一、感知层——感知信息
作为物联网的核心,承担感知信息作用的传感器,一直是工业领域和信息技术领域发展的重点,传感器不仅感知信号、标识物体,还具有处理控制功能。
目前,在发达国家,其发展已芯片化、集成化和智能化。如最早提出泛在网的加州大学(伯克利分校),已将压力、磁、光等传感单元集成在一个芯片中,而且芯片具备无线接入和自组网功能。
然而,传感器国产化程度较低,其成本、性能和寿命尚不能满足交通运输物联网信息感知的需求。据了解,交通运输部正在和其他部门合作,研制满足交通需求、具有自主知识产权的传感器,并对市场产生了影响。如专业生产感知气象信息设备的维萨拉公司,得知交通运输部正在组织相关研究后,主动要求加入,其产品在国内也应声降价。
二、网络层——传输信息
传感器感知到基础设施和物品信息后,需要通过网络传输到后台进行处理。
目前,传输信息应用的网络先进技术包括第6版互联网协议(IPv6)、新型无线通信网(3G、4G、ZIGBEE等)、自组网技术等,正在向更快的传输速度、更宽的传输带宽、更高的频谱利用率、更智能化的接入和网络管理发展。
据专家介绍,我国在道路建设中,沿路铺设了大量光纤,但利用程度不高。物联网采集到的海量数据,可以使这些道路光纤物尽其用。
三、应用层——处理信息
物联网概念下的信息处理技术有分布式协同处理、云计算、群集智能等。
信息处理的目的是应用,交通物联网的信息处理是为了分析大量数据,挖掘对百姓出行和交通管理有用的信息。此外,还需要建立信息处理和发送机制体制,保证信息发送到需要的人手中。比如,把宏观的路网信息发送给管理决策人员,把局部道路通行情况发送给公众,把某条具体路段的事故信息发送给正行驶在上面的车辆。
这个问题物联网不是重点,无线电波才是重点。对于无线电波,为什么频率越高,传输距离越短这个问题我见到过一个答案回答的很有道理,共享一下:
A距离远近是相对的,你提出的问题只是狭义上的,不是真理。
你说的结论是在存在障碍物(物体尺寸与波长相当就视为障碍物)
解释如下:
频率越高波长越短,饶射(衍射效果)能力越弱,但穿透能力(不变方向)越强,信号穿透会损失很大能量,所以传输距离就可能越近,频率越高在传播过程的损耗越大。
但高频信号本身携带的能量很高,具有很强的穿透能力,比如当无线电波频率很高时,他会穿透电离层,不会再电离层形成反射
结论:有障碍物的情况下,频率越高损耗就会越大。
我的解释里已经提到了--频率越高,遇到障碍物是就会直接穿过去而不是绕过去,这样就会元气大伤(衰减太大)。
给你举个通俗例子:
一个是视力正常的人和一个瞎子在一个陌生的环境里谁走的远一点?
答案不能完全确定-----如果没有障碍物,那就看谁的本领大(电磁波的能量);若有障碍物,可以肯定瞎子肯定走不过视力正常的人。因为瞎子会被撞死。
B高频电波的特点是:直线性好;波长小,不容易发生明显的衍射,遇到障碍物容易被阻挡
可见频率越高,越容易被阻碍。
C在理想情况下,即没有任何障碍物的情况下,频率对传输距离是没有影响的。
但是实际情况中经常有各种障碍,比如山体,建筑物等。电磁波通过障碍是根据衍射原理,障碍物小于波长时,电磁波容易通过。电磁波速度一定,根据v=fλ,频率越高,波长越短。波长短了就不容易穿越障碍物,所以传输距离短。
D
自由空间损耗公式:Ls=20Lgf(MHz)+20Lgd(Km)+324 f是频率,d是传播距离
如果d不变,Ls与f就是一个以10为底的底数函数,这个函数是增函数,所以f越高,Ls就越大
原帖在此:>稳定。物联网数据传输的稳定性有保障吗?
深圳妙月科技有限公司
八年专注物联网与AI语音通信服务商
社会迅速发展,追求的不仅仅是可持续发展,同时也追求稳定性发展。随着越来越多智能设备应用到生活场景,人们对物联网卡稳定性的要求越发精细,一旦物联网卡稳定性得不到保障,很多智能产品将无法正常发挥作用,这对各大智能领域来说都是致命的打击。
尤其在5G时代,5G使网络传输速度有了很大的提升,而网络来自于基站,网络数据传输能否保持稳定受基站影响,就像地方运营商通信讯号会影响手机通信的正常使用一样。5G智能设备覆盖生活的方方面面,如果网络数据传输不稳定,现代生活将很难顺畅推进。
物联网卡已经发展了很多年,但在市场上还是被判定为“灰色地带”,其中有很多方面的原因:
一、物联网卡受基站影响,数据传输受限于地方基站的覆盖面积,且运营商在某些地区的2G网络也在逐渐关闭;
二、物联网卡管理平台。物联网卡虽是由运营商发行的,但管理方面却是由销售代理完成的。许多代理商没有管理平台,物联网卡在使用后期的数据就得不到保障,导致许多物联网卡无法起到智联万物的效果。所以在选择物联网卡代理商时要认真判断,选择好网络,好的卡管理平台,才能创造更高的效益。
妙月认为,相对于2G、3G、4G网络,5G网络本身具有覆盖面广、传输数量大等特点,在传输智能数据过程中会更加灵便与稳定。因此,关于5G物联网卡传输数据是否稳定问题,答案是肯定的。原因有以下几点:
一、物联卡面向企业而不是个人用户
众所周知,物联卡是三大运营商针对企业行业硬件设备提供上网、短信服务的一种流量卡,其使用规则,工信部也有发文规定物联卡用于企业、集团设备,禁止使用在个人设备当中,物联卡实名认证也是以企业单位为准,因此不存在泄露个人信息的风险。
二、物联卡数据传输原理
对物联卡有所了解,应该都知道物联卡是利用三大运营商专用网元独立号段,在确认物联网环境安全下进行数据传输的,因此在数据传输的过程中,数据还是比较安全的。
三、物联网发展,国密算法高抗冲突物联网安全芯片的研发面市
物联网是继互联网之后的一次信息技术革命,站在巨人的肩膀上前行,发展迅速。前段时间,在济南召开的安全芯片研究成果发布会上宣布,全国首款国密算法高抗冲突物联网安全芯片的研发面市,这意味着物联网技术在与时俱进、不断更新、完善、确保做到“防破解、防篡改、防克隆、防窃听、防转移”等安全防护工作,对物联网数据全全起到多一层保护作用。
如今新的智能科技浪潮已经到来,许多企业纷纷寻找新的转型升级之法,5G与物联网卡结合无疑是一条顺应时代发展的道路。
妙月有八年物联网运营服务经验,提供一站式物联网卡行业解决方案和智能穿戴行业解决方案,稳定的卡管理平台,专业的售后服务,利用5G物联网卡强大稳定的传输能力,助力企业数字化转型智能化发展。
展开
简单来说,从3G到5G伴随着的是更快的网速和随着而来更多的使用场景,预计在5G普及之后会带来高速率、低延时、物联网等特性,会有相比于目前更多的网络设备接入和应用范围。具体地:
1、最简单的区别就是在网速上面,以及更快速度伴随而来的更多样应用和适用范围;
1、3G是第三代移动通信技术(3rd-generation,3G),是指支持高速数据传输的蜂窝移动通讯技术。3G服务能够同时传送声音及数据信息,速率一般在几百kbps以上。目前3G存在四种标准:CDMA2000,WCDMA,TD-SCDMA,WiMAX;
2、4G是第四代移动通信及其技术的简称。相比3G,4G带宽更高,能够传输更高质量的视频及图像。其实 4G 使用的 LTE 系统由于数据传输率很高,可以直接将语音数据切割成封包来传送;在4G时代,得益于更高的传输速度,流媒体、直播都成为了常见的使用场景;
3、5G网络将有更大的容量和更快的数据处理速度,通过手机、可穿戴设备和其它联网硬件推出更多的新服务将成为可能。5G的容量预计是4G的1000倍。使用4G网络,你不能在手机上真正实时在线玩游戏,但使用5G网络却可以做到。4G网络是专为手机打造的,没有为物联网进行优化。5G技术为物联网提供了超大带宽,与4G相比,5G网络可以支持10倍以上的设备;
以上就是3G、4G和5G有什么区别的具体介绍了,希望可以帮助到大家。
4G是第四代移动通信技术,LTE和4G区别如下:
1、性质上的区别
LTE是3G与4G技术之间的过渡,是3G演进型系统。
4G是第四代移动电话行动通信标准,集3G与WLAN于一体。
2、特性上的区别
LTE容量提升,在20MHz带宽下,下行峰值速率达到100Mbit/s,上行峰值速率达到50Mbit/s;覆盖增强,提高小区边缘比特率,在5km区域满足最优容量;移动性提高,0~15km/h性能最优;质量优化;服务内容综合多样化;运维成本降低,采用扁平化架构。
4G通信速度快;网络频谱宽,计每个4G信道会占有100MHz的频谱,相当于W-CDMA3G网络的20倍;通信灵活;智能性能高;兼容性好,让更多的现有通信用户在投资最少的情况下就能很轻易地过渡到4G通信;提供增值服务;高质量通信;频率效率高。
3、核心技术上的区别
LTE主要有SC-FDMA技术,是一种单载波多用户接入技术,SC-FDMA具有较低的PAPR;OFDM技术把高速数据流分散到多个正交的子载波上传输,使子载波上符号速率大大降低,符号持续时间加长,因而对时延扩展有较强的抵抗力;MIMO作为提高系统传输率的最主要手段;高阶调制技术。
4G是多天线技术,任何一方产生通信信号都由多个天线来进行传递;ipv6技术,4G通信的技术要点;智能天线技术通过编写程序,将程序变为一组天线单元,通过天线单元就对信号传输方向获取;正交频分复用技术,将通信信道划分为若干个子信道,将所需要传输数据分流到子信道中传输。
参考资料来源:百度百科-LTE
参考资料来源:百度百科-4G
12 个空间流与 256-QAM 调制。
2 2 个空间流与 256-QAM 调制。
3 3 个空间流与 64-QAM 调制。
Wi-Fi 已成为当今世界无处不在的技术,为数十亿设备提供连接,也是越来越多的用户上网接入的首选方式,并且有逐步取代有线接入的趋势。为适应新的业务应用和减小与有线网络带宽的差距,每一代 80211 的标准都在大幅度的提升其速率。
1997 年 IEEE 制定出第一个无线局域网标准 80211,数据传输速率仅有 2Mbps,但这个标准的诞生改变了用户的接入方式,使人们从线缆的束缚中解脱出来。
随着人们对网络传输速率的要求不断提升,在 1999 年 IEEE 发布了 80211b 标准。80211b 运行在 24 GHz 频段,传输速率为 11Mbit/s,是原始标准的 5 倍。同年,IEEE 又补充发布了 80211a 标准,采用了与原始标准相同的核心协议,工作频率为 5GHz,最大原始数据传输率 54Mbit/s,达到了现实网络中等吞吐量(20Mbit/s)的要求,由于 24GHz 频段已经被到处使用,采用 5GHz 频段让 80211a 具有更少冲突的优点。
2003 年,作为 80211a 标准的 OFDM 技术也被改编为在 24 GHz 频段运行,从而产生了 80211g,其载波的频率为 24GHz(跟 80211b 相同),原始传送速度为 54Mbit/s, 净传输速度约为 247Mbit/s(跟 80211a 相同)。
对 Wi-Fi 影响比较重要的标准是 2009 年发布的 80211n,这个标准对 Wi-Fi 的传输和接入进行了重大改进,引入了 MIMO、安全加密等新概念和基于 MIMO 的一些高级功能 (如波束成形,空间复用),传输速度达到 600Mbit/s。 此外,80211n 也是第一个同时工作在 24 GHz 和 5 GHz 频段的Wi-Fi 技术。
然而,移动业务的快速发展和高密度接入对 Wi-Fi 网络的带宽提出了更高的要求,在2013 年发布的 80211ac 标准引入了更宽的射频带宽(提升至 160MHz)和更高阶的调制技术(256-QAM),传输速度高达 173Gbps,进一步提升 Wi-Fi 网络吞吐量。另外,在 2015 年发布了 80211ac wave2 标准,将波束成形和 MU-MIMO 等功能推向主流,提升 了系统接入容量。但遗憾的是 80211ac 仅支持 5GHz 频段的终端,削弱了 24GHz 频段下的用户体验。
然而,随着视频会议、无线互动 VR、移动教学等业务应用越来越丰富,Wi-Fi 接入终端越来越多,IoT 的发展更是带来了更多的移动终端接入无线网络,甚至以前接入终端较少的家庭 Wi-Fi 网络也将随着越来越多的智能家居设备的接入而变得拥挤。因此 Wi-Fi 网络仍需要不断提升速度,同时还需要考虑是否能接入更多的终端,适应不断扩大的客户端设备数量以及不同应用的用户体验需求。
下一代Wi-Fi 需要解决更多终端的接入导致整个Wi-Fi 网络效率降低的问题,早在2014 年 IEEE 80211 工作组就已经开始着手应对这一挑战, 预计在 2019 年正式推出的80211ax(下个章节介绍为什么叫 Wi-Fi 6)标准将引入上行 MU-MIMO、OFDMA 频分复用、1024-QAM 高阶编码等技术,将从频谱资源利用、多用户接入等方面解决网络容量和传输效率问题。目标是在密集用户环境中将用户的平均吞吐量相比如今的 Wi-Fi 5 提高至少4 倍,并发用户数提升 3 倍以上,因此,Wi-Fi 6(80211ax)也被称为高效无线(HEW)。
Wi-Fi 6 是下一代 80211ax 标准的简称。随着 Wi-Fi 标准的演进,WFA 为了便于 Wi- Fi 用户和设备厂商轻松了解其设备连接或支持的 Wi-Fi 型号,选择使用数字序号来对 Wi- Fi 重新命名。另一方面,选择新一代命名方法也是为了更好地突出 Wi-Fi 技术的重大进步, 它提供了大量新功能,包括增加的吞吐量和更快的速度、支持更多的并发连接等。根据 WFA 的公告,现在的 Wi-Fi 命名分别对应如下 80211 技术标准:
和以往每次发布新的 80211 标准一样,80211ax 也将兼容之前的 80211ac/n/g/a/b 标准,老的终端一样可以无缝接入 80211ax 网络。
4G 是移动网络高速率的代名词,同样,Wi-Fi 6 是无线局域网高速率的代名词,但这个高速率是怎么来的,由以下几个因素决定。
1空间流数量 空间流其实就是 AP 的天线,天线数越多,整机吞吐量也越大,就像高速公路的车道一样,8 车道一定会比 4 车道运输量更大。
表 2 不同 80211 标准对应的空间流数量 2Symbol 与 GI Symbol 就是时域上的传输信号,相邻的两个Symbol 之间需要有一定的空隙(GI),以避免 Symbol 之间的干扰。就像中国的高铁一样,每列车相当于一个 Symbol, 同一个车站发出的两列车之间一定要有一个时间间隙,否则两列车就可能会发生碰撞。不同 Wi-Fi 标准下的间隙也有不同,一般来说传输速度较快时 GI 需要适当增大,就像同一车道上两列 350KM/h 时速的高铁发车时间间隙要比时速 250KM/h 时速的高铁发车间隙要大一些。
表 3 80211 标准对应的 Symbol 与GI 数据
3编码方式 编码方式就是调制技术,即 1 个 Symbol 里面能承载的 bit 数量。从 Wi-Fi 1 到 Wi-Fi 6,每次调制技术的提升,都能至少给每条空间流速率带来 20%以上的提升。
表 4 80211 标准对应的 QAM 4码率 理论上应该是按照编码方式无损传输,但现实没有这么美好。传输时需要加入一些用于纠错的信息码,用冗余换取高可靠度。码率就是排除纠错码之后实际真实传输的数据码占理论值的比例。
表 5 80211 标准对应的码率 5有效子载波数量 载波类似于频域上的 Symbol,一个子载波承载一个 Symbol,不同调制方式及不同频宽下的子载波数量不一样。
表680211 标准对应的子载波数量
至此,我们可以计算一下 80211ac 与 80211ax 在 HT80 频宽下的单条空间流最大速率:
Wi-Fi 6(80211ax)继承了Wi-Fi 5(80211ac)的所有先进 MIMO 特性,并新增了许多针对高密部署场景的新特性。以下是Wi-Fi 6 的核心新特性:
下面详细描述这些核心新特性。
图 2-1 OFDM 工作模式 80211ax 中引入了一种更高效的数据传输模式,叫 OFDMA(因为 80211ax 支持上下行多用户模式,因此也可称为 MU-OFDMA),它通过将子载波分配给不同用户并在OFDM 系统中添加多址的方法来实现多用户复用信道资源。迄今为止,它已被许多无线技术采用,例如 3GPP LTE。此外,80211ax 标准也仿效 LTE,将最小的子信道称为“资源单位(Resource Unit,简称 RU)”,每个 RU 当中至少包含 26 个子载波,用户是根据时频资源块 RU 区分出来的。我们首先将整个信道的资源分成一个个小的固定大小的时频资源块 RU。在该模式下,用户的数据是承载在每一个 RU 上的,故从总的时频资源上来看,每一个时间片上,有可能有多个用户同时发送(如下图)。
图 2-2 OFDMA 工作模式 OFDMA 相比 OFDM 一般有三点好处:
图 2-3 不同子载波频域上的信道质量
因为 80211ac 及之前的标准都是占据整个信道传输数据的,如果有一个 QOS 数据包需要发送,其一定要等之前的发送者释放完整个信道才行,所以会存在较长的时延。在OFDMA 模式下,由于一个发送者只占据整个信道的部分资源,一次可以发送多个用户的数据,所以能够减少 QOS 节点接入的时延。
表 7不同频宽下的 RU 数量
图 2-4RU 在 20MHz 中的位置示意图 RU 数量越多,发送小包报文时多用户处理效率越高,吞吐量也越高,下图是仿真收益:
图 2-5 OFDMA 与 OFDM 模式下多用户吞吐量仿真
图 2-6 SU-MIMO 与 MU-MIMO 吞吐量差异
图 2-7 8x8 MU-MIMO AP 下行多用户模式调度顺序
图 2-8 多用户模式上行调度顺序 虽然 80211ax 标准允许OFDMA 与 MU-MIMO 同时使用,但不要 OFDMA 与 MU- MIMO 混淆。OFDMA 支持多用户通过细分信道(子信道)来提高并发效率,MU-MIMO 支持多用户通过使用不同的空间流来提高吞吐量。下表是 OFDMA 与 MU-MIMO 的对比:
表 8 OFDMA 与 MU-MIMO 对比
图 2-9 256-QAM 与 1024-QAM 的星座图对比 需要注意的是 80211ax 中成功使用 1024-QAM 调制取决于信道条件,更密的星座点距离需要更强大的 EVM(误差矢量幅度,用于量化无线电接收器或发射器在调制精度方面的性能)和接受灵敏度功能,并且信道质量要求高于其他调制类型。
图 2-10 80211 默认 CCA 门限
例如图 12,AP1 上的 STA1 正在传输数据,此时,AP2 也想向 STA2 发送数据,根据Wi-Fi 射频传输原理,需要先侦听信道是否空闲,CCA 门限值默认-82dBm,发现信道已被STA1 占用,那么 AP2 由于无法并行传输而推迟发送。实际上,所有的与 AP2 相关联的同信道客户端都将推迟发送。引入动态 CCA 门限调整机制,当 AP2 侦听到同频信道被占用时,可根据干扰强度调整 CCA 门限侦听范围(比如说从-82dBm 提升到-72dBm),规避干扰带来的影响,即可实现同频并发传输。
图 2-11 动态 CCA 门限调整 由于 Wi-Fi 客户端设备的移动性,Wi-Fi 网络中侦听到的同频干扰不是静态的,它会随着客户端设备的移动而改变,因此引入动态 CCA 机制是很有效的。80211ax 中引入了一种新的同频传输识别机制,叫 BSS Coloring 着色机制,在 PHY 报文头中添加 BSS color 字段对来自不同BSS 的数据进行“染色”,为每个通道分配一种颜色,该颜色标识一组不应干扰的基本服务集(BSS),接收端可以及早识别同频传输干扰信号并停止接收,避免浪费收发机时间。如果颜色相同,则认为是同一 BSS 内的干扰信号, 发送将推迟;如果颜色不同,则认为两者之间无干扰,两个 Wi-Fi 设备可同信道同频并行传输。以这种方式设计的网络,那些具有相同颜色的信道彼此相距很远,此时我们再利用动态CCA 机制将这种信号设置为不敏感,事实上它们之间也不太可能会相互干扰。
图 2-12 无BSS Color 机制与有BSS Color 机制对比
图 2-13 Long OFDM symbol 与窄带传输带来覆盖距离提升
前面的几大核心技术已经足够证明 80211ax 带来的高效传输和高密容量,但80211ax 也不是 Wi-Fi 的最终标准,这只是高效无线网络的开始,新标准的 80211ax 依然需要兼容老标准的设备,并考虑面向未来物联网络、绿色节能等方向的发展趋势。以下是 80211ax 标准的其他新特性:
下面详细描述这些新特性。
我们都知道 24GHz 频宽窄,且仅有 3 个 20MHz 的互不干扰信道(1,6 和 11),在 80211ac 标准中已经被抛弃,但是有一点不可否认的是 24GHz 仍然是一个可用的 Wi-Fi 频段,在很多场景下依然被广泛使用,因此,80211ax 标准中选择继续支持 24GHz,目的就是要充分利用这一频段特有的优势。
无线通信系统中,频率较高的信号比频率较低的信号更容易穿透障碍物,而频率越低, 波长越长,绕射能力越强,穿透能力越差,信号损失衰减越小,传输距离越远。虽然 5GHz 频段可带来更高的传播速度,但信号衰减也越大,所以传输距离比 24GHz 要短。因此,我们在部署高密无线网络时,24GHz 频段除了用于兼容老旧设备,还有一个很大的作用就是边缘区域覆盖补盲。
现阶段仍有数以亿计的 24GHz 设备在线使用,就算如今成为潮流的 IoT 网络设备也使用的 24GHz 频段,对有些流量不大的业务场景(如电子围栏、资产管理等),终端设备非常多,使用成本更低的仅支持 24GHz 的终端是一个性价比非常高的选择。
图 2-14 广播目标唤醒时间 *** 作
为什么要 Wi-Fi 6(80211ax)
80211ax 设计之初就是为了适用于高密度无线接入和高容量无线业务,比如室外大型公共场所、高密场馆、室内高密无线办公、电子教室等场景。
图 3-1 高密高带宽应用场景 在这些场景中,接入Wi-Fi 网络的客户端设备将呈现巨大增长,另外,还在不断增加的语音及视频流量也对 Wi-Fi 网络带来调整,根据预测,到 2020 年全球移动视频流量将占移动数据流量的 50%以上,其中有 80%以上的移动流量将会通过 Wi-Fi 承载。我们都知道 4K 视频流(带宽要求 30Mbps/人)、语音流(时延小于 30ms)、VR 流(带宽要求 50Mbps/人,时延 10~20ms)对带宽和时延是十分敏感的,如果网络拥塞或重传导致传输延时,将对用户体验带来较大影响。而现有的Wi-Fi 5(80211ac)网络虽然也能提供大带宽能力,但是随着接入密度的不断上升,吞吐量性能遇到瓶颈。而Wi-Fi 6 (80211ax)网络通过 OFDMA、UL MU-MIMO、1024-QAM 等技术使这些服务比以前更可靠,不但支持接入更多的客户端,同时还能均衡每用户带宽。比如说电子教室,以前如果是 100 多位学生的大课授课形式,传输视频或是上下行的交互挑战都比较大,而80211ax 网络将轻松应对该场景。
5G 与 Wi-Fi 6(80211ax)的共存关系
这不是一个新颖的话题,在 1999 年~2000 年间,就有人提出 2G 将替代 Wi-Fi 的观点;2008 年~2009 年也出现了 4G 将代替 Wi-Fi 的猜测;现在又有人开始讨论 5G 代替 Wi- Fi 的话题了。可是,5G 与 Wi-Fi 的应用场景模式是不相同的。Wi-Fi 主要用于室内环境, 而 5G 则是一种广域网技术,它在室外的应用场景更多。所以我们相信 Wi-Fi 和 5G 将长期共存下去。我们从以下几个角度进一步分析:
假设 5G 技术取代 Wi-Fi,那么就必须推出无限流量的套餐,否则费用会远远大于宽带的使用的费用,更何况目前宽带的价格一年比一年低,谁也不会去选择更贵的 5G。在目前的 4G 时代无限流量的套餐就是个噱头,三大运营商都纷纷推出过无限流量的套餐,当时流量超出套餐的流量之后,网络会自动将为 2G 模式,最高速度只有 128Kbps,这个速度看视频不如看漫画,因此所谓的无限流量只是个无稽之谈。
5G 网络技术采用的是超高频频谱(5G 网络频段: 24GHz~52GHz;4G 网络频段:18GHz~26GHz,不包括 24GHz),前面已经提到,频率越高衍射现象越弱,穿越障碍的 能力也就越弱,所以 5G 信号是很容易衰弱的。如果保持 5G 信号的覆盖需要比 4G 建设更多的基站。而且由于信号的衰减,如果在大楼的内部,隔着几道墙,信号衰减就更加严重了。 再有个极端的例子就是地下室,Wi-Fi 网络可以将路由器通过有线连接放入地下室产生信号, 但是 5G 网络是不可能覆盖到所有大楼的地下室的,单就这一个弊端,5G 也无法取代 Wi- Fi。另外,现在几乎所有智能设备都有 Wi-Fi 模块,大多数物联网设备也配备了 Wi-Fi 模块, 出口只用一个公网 IP 地址,局域网内部占用大量地址也没关系,用户在自己的 Wi-Fi 网络下管理这些设备都很方便,而用 5G 势必会占用更多公网的 IP 地址。
带宽 x 频谱效率 x 终端数量 = 总容量。
5G 的优点在于它的载波聚合技术,提升了频谱利用率,大大提升了网络容量。在 3G/4G 时代,当用户在人群密集的场所如地铁、车站等地方使用手机上网时,可以明显感觉到上网延迟变大,网速变慢。而在 5G 时代,随着网络容量大幅提升上述现象带来的影响明显降低。也正是这样的特性,让人们觉得 5G 网络下可以无限量接入,但很多人忽视了一点,那就是随着物联网时代的到来,入网设备的数量也在大幅提升,如果真的所有的上网设备都直连区域内的基站,这条 5G 高速路再宽也得堵死啊!而要想降低基站塔的负担,就必须依靠Wi-Fi 来做分流。
移动设备厂商宣传的 5G 最重要的 3 个特征是高速度、大容量、低时延,其实最新一代的 Wi-Fi 速率比 5G 还要快,最新的 80211ax(Wi-Fi 6)单流峰值速率 12Gbps(5G 网络峰值速率 1Gbps),平均来看,Wi-Fi 每升级一代所用的时间大约只是移动网络的一半左右,所以从最新的Wi-Fi 6 开始,速率会持续领先于移动网络。
办公、物流、商业、智能家居等各行各业都在走向无线化,首先要做的就是把设备、人员、终端等全部联网使用。假设 5G 替代了 Wi-Fi 的存在,那么未来的所有联网终端都需要配备一张类似手机 SIM 卡的东西才可以上网。这一个理由也注定了目前在室内场景 5G 是不可能取代Wi-Fi 的。类似的设备还有 VR、游戏机、电子阅读器、机顶盒等等……
大家都知道手机、pad 等移动终端都是用的电池,大家通常都认为电池的耐用性与安装的业务,和使用频率有关,但人们往往忽略了一点,终端的各种移动信号接入质量好与差也 与电池耗电量有关。当信号变差时,移动终端为了确保给用户提供一个良好的体验,会自动增加发射功率来提升信号质量,这就导致电池耗电量增加。由于 Wi-Fi 的信号源基本是在室内范围,而 5G 信号在室外几十公里外的基站,这样就导致移动终端上传数据时,Wi-Fi 的传送距离远远小于 5G 信号。通常情况下 5G 的通信距离是 Wi-Fi 的几千倍以上,这样就需要手机的信号发射强度大大增加,这就增加了耗电量。曾经有人做过实验,以 4G 为例,使用网络数据半小时,Wi-Fi 会比移动网络节省 5%的电量。另外,最新一代的 Wi-Fi 6 (80211ax)支持 TWT 功能,可以在业务需要时自动唤醒,在业务不适用时自动休眠,进一步节省了电量。
因此,目前所面临的这些问题使得 5G 还无法彻底取代 Wi-Fi,更多的是与 Wi-Fi 进行深度融合,因此使用 Wi-Fi 的企业和用户并不用过于慌张。今天的 Wi-Fi 已不再是一个提供无线网络的设备,更多的应该被视为企业数字化转型的必备设施或中央枢纽。例如目前绝大部分的智慧零售、智慧物流、智慧办公等解决方案的中央枢纽就是 Wi-Fi 网络。
参考:
关于WiFi 6技术,这篇说得最详细
不同的 Wi-Fi 协议和数据速率
HZ (物理单位
简单来说,从3G到5G伴随着的是更快的网速和随着而来更多的使用场景,预计在5G普及之后会带来高速率、低延时、物联网等特性,会有相比于目前更多的网络设备接入和应用范围。具体地:
1、最简单的区别就是在网速上面,以及更快速度伴随而来的更多样应用和适用范围;
1、3G是第三代移动通信技术(3rd-generation,3G),是指支持高速数据传输的蜂窝移动通讯技术。3G服务能够同时传送声音及数据信息,速率一般在几百kbps以上。目前3G存在四种标准:CDMA2000,WCDMA,TD-SCDMA,WiMAX;
2、4G是第四代移动通信及其技术的简称。相比3G,4G带宽更高,能够传输更高质量的视频及图像。其实 4G 使用的 LTE 系统由于数据传输率很高,可以直接将语音数据切割成封包来传送;在4G时代,得益于更高的传输速度,流媒体、直播都成为了常见的使用场景;
3、5G网络将有更大的容量和更快的数据处理速度,通过手机、可穿戴设备和其它联网硬件推出更多的新服务将成为可能。5G的容量预计是4G的1000倍。使用4G网络,你不能在手机上真正实时在线玩游戏,但使用5G网络却可以做到。4G网络是专为手机打造的,没有为物联网进行优化。5G技术为物联网提供了超大带宽,与4G相比,5G网络可以支持10倍以上的设备;
以上就是3G、4G和5G有什么区别的具体介绍了,希望可以帮助到大家。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)