我国国家最新标准《汽车和挂车类型的术语和定义》(GB/T 3730.1—2001)中对汽车有如下定义:由动力驱动,具有4个或4个以上车轮的非轨道承载的车辆,主要用于:载运人员和(或)货物;牵引载运人员和(或)货物的车辆;特殊用途。
乘用车
乘用车在其设计和技术特性上主要用于载运乘客及其随身行李和(或)临时物品,包括驾驶员座位在内,乘用车最多不超过9个座位。乘用车分为以下11种车型。主要有:普通乘用车、活顶乘用车、高级乘用车、小型乘用车、敞篷车、舱背乘用车、旅行车、多用途乘用车、短头乘用车、越野乘用车、专用乘用车。
商用车
商用车在设计和技术特性上用于运送人员和货物,并且可以牵引挂车,但乘用车不包括在内。主要有:客车、半挂牵引车、货车。
扩展资料:
第一辆内燃机汽车的诞生
世界上第一辆汽车是由德国人卡尔·本茨(1844~1929)于1885年10月研制成功的,一举奠定了汽车设计基调,即使现在的汽车也跳不出这个框框。他于1886年1月29日向德国专利局申请汽车发明的专利,同年的11月2日专利局正式批准发布。因此,1886年1月29日被公认为是世界汽车的诞生日,本茨的专利证书也成为了世界上第一张汽车专利证书。
其实,在本茨之前还有一些人在研制汽车发动机和汽车,法国报刊早在1863年就报道过雷诺发明的汽车,车速不到 8km /h ,但是它还是从巴黎到乔维里波达来回跑了18km 。1884年,法国人戴波梯维尔运用内燃机作为动力源,制造了一辆装有单缸内燃机的三轮汽车和一辆装有两缸内燃机的四轮汽车。
早在第一辆汽车发明之前,与它相关的许多发明就已经出现了,如铅酸蓄电池、内燃机点火装置、硬橡胶实心轮胎、d簧悬架等,所以汽车是许多发明或技术的综合运用。
哥特里布·戴姆勒的四轮汽车
1881年,戴姆勒同威廉·迈巴赫合作开办了当时第一家所谓汽车工厂。 1883年8月15日 ,戴姆勒和迈巴赫发明了汽油内燃机。1885年末,戴姆勒将马车改装,增加了转向、传动装置,安装了功率为11kw的内燃机,装上四个轮子,车速达到了144km /h 。
1885年,德国人哥特里布·戴姆勒(1843~1900)发明了第一辆四轮汽车本茨和戴姆勒是人们公认的以内燃机为动力的现代汽车的发明者,他们的发明创造,成为汽车发展史上最重要的里程碑,他们两人因此被世人尊称为“汽车之父”。
参考资料:
百度百科-汽车
百度百科-汽车发展史
太平洋汽车网车联网就是自动驾驶。车联网通过网络把汽车连接起来,实现对所有车辆的有效监管并提供综合服务即ITS。车联网还可以辅助自动驾驶,帮助汽车了解其它汽车的信息。
根据个人认知车联网是物联网的一个局部应用,以车为终端,通过无线或有线进行链路连接的各种设备组成的子网。它可以对车的信息进行收集与共享,再通过信息的处理,实现车与路、车与人、人与人、人与第三方服务商的沟通,让汽车生活更加智能。
一、车联网是跨行业跨领域的集成系统,需要各个领域的公司通力合作、共同开发在未来的车联网系统里,各个大数据平台将实现互通互联,最终形成一个巨型数据仓库。
而每一辆车都是这个数据仓库的一个节点。车辆行驶过程中产生的各种数据,源源不断的汇集到数据仓库,由云计算系统对数据进行“精挑细选”的过滤,再由数据分析系统根据不同行业对车辆信息数据的不同需求,将分类后的数据进行实时共享。
以便为汽车及驾驶员提供实时、准确、有效、贴心的个性化服务。包括但不限于:人与车智能交互、车与车智能交互、车与周围设施智能交互、车辆周围环境监测(空气质量、污染指数、天气情况)、车辆路径智能规划、交通情况实时预警、车辆自动安全驾驶、驾驶员身体状况、驾驶水平监测、驾驶员实时违章预警、车辆突发危险处理等等。
二、通过“车联网”系统,汽车将具备高度的智能化,成为未来智能化社会的一块组成部分至于未来无人汽车对于公路货运的影响,本人觉得未来无人驾驶技术不会首先实际应用在货车上,应该先在私家车或出租车等小车上应用无人驾驶技术,等待技术和市场逐步成熟后,再应用到其它类型的车上。
货车一般体量巨大,若首先应用无人驾驶技术,高速行驶的威势,恐怕会对其它有人驾驶车造成恐慌,待到公路上的车大部分都实现无人化驾驶后,所有的车通过车联网互连,相遇时自行交换彼此的线路,速度,角度等行驶信息,再通过联网计算,细微调控,就可以飞速在公路上奔驰,安全而高效。
(图/文/摄:太平洋汽车网问答叫兽)
物联网、云计算,这些词也许都被大家听烦了,但是你了解车联网吗?可以想象,你等候的公交车几点来、有多少人、路况等信息都可以提前知道吗?或者说,你坐在舒适的桥车内,无需亲自查看,车内是否需要加油、发动机是否正常等参数都会显示在一个小显示屏上,你将行驶通过的大桥的老化程度、车流量等信息,也了如指掌。你甚至都不需要亲自 *** 纵方向盘,车子会自己选择最佳的行驶路线,送你平安到家。这是科幻小说吗?绝对不是,在物联网、云计算等技术的帮助下,车联网也贴近人们的日常生活了!
简单来说,车联网就是车子联网。当然,这个解释太过于粗糙简陋,那么我们就扩展开来——车子为什么要联网?车子怎么联网?车子联网之后呢?
车子为什么要联网?
想必每个人都有过堵车的经历,当上班迟到、接人迟到、送机迟到,你困在小小的轿车内,车内是和你一样一脸郁闷的司机,前后左右则是几个小时毫无动d的车流大队。如何能够快速、便捷地出行,掌握实时交通动态、知晓拥堵情况就成为众望所归。于是,车联网应运而生。车联网是物联网的典型应用,利用车载电子传感装置,通过网络信息交换,对车辆和交通状况进行有效的智能监控,促进了汽车、交通和信息技术产业向更加现代化、网络化和智能化的方向发展。
更通俗地说,以前,我们人手一部手机,可以用来上网、知天下事、交四方友。而在不久的将来,你驾驶的车辆将会成为一步“手机”,车辆不再是独立的沉默个体,车辆之间既能沟通,也能感知外界环境。总而言之,在车联网时代,车辆会处理源源不断的数据,让你的出行更安全而便利,使生活更舒适。
车子怎么联网?
“让车子联网”这件事说简单很简单,就像你打开手机,连上网络,就可以刷网页、看视频、玩游戏、与朋友们聊天,这件事只是看起来简单而已。手机电路板上的那些密密麻麻的元件、信息程序员以日夜辛劳写出的程序代码,在你看不到的地方,有整个世界为你的便捷付出的辛劳。
车联网系统结构图
车联网也是如此。简单的来说,首先利用各种传感器检测车辆状态参数并上传至车载终端,利用无线射频技术识别车辆上的电子标签,通过网络平台有效利用车辆所有属性信息,并根据需求不同,对车辆运行状态进行有效监管并提供综合服务。具体的核心技术如下:
1 RFID技术
射频识别(Radio Frequency Identification,RFID)源自于20世纪40年代的军方雷达项目,而如今被应用到了生活的各个方面。从概念上讲,RFID类似于条形码技术。条形码技术将条形码信息依附在物品上,通过扫描q对物品上的条形码进行扫描,从而获得物品的信息。而RFID技术将RFID标签依附在物品上,通过射频信号将标签中的信息读取到RFID读取器中,从而获得物品的特有信息。
RFID标签中可存储关于物品的各类信息;对于超市商品而言,可存储商品的名称、价格、质量、产地、类型等信息;而对于车辆来说,可存储车辆的类型、车辆注册地区、车主信息等。与条形码技术相比,RFID技术的优势在于不要求识别方向和距离精度,RFID阅读器能在一定范围内自动识别RFID标签,并且在高速运动的情况下具有良好的识别成功率,且不像条形码容易产生形变和破损等问题而导致无法识别。同时,RFID技术能同时识别多个标签,有效提高识别效率,不像条形码那样需要依次读取信息。
RFID技术构造图
有了方便的射频识别技术,再配合传感器,你虽然身处车内,却像在车外一样自由,就像拿着手机和别人沟通,完美实现了车辆之间的互动,比如车主间聊天说地,促进感情,还能避免发生交通事故。
2 GPS系统
行驶在路上的车辆可不是静物,所以我们必须在宏观上进行监控。于是此刻需要向上看,在无垠的宇宙中,有日夜不息的卫星保卫着我们,这就是GPS系统。2000年,我国成功发射了“北斗双星导航系统”,并计划在2020年,将建成由5颗地球静止轨道卫星组网而成的全球卫星导航系统。
GPS系统由24颗均匀分布在高度为20200千米的6个轨道面内的卫星组成,运行周期为11小时58分钟,可发射L1(15754MHz)和L2(12776MHz)这两种频率信号。整个GPS系统可看成由空间部分、地面监控系统和用户接收机这三个主要部分组成。空间部分由21颗工作卫星和3颗备用在轨卫星组成,24颗卫星均匀分布在6个倾角为55度的轨道平面中,轨道平面之间相距60度,卫星轨道近似圆形,相邻轨道间的卫星要彼此分开30度来覆盖全球。上述GPS卫星布局保证了在地球上的任何地点和时间,从仰角15度的天空中,至少能观察到4颗卫星,并能保持形成良好定位计算精度的几何图形,以实现全球精确连续导航与定位。
GPS的基本定位原理如图所示,卫星不断向外发送自身的星历参数和时间等信息,当用户接收机(也就是车载GPS导航仪)同时接收到不同方位的4颗卫星发出的信号时,经过距离测量和计算,即可得出接收机的位置。
有了GPS系统,我们就可以时刻掌握自己的位置,妈妈再也不用担心我会迷路啦!而且还能知道他人的位置,以及前方是否堵车、是否出现交通事故等信息,这有利于随时调整路况,方便大家出行。
3 驾驶行为感知
GPS系统可确定车辆的具体位置,而OBD(On-Board Diagnostics,车载诊断系统)则能体贴周到的感知车辆的各种信息。当车子出现故障,如发动机转速、燃油压力、速度、进气温度、空燃比等参数出现异常时,可以及时告知车主甚至交管处。而更牛的是,对驾驶员的驾驶行为的感知。你若疲劳驾驶的话,车子都会提醒你休息哦!
经研究发现,对驾驶员眼睛的识别就可以很准确地判断出是否在疲劳驾驶。首先是识别人眼,车内摄像头对采集到的人脸图像进行分析,发现眼睛部分的灰度值比其他部分更低,就可以通过求水平方向的平均灰度值,设置一个阈值,将低于阈值的部分认定为人眼区域。眼睛被识别后,再使用“动态模板匹配”方法来追踪眼睛(眼睛是会乱动的,可不是个安分的家伙),把眼睛模板左上角的位置设为x坐标和y坐标,在原位置上沿上、下、左、右这四个方向扩展出10个像素,设为下一帧的搜索范围。还考虑到睁眼、闭眼,以及头部摇动等一系列问题,逐渐优化检测模型,从而可以判断出驾驶员是否在疲劳驾驶。这样,下次你再握着方向盘犯困时,车子就自己安全地靠路边停下来了哦,因为驾驶安全永远都是第一位。
除了疲劳驾驶外,最常见的交通事故还包括在雨天时意外撞上路人,而解决方法也很简单,在车的前方装入一台红外摄像机,用来捕捉前方行人的影像。这依据的就是红外线立体成像技术,红外线根据温度,可很好的识别出人的轮廓,让车主在滂沱大雨等看不清道路的天气中,迅速而准确地识别出前方行人。
如何保证车联网的网络安全?
在车联网系统下,车子需要收集大量信息,如车与车、车与人、车与路之间的信息,无数信息被暴露在网络中,所以网络安全至关重要。最常见的信息危险如包括蠕虫在内的病毒、特洛伊木马、逻辑炸d、“拒绝服务”攻击等恶意代码。其中,蠕虫具有主动攻击、行踪隐蔽、利用漏洞入侵、造成网络拥塞、降低系统性能、产生安全隐患、反复性和破坏性等特征。车联网的如此动态、大量信息非常容易受到这种攻击。单纯的抵制病毒却收效甚微,而聪明的网络安全研究人员灵光一闪,借鉴病毒学中的有益细菌、病毒抑制等抑制有害微生物的手段,提出了利用良性蠕虫对抗放置蠕虫的思路。
车联网的网络构架
良性蠕虫是一种新型蠕虫,具有蠕虫的智能自主传播的特性,可以像蠕虫一样在有漏洞的节点上传播。但良性蠕虫不具有蠕虫的恶意破坏特性,也不对网络资源进行掠夺性蚕食,反而能够通过节点上的系统漏洞获得一定权限,修补未被恶性蠕虫病毒感染的节点的漏洞,从而进行免疫;查找已被恶性蠕虫病毒感染的节点,并清除恶性蠕虫的实体和进程,修补系统漏洞,修复注册表,最后能够根据设计命令,潜伏或自我销毁。除此以外,还有不断改进的多样技术以确保车联网的数据安全。
早在2010年,世博会上就展示了运用车联网技术的模型车,引得众人一片惊叹。而车联网如此便捷、舒适的交通方式还需要解决车载APP、传感器的更新,以及网络安全等问题,但是我们有理由相信随着科技的进步,车联网不再仅仅是一个在科幻小说中出现的话题,安全出行、便捷交通将不再是梦想。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)