他可以无线通讯。
我还是来描述一个场景,百事可乐的生产车间里,生产线上连续过来了三个瓶子,每个瓶子都自带一个二维码,里面记录著这是为张三、李四和王二麻子定制的可乐。
第一个瓶子走到灌装处时,通过二维码的无线通讯告诉中控室的控制器,说张三喜欢甜一点的,多放糖,然后控制器就告诉灌装机器手,“加二斤白糖!”(张三真倒霉……)。
第二个瓶子过来,说李四是糖尿病,不要糖,控制器就告诉机器手,“这货不要糖!”
第三个瓶子过来,说王二麻子要的是芬达,控制就告诉灌可乐的机械手“你歇会”,再告诉灌芬达的机械手,“你上!”
看到了,多品种、小批量、定制生产,每一灌可乐从你在网上下单的那一刻起,他就是为你定制的,他所有的特性,都是符合你的喜好的。
这就是智慧生产。
工业40第二重天:智慧产品
生产的过程智慧化了,那么作为成品的工业产品,也同样可以智慧化,这个不难理解,你们看到的什么智慧手环、智慧脚踏车、智慧跑鞋等等智慧硬体都是这个思路。就是把产品作为一个数据采集端,不断的采集使用者的资料并上传到云端去,方便使用者进行管理。
德美工业40和工业网际网路的核心分歧之一,就是先干智慧工厂,还是先搞智慧产品。德国希望前者,美国希望后者。至于中国,我们就搞加,还是加这个东西好,正加反加都行。
工业40第三重天:生产服务化
刚才说了,智慧产品会不断地采集使用者的资料和状态,并上传给厂商,这个就使一种新的商业模式成为可能,向服务收费。我好多年前在西门子的时候,西门子就提出来向服务收费,当时我觉得这是德国佬拍脑袋想出来的傻×决定,但是现在我才明白这是若干年前就已经开始为工业40的生产服务化布局了。你对西门子的印象是什么?冰箱?你个糊涂蛋,西门子这些年已经悄然并购了多家著名软体公司,成为仅次于SAP的欧洲第二大软体公司了。
这个服务是什么呢?比如西门子生产一台高铁的牵引电机,以往就是直接卖一台电机而已,现在这台电机在执行过程中,会不断的把资料传回给西门子的工厂,这样西门子就知道你的电机现在的执行状况,以及什么时候需要检修了。高铁厂商以往是怎么做的?一刀切,定一个时间,到时间了不管该不该修都去修一下,更我们汽车保养没什么差别。现在西门子可以告诉你什么时候需要修什么时候需要养护,你要想知道,对不起,给钱。
再举个例子,智慧产品实现后,每一辆汽车都会不断地采集周边的资料,来决定自己的行驶路线,整个运输系统会完全服务化,任何人都不需要再买车,有一天也许自己开车会成为严重的违法行为,因为装置是智慧的,而人确是不可控的。
在这个阶段,所有的生产厂商都会向服务商转型。
工业40第四重天:云工厂
当工厂的两化融合进一步深入的时候,另一种新的商业模式就有要孕育而生了,这就是云工厂。
工厂里的装置现在也是智慧的了,他们也在不断地采集自己的资料上传到工业网际网路上,此时我们就可以看到,哪些工厂的哪些生产线正在满负荷运转,哪些是有空闲的。那么这些存在空闲的工厂,就可以出卖自己的生产能力,为其他需要的人去进行生产。
网际网路行业为什么发展的这么快,就是因为创业者只需要专注于产品和模式创新,不需要自己去买一个伺服器,而是直接租用云端的服务就行了。而目前工业的创业者,还是要不断地纠结于找OEM代工还是自建工厂中,这个极大地限制了工业领域的创新。当云工厂实现的时候,我预言中国的工业领域将出现一个比网际网路大百倍以上的创新和创业浪潮,那个时候这个社会的一切都将被深刻的改变。
工业40第五重天:跨界打击
网际网路行业天天说降维打击传统行业,什么谷歌小米阿里巴巴乐视,可是我告诉你,当工业40进入第五重天时,工业企业的跨界打击将比这些网际网路企业猛烈百倍。这个过程将从根本上撼动现代经济学和管理学的根基,重塑整个商业社会。
举个例子,一个生产手表的厂商,这个表每天贴着你的身体,采集你身体的各项资料,这些资料对于手表厂商也许没啥用,但是对于保险公司就是个金库,这个时候,手表厂商摇身一变,就能成为最好的保险公司。
当自动化和资讯化深度融合的时候,跨界竞争将成为一种常态,所有的商业模式都将被重塑。
工业40大圆满:黑客帝国
整个工业40过程,就是自动化和资讯化不断融合的过程,也是用软体重新定义世界的过程。
在未来,多元宇宙将在虚拟世界成为现实,一个现实的世界将对应无数个虚拟世界。改变现实世界,虚拟世界会改变;改变虚拟世界,现实世界也会改变。一切都在基于资料被精确的控制当中,人类的大部分体力劳动和脑力劳动都将被机器和人工智慧所取代,所有当下的经济学原理都将不再试用,还将有可能引发道德伦理问题。但是我相信有一些东西是不会变的,人类的爱、责任、勇敢,对未来和自由的向往,以及永无止境的奋斗。生生不息!
好吧,现在大谈黑客帝国似乎有些遥远,那就谈谈科理咨询的2016年德国汉诺威工业展与工业40标杆学习之旅吧!科理咨询带着学员都学到了什么呢?请关注随后的系列报道。
nbiot和emtc应该是比较相似,因为都基于LTE技术
而其他非LTE系列的物联网就根本不同了
NB-IoT是narrowbandinterofthings,即窄带物联网技术,是LPWA技术的一种。LTECategoryM2也被称为Narrow-BandIoT(NB-IoT)没有Cat-NB的说法
物联网《NB-IoT已经来了,LTE-V还会远吗 1、实现无人驾驶,单车智慧+汽车联网,两手都要硬
当前市场忽视了通讯网路对于无人驾驶的关键作用。之前大家讨论的更多的是单车智慧,而要实现最终的无人驾驶,必需单车智慧和汽车联网相辅相成,特斯拉事故已经说明,仅仅单车智慧是不够的。实现汽车联网的通讯网路必须具备低时延、大频宽的效能,实现车与车、车与路之间的通讯,而目前包括 NB-IoT、4G 等网路均不符合要求,必须要有专用的车联网通讯标准。
2、抢夺车联网标准,中国推出 LTE-V
中国是世界第一大的汽车市场,同时中国通讯产业又具备全球竞争力,出于通讯安全的考虑,中国工信部正在积极推动自主化的车联网标准。华为、大唐等主导的车联网标准 LTE-V 预计在 2016 下半年和 2017 上半年分步冻结,2018 年商用推广,抢在美国强制推广之前(DSRC)。同时,我国 8 月份将释出“智慧网联汽车发展技术路线图”,我们判断,LTE-V 将是其中的重要内容之一。
历史悠久:贵州茅台酒独产于中国的贵州省遵义县仁怀镇,是与苏格兰威士忌、法国科涅克白兰地齐名的三大蒸馏名酒之一,是大曲酱香型白酒的鼻祖。
品质优越:被尊为“国酒”。他具有色清透明、醇香馥郁、入口柔绵、清冽甘爽、回香持久的特点,人们把茅台酒独有的香味称为“茅香”,是我国酱香型风格最完美的典型。
一张图看懂什么是物联网
物联网是网际网路的延伸,可以说是网际网路的一种应用。物联网通过各种感知装置,如射频识别、感测器、红外等,将资讯传送到接收器,再通过网际网路传送,通过高层应用进行资讯处理,达到“感知”的目的。
一篇文章弄懂什么是虹膜识别 美国智库 Acuity Market Intelligence
曾发表过一份《生物识别的未来》报告,报告显示,虹膜识别技术将在未来10—15年迅速普及,并占全球生物特征识别16%的市场份额,虹膜识别产品总产值也将达到35亿美元。毕竟无需赘言,在智慧手机之外,未来整个IOT产业的崛起理论上都可被视作虹膜技术普及的基石——你知道,当万物互联时代来临,资料安全牵一发而动全身,人们都在企盼一种与机器更安全的互动方式。
拜好莱坞所赐,如下场景早已被视作未来理所当然的一部分:某Boss级人物神色淡定或慌张地进入实验室等神秘部门,他只需要“看一眼”萤幕即可来去自如。事实上,虹膜识别并不是一个初生事物,基于虹膜扫描识别身份的理论认知可追溯到上世纪30年代,并于90年代逐渐实现商业化落地,如今也已应用在诸如金融, ,机场和军方等现实中貌似类似“神秘部门”的地方。但如你所知,人类历史的底层驱动力永远都是技术以及让技术大范围扩散的商业,遵循着与计算机,网际网路,智慧手机等颠覆性技术的相似步伐,如今虹膜识别也正在从特定领域推广至普通消费人群之中。最直观的例子当然来自三星刚释出的Galaxy
Note7,这是虹膜识别技术第一次被添置在真正意义上的主流旗舰智慧手机之上。
在不少人看来,考虑到三星之于手机产业链的掌控力和号召力,与去年富士通ARROWS NX F-04G以及微软Lumia
950XL等小众机型对虹膜识别的仓促不同(譬如识别时间过长),三星的入局有望起到某种带动之力——据报道,三星的加入甚至让与虹膜识别相关的企业股票也一度飘红。技术的成熟当然是另一方面。古往今来,人类一直对“精准识别身份”心向往之——而有理由相信,愈到未来,安全地告知机器“我是谁”这件事就愈加重要。
而在这件事上,至少看起来,虹膜识别可以做到更多。
你的唯一
大体而言,在所有常规生物特征识别(包括指纹,人脸,虹膜,声音,掌纹等)当中,由于虹膜自身的精准性,防伪性,唯一性,稳定性,主流学界通常认为虹膜是比指纹或者面部识别更“高阶”的识别方式,要知道,相比于指纹08%,人脸2%左右的误识率,虹膜识别低至百万分之一的误识率看起来几乎没有任何蛊惑性。
那到底何为虹膜人眼结构由巩膜,虹膜和瞳孔三部分构成,虹膜即是位于其他二者之间的圆环状部分,属于眼球中层,负责自动调节瞳孔大小,从而适应不同光照环境。而交叉错杂的细丝,斑点和条纹等细微之物构成虹膜大量独一无二的资讯特征,也因此具备了某种与生俱来的不可复制性(顺便一提,虹膜的唯一性同样存在于同卵双胞胎身上,后者DNA资讯重合度非常之高),其复杂度远超如今在智慧手机普及的指纹识别,有研究表明,虹膜识别准确性是指纹识别的1万倍。
可想而知,细小的动态特性让伪造虹膜变得几乎不太可能,至少目前,无论照片,假眼,乃至在隐形眼镜上列印(对了,当眼球剥离人体,虹膜也会随瞳孔放大从而失去活性),都几乎没办法欺骗机器对于主人虹膜的信赖。
而极强的稳定性是虹膜用于生物识别的另一利器。任何人在胎儿发育阶段形成之后,虹膜即终生保持不变,且几乎不会受到外部环境的干扰——在眼睑的庇护下,它不易受到外伤侵袭,更重要的是,目前看来,诸如红眼病,白内障,青光眼,沙眼结膜炎,近视眼手术这些常见的眼部侵扰都无法影响虹膜自身纹理。这意味着,虹膜不会出现指纹解锁时易磨损,灵敏度低,蜕皮或者潮溼而致使手机无法识别的困扰。
另外,最后想说,相较于指纹,虹膜中远距离的非接触式采集无疑要卫生许多。
怎么用
很好理解,虹膜识别技术能将虹膜资讯特征转为密码储存。
在具体的实现路径上,拿Note7来说,在前置镜头同侧增加了IR
LED与虹膜摄像头,在识别过程之中,前置摄像头辅助虹膜摄像头确定持机者的大体轮廓,再经由IR
LED发射红外光源(虹膜识别无法用最常见的彩色可见光感测器,要用独立的红外感测器,以保证能为暗光下使用),虹膜摄像头通过光源扫描持机者虹膜资讯,然后将虹膜资讯转为编码,与已知密码进行比对,以最终决定是否解锁。通常来说,相比录入指纹时的繁琐,初次录入虹膜要迅捷许多,大概只需要几秒钟;而当用户试图用虹膜解锁手机时,根据视讯演示,虽不比指纹,但仍谈得上灵敏。
而直觉便知,虹膜识别的应用场景可被延伸至萤幕解锁之外,譬如Note7提出的一种场景方案是新增了一个“安全资料夹”,通过虹膜解锁存放一些包括应用,照片,便签在内的私人资料或资讯(你知道,每个人都有一些“不可告人”的小秘密),让其独立于其他手机资料之外,唯有虹膜可以开启,算是上了份双保险。
在我看来,这一功能也在很大程度上回应了业界对于虹膜识别普及性的担忧——事实上,至少在现阶段,作为科技急先锋的虹膜识别与已然成熟的指纹识别并非取代关系,而更接近于不同场景中的互补或进阶,Note7的安全资料夹即是如此,你大可将其视作指纹之后的第二道安全防护,里出入神秘部门也得布防重重关卡不是
嗯,在告知机器“我是谁”这件事上,人类经历了各种密码,数字证书,硬体KEY(譬如U盾)等多种方式,有理由相信,身份识别的下一幕很大程度上将由虹膜等生物特征识别完成。其实追溯人机互动历史,一个清晰的脉络是:主流计算装置的每次形态改变,必然伴随着人机互动难度下降,而随着虹膜等识别技术的完善,人类与机器之间的“信任关系”势必将迈向一个新篇章。
未来由现实铺就,而“未来已经来临”。在科技领域,未来十年将会令过去的十年黯然失色,但愿这其中会有生物识别技术很大的功劳。
物联网人才需求攀升,人才供不应求矛盾凸显
物联网产业的迅速发展,使得相关产业人才也备受关注。有调查显示,未来五年,物联网人才需求量将达到1000万人以上。其中,智能交通、车联网市场人才需求约为20万;智能物流、物流于智能仓储方市场人才需求约20万;智能电网、智能于系能源店里产业人才需求将达百万;智能医疗、智能医疗设备支持于技术服务、智能医护管理等人才需求将超百万。总体来看,由于物联网涉及领域广泛,可以在众多的应用领域实现就业,因此,各个应用领域均对物联网人才有一定的需求,物联网人才的职业前景一片向好。但与此同时,全国开设物联网专业的院校有1000多所,每年毕业生规模不足10万人,供不应求态势很明显。
一方面,从BOSS直聘2019年春招人才需求数据可以看到,与物联网相关的嵌入式工程师人才需求同比增速超过46%,同时,光传输工程师和无线射频工程师的需求同比增幅也均超过80%。表明物联网人才紧缺程度高于其他技术职位,市场对该类人才的需求旺盛。
另一方面,从薪酬水平来看,2019年春招旺季,与物联网相关的嵌入式工程师的平均招聘薪酬达到18132元,部分物联网嵌入式工程师的薪资在23万元/月以上,均处于相对较高的水平。而市场愿意给予物联网人才更好的薪资待遇,也与市场上人才相对稀缺密切相关。
此外,在2019年4月3日,我国人力资源社会保障部、市场监管总局、统计局正式向社会发布的13个新职业中,物联网工程技术人员、物联网安装调试员就在其中。预计未来在行业发展带动下,物联网相关人才需求还将日益增长。
具体来看,对于物联网工程技术人员来说,该职业是物联网行业最新诞生的、也是相对热门的一大人才需求。其定义及主要工作任务如下:
而对于物联网安装调试员来说,从2018年8月,支付宝宣布刷脸支付大规模商业化之后,不到一年时间已在全国300多个城市落地,这种连手机都不用掏“靠脸吃饭”的支付方式迅速占领了年轻人的市场。现在无人商店、刷脸支付已经成为未来的趋势,对物联网安装调试员的需求顺势产生。
值得一提的是,在物联网产业中,在与刷脸支付相关的产业链上下游,诞生的研发生产和安装调试人员就已经达到50万,且规模还在不断扩大中。据统计,支付宝刷脸设备、无人货柜的安装调试员平均年薪达到15-20万。而尽管未来物联网产业将蓬勃兴起,但物联网产业人才缺口却较大,尤其需要技能型、应用型人才。未来几年,物联网领域的安装调试员需求量在20万以上,职业前景备受看好。
专升本快速报名和免费咨询:>实施工程师是一个比较通用的职位,可以在各行各业都需要,包括互联网和物联网。因此,如果您是一名实施工程师,想要为未来的职业发展定向,需要考虑行业的需求和趋势,以及自己的兴趣和技能背景,做出合适的选择。如果您热爱计算机、网络和数据分析等领域,对于软件的开发、测试、部署等方面有较深的兴趣和专业技能,那么互联网行业可能是一个好的选择。互联网行业发展较快,涉及到的领域广泛,技术更新也较快,因此需要有良好的学习能力和适应能力。在互联网行业,实施工程师通常需要负责软件和系统的实施、测试和上线工作,要求具有扎实的编程和调试能力,以及相应的软件设计和项目管理经验。
而如果您对于物联网、智能制造和自动化控制等领域更感兴趣,想要通过技术实现物理世界和数字世界的融合,那么物联网行业可能是更好的选择。物联网行业涉及到的技术和领域也比较广,需要具备较强的工程能力和实践经验,熟悉物联网系统的系统架构、传输协议、数据采集和处理等方面的知识。
综合而言,实施工程师在互联网和物联网行业都有广阔的发展机会,具体还要根据个人的兴趣和职业规划来做出选择。 大数据泛指巨量的数据集,因可从中挖掘出有价值的信息而受到重视。《华尔街日报》将大数据时代、智能化生产和无线网络革命称为引领未来繁荣的三大技术变革。麦肯锡公司的报告指出数据是一种生产资料,大数据是下一个创新、竞争、生产力提高的前沿。世界经济论坛的报告认定大数据为新财富,价值堪比石油。因此,发达国家纷纷将开发利用大数据作为夺取新一轮竞争制高点的重要抓手。
大数据时代的来临
互联网特别是移动互联网的发展,加快了信息化向社会经济各方面、大众日常生活的渗透。有资料显示,1998年全球网民平均每月使用流量是1MB(兆字节),2000年是10MB,2003年是100MB,2008年是1GB(1GB等于1024MB),2014年将是10GB。全网流量累计达到1EB(即10亿GB或1000PB)的时间在2001年是一年,在2004年是一个月,在2007年是一周,而2013年仅需一天,即一天产生的信息量可刻满188亿张DVD光盘。我国网民数居世界之首,每天产生的数据量也位于世界前列。淘宝网站每天有超过数千万笔交易,单日数据产生量超过50TB(1TB等于1000GB),存储量40PB(1PB等于1000TB)。百度公司目前数据总量接近1000PB,存储网页数量接近1万亿页,每天大约要处理60亿次搜索请求,几十PB数据。一个8Mbps(兆比特每秒)的摄像头一小时能产生36GB数据,一个城市若安装几十万个交通和安防摄像头,每月产生的数据量将达几十PB。医院也是数据产生集中的地方。现在,一个病人的CT影像数据量达几十GB,而全国每年门诊人数以数十亿计,并且他们的信息需要长时间保存。总之,大数据存在于各行各业,一个大数据时代正在到来。
信息爆炸不自今日起,但近年来人们更加感受到大数据的来势迅猛。一方面,网民数量不断增加,另一方面,以物联网和家电为代表的联网设备数量增长更快。2007年全球有5亿个设备联网,人均01个;2013年全球将有500亿个设备联网,人均70个。随着宽带化的发展,人均网络接入带宽和流量也迅速提升。全球新产生数据年增40%,即信息总量每两年就可以翻番,这一趋势还将持续。目前,单一数据集容量超过几十TB甚至数PB已不罕见,其规模大到无法在容许的时间内用常规软件工具对其内容进行抓取、管理和处理。
数据规模越大,处理的难度也越大,但对其进行挖掘可能得到的价值更大,这就是大数据热的原因。首先,大数据反映舆情和民意。网民在网上产生的海量数据,记录着他们的思想、行为乃至情感,这是信息时代现实社会与网络空间深度融合的产物,蕴含着丰富的内涵和很多规律性信息。根据中国互联网络信息中心统计,2012年底我国网民数为564亿,手机网民为42亿,通过分析相关数据,可以了解大众需求、诉求和意见。其次,企业和政府的信息系统每天源源不断产生大量数据。根据赛门铁克公司的调研报告,全球企业的信息存储总量已达22ZB(1ZB等于1000EB),年增67%。医院、学校和银行等也都会收集和存储大量信息。政府可以部署传感器等感知单元,收集环境和社会管理所需的信息。2011年,英国《自然》杂志曾出版专刊指出,倘若能够更有效地组织和使用大数据,人类将得到更多的机会发挥科学技术对社会发展的巨大推动作用。
大数据应用的领域
大数据技术可运用到各行各业。宏观经济方面,IBM日本公司建立经济指标预测系统,从互联网新闻中搜索影响制造业的480项经济数据,计算采购经理人指数的预测值。印第安纳大学利用谷歌公司提供的心情分析工具,从近千万条网民留言中归纳出六种心情,进而对道琼斯工业指数的变化进行预测,准确率达到87%。制造业方面,华尔街对冲基金依据购物网站的顾客评论,分析企业产品销售状况;一些企业利用大数据分析实现对采购和合理库存量的管理,通过分析网上数据了解客户需求、掌握市场动向。有资料显示,全球零售商因盲目进货导致的销售损失每年达1000亿美元,这方面的数据分析大有作为。
在农业领域,硅谷有个气候公司,从美国气象局等数据库中获得几十年的天气数据,将各地降雨、气温、土壤状况与历年农作物产量的相关度做成精密图表,预测农场来年产量,向农户出售个性化保险。在商业领域,沃尔玛公司通过分析销售数据,了解顾客购物习惯,得出适合搭配在一起出售的商品,还可从中细分顾客群体,提供个性化服务。在金融领域,华尔街“德温特资本市场”公司分析34亿微博账户留言,判断民众情绪,依据人们高兴时买股票、焦虑时抛售股票的规律,决定公司股票的买入或卖出。阿里公司根据在淘宝网上中小企业的交易状况筛选出财务健康和讲究诚信的企业,对他们发放无需担保的贷款。目前已放贷300多亿元,坏账率仅03%。
在医疗保健领域,“谷歌流感趋势”项目依据网民搜索内容分析全球范围内流感等病疫传播状况,与美国疾病控制和预防中心提供的报告对比,追踪疾病的精确率达到97%。社交网络为许多慢性病患者提供临床症状交流和诊治经验分享平台,医生借此可获得在医院通常得不到的临床效果统计数据。基于对人体基因的大数据分析,可以实现对症下药的个性化治疗。在社会安全管理领域,通过对手机数据的挖掘,可以分析实时动态的流动人口来源、出行,实时交通客流信息及拥堵情况。利用短信、微博、微信和搜索引擎,可以收集热点事件,挖掘舆情,还可以追踪造谣信息的源头。美国麻省理工学院通过对十万多人手机的通话、短信和空间位置等信息进行处理,提取人们行为的时空规律性,进行犯罪预测。在科学研究领域,基于密集数据分析的科学发现成为继实验科学、理论科学和计算科学之后的第四个范例,基于大数据分析的材料基因组学和合成生物学等正在兴起。
麦肯锡公司2011年报告推测,如果把大数据用于美国的医疗保健,一年产生潜在价值3000亿美元,用于欧洲的公共管理可获得年度潜在价值2500亿欧元;服务提供商利用个人位置数据可获得潜在的消费者年度盈余6000亿美元;利用大数据分析,零售商可增加运营利润60%,制造业设备装配成本会减少50%。
大数据技术的挑战和启示
目前,大数据技术的运用仍存在一些困难与挑战,体现在大数据挖掘的四个环节中。首先在数据收集方面。要对来自网络包括物联网和机构信息系统的数据附上时空标志,去伪存真,尽可能收集异源甚至是异构的数据,必要时还可与历史数据对照,多角度验证数据的全面性和可信性。其次是数据存储。要达到低成本、低能耗、高可靠性目标,通常要用到冗余配置、分布化和云计算技术,在存储时要按照一定规则对数据进行分类,通过过滤和去重,减少存储量,同时加入便于日后检索的标签。第三是数据处理。有些行业的数据涉及上百个参数,其复杂性不仅体现在数据样本本身,更体现在多源异构、多实体和多空间之间的交互动态性,难以用传统的方法描述与度量,处理的复杂度很大,需要将高维图像等多媒体数据降维后度量与处理,利用上下文关联进行语义分析,从大量动态而且可能是模棱两可的数据中综合信息,并导出可理解的内容。第四是结果的可视化呈现,使结果更直观以便于洞察。目前,尽管计算机智能化有了很大进步,但还只能针对小规模、有结构或类结构的数据进行分析,谈不上深层次的数据挖掘,现有的数据挖掘算法在不同行业中难以通用。
大数据技术的运用前景是十分光明的。当前,我国正处在全面建成小康社会征程中,工业化、信息化、城镇化、农业现代化任务很重,建设下一代信息基础设施,发展现代信息技术产业体系,健全信息安全保障体系,推进信息网络技术广泛运用,是实现四化同步发展的保证。大数据分析对我们深刻领会世情和国情,把握规律,实现科学发展,做出科学决策具有重要意义,我们必须重新认识数据的重要价值。
为了开发大数据这一金矿,我们要做的工作还很多。首先,大数据分析需要有大数据的技术与产品支持。发达国家一些信息技术(IT)企业已提前发力,通过加大开发力度和兼并等多种手段,努力向成为大数据解决方案提供商转型。国外一些企业打出免费承接大数据分析的招牌,既是为了练兵,也是为了获取情报。过分依赖国外的大数据分析技术与平台,难以回避信息泄密风险。有些日常生活信息看似无关紧要,其实从中也可摸到国家经济和社会脉搏。因此,我们需要有自主可控的大数据技术与产品。美国政府2012年3月发布《大数据研究与发展倡议》,这是继1993年宣布“信息高速公路”之后又一重大科技部署,联邦政府和一些部委已安排资金用于大数据开发。我们与发达国家有不少差距,更需要国家政策支持。
中国人口居世界首位,将会成为产生数据量最多的国家,但我们对数据保存不够重视,对存储数据的利用率也不高。此外,我国一些部门和机构拥有大量数据却不愿与其他部门共享,导致信息不完整或重复投资。政府应通过体制机制改革打破数据割据与封锁,应注重公开信息,应重视数据挖掘。美国联邦政府建立统一数据开放门户网站,为社会提供信息服务并鼓励挖掘与利用。例如,提供各地天气与航班延误的关系,推动航空公司提升正点率。
大数据的挖掘与利用应当有法可依。去年底全国人大通过的加强网络信息保护的决定是一个好的开始,当前要尽快制定“信息公开法”以适应大数据时代的到来。现在很多机构和企业拥有大量客户信息。应当既鼓励面向群体、服务社会的数据挖掘,又要防止侵犯个体隐私;既提倡数据共享,又要防止数据被滥用。此外,还需要界定数据挖掘、利用的权限和范围。大数据系统本身的安全性也是值得特别关注的,要注意技术安全性和管理制度安全性并重,防止信息被损坏、篡改、泄露或被窃,保护公民和国家的信息安全。
大数据时代呼唤创新型人才。盖特纳咨询公司预测大数据将为全球带来440万个IT新岗位和上千万个非IT岗位。麦肯锡公司预测美国到2018年需要深度数据分析人才44万—49万,缺口14万—19万人;需要既熟悉本单位需求又了解大数据技术与应用的管理者150万,这方面的人才缺口更大。中国是人才大国,但能理解与应用大数据的创新人才更是稀缺资源。
大数据是新一代信息技术的集中反映,是一个应用驱动性很强的服务领域,是具有无穷潜力的新兴产业领域;目前,其标准和产业格局尚未形成,这是我国实现跨越式发展的宝贵机会。我们要从战略上重视大数据的开发利用,将它作为转变经济增长方式的有效抓手,但要注意科学规划,切忌一哄而上。产业云boss是一种基于云计算、大数据、物联网等技术的企业级解决方案,旨在帮助企业实现数字化转型和升级。根据查询相关公开信息显示:产业云BOSS主要服务于制造业、物流业、金融业、医疗健康等行业,可以针对不同行业的需求进行个性化定制和适配。随着智能制造、智慧城市等概念的不断推广,产业云BOSS也将成为数字化转型的重要驱动力之一。产业云BOSS通常涵盖了多个业务板块,如生产管理、物流配送、供应链管理、财务管理等,旨在提供全局性的、协同的业务运营支撑和管理。它具有高效性、便捷性、可定制性等特点,可以帮助企业实现资源共享、信息共享、流程优化以及降低成本、提高效率、提升竞争力等目标。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)