1、从技术架构上来看,物联网可分为三层:感知层、网络层和应用层。
2、感知层由各种传感器以及传感器网关构技术架构图示成,包括二氧化碳浓度传感器、温度传感器、湿度传感器、二维码标签、RFID标签和读写器、摄像头、GPS等感知终端。
3、网络层由各种私有网络,有线和无线通信网、网络管理系统和云计算平台等组成,相当于人的神经中枢和大脑,负责传递和处理感知层获取的信息。
4、应用层是物联网和用户(包括人、组织和其他系统)的接口,它与行业需求结合,实现物联网的智能应用。
物联网应用层的作用是实现物联网的智能应用。
物联网是新一代信息技术的重要组成部分,也是“信息化”时代的重要发展阶段。其英文名称是:“Internet of things(IoT)”,物联网就是物物相连的互联网。
物联网有两层意思:
其一,物联网的核心和基础仍然是互联网,是在互联网基础上的延伸和扩展的网络;
其二,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通信,也就是物物相息。
物联网架构可分为三层:感知层、网络层和应用层。
感知层由各种传感器构成,包括温湿度传感器、二维码标签、RFID标签和读写器、摄像头、红外线、GPS等感知终端。感知层是物联网识别物体、采集信息的来源。
网络层由各种网络,包括互联网、广电网、网络管理系统和云计算平台等组成,是整个物联网的中枢,负责传递和处理感知层获取的信息。
应用层是物联网和用户的接口,它与行业需求结合,实现物联网的智能应用。
电路是电流所流经的路径。 电路或称电子回路,是由电气设备和元器件,按一定方式联接起来,为电荷流通提供了路径的总体,也叫电子线路或称电气回路,简称网络或回路。如电阻、电容、电感、二极管、三极管和开关等,构成的网络。 电路的大小,可以相差很大,小到硅片上的集成电路,大到高低压输电网。 根据所处理信号的不同,电子电路可以分为模拟电路和数字电路。 模拟电路 自然界产生的连续性物理自然量,将连续性物理自然量转换为连续性电信号,运算连续性电信号的电路即称为模拟电路。 模拟电路对电信号的连续性电压、电流进行处理。 最典型的模拟电路应用包括:放大电路、振荡电路、线性运算电路(加法、减法、乘法、除法、微分和积分电路)。运算连续性电信号。 数字电路 亦称为逻辑电路 将连续性的电讯号,转换为不连续性定量电信号,并运算不连续性定量电信号的电路,称为数字电路。 数字电路中,信号大小为不连续并定量化的电压状态。 多数采用布尔代数逻辑电路对定量後信号进行处理。典型数字电路有,振荡器、寄存器、加法器、减法器等。运算不连续性定量电信号。 积体电路 积体电路亦称为IC。 运用积体电路设计程式(IC设计),将一般电路设计到半导体材料里的半导体电路(一般为矽片),称为积体电路。 利用半导体技术制造出积体电路(IC)。物联网是一个非常先进的、综合性的和复杂的系统。其最终目标是为单个产品建立全球的、开放的标识标准,并实现基于全球网络连接的信息共享。物联网(Internet of Things)理念指的是将无处不在(Ubiquitous)的末端设备(Devices)和设施(Facilities),包括具有“内在智能”的设备如传感器、移动终端、工业系统、楼控系统、家庭智能设施、视频监控系统等,以及具有“外在使能”(Enabled)的物品如贴上RFID的各种资产(Assets)、携带无线终端的个人或车辆等“智能化物件或动物”、通过各种无线和/或有线的长距离和/或短距离通信网络实现互联互通(M2M)、应用大集成(Grand Integration)。物联网功能在于,能基于云计算的SPI等营运模式,在内网(Intranet)、专网(Extranet/)或互联网(Internet)环境下,采用适当的信息安全保障机制,提供安全可控(隐私保护)乃至个性化的实时在线监测、定位追溯、报警联动、调度指挥、预案管理、进程控制、远程维保、在线升级、统计报表、决策支持、领导桌面(Dashboard)等管理和服务功能,实现对“万物”(Things)的“高效、节能、安全、环保”的“管、控、营”一体化服务。
具体的来说,物联网的基本功能特征是提供“无处不在的连接和在线服务”(Ubiquitous Connectivity), 具备十大基本功能。
在线监测:这是物联网最基本的功能,物联网业务一般以集中监测为主、控制为辅。
定位追溯:一般基于GPS(或其他卫星定位,如北斗)和无线通信技术,或只依赖于无线通信技术的定位,如基于移动基站的定位、RTLS等。
报警联动:主要提供事件报警和提示,有时还会提供基于工作流或规则引擎(Rule“s Engine)的联动功能。
指挥调度:基于时间排程和事件响应规则的指挥、调度和派遣功能。
预案管理:基于预先设定的规章或法规对事物产生的事件进行处置。(证据采集)
安全隐私:由于物联网所有权属性和隐私保护的重要性,物联网系统必须提供相应的安全保障机制。
远程维保: 这是物联网技术能够提供或提升的服务,主要适用于企业产品售后联网服务。
在线升级:这是保证物联网系统本身能够正常运行的手段,也是企业产品售后自动服务的手段之一。
领导桌面: 主要指Dashboard或BI个性化门户,经过多层过滤提炼的实时资讯,可供主管负责人实现对全局的”一目了然“。
统计决策: 指的是基于对联网信息的数据挖掘和统计分析,提供决策支持和统计报表功能。信号调制可以将信号的频谱搬移到任意位置,从而有利于信号的传送,并且使频谱资源得到充分利用。例如,天线尺寸为信号的十分之一或更大些,信号才能有效的被辐射。对于语音信号来说,相应的天线尺寸要在几十公里以上,实际上不可能实现。这就需要调制过程将信号频谱搬移到较高的频率范围。如果不进行调制就把信号直接辐射出去,那么各电台所发出信号的频率就会相同。调制作用的实质就是使相同频率范围的信号分别依托于不同频率的载波上,接收机就可以分离出所需的频率信号,不致互相干扰。这也是在同一信道中实现多路复用的基础。
要还原被调制的信号就需要解调。高频电子线路是电子、信息、通信类等专业重要的技术基础课,主要研究 通信系统各单元电路的工作原理、电路组成和设计方法。这门课程的学习,要求达到理解与熟悉高频电路中各单元电路的工作原理,熟悉各单元电路的组成,组件及参数的选择,使用实验仪器和虚拟实验,进行电路参数的测试和电路的研究,掌握电路的基本设计方,进行电路的调试。教学内容主要包括:选频网络; 噪声与干扰;高频小信号放大器;正弦波振荡器;非线性电路与时变电路,高频功率放大器;模拟调制和解调;反馈控制系统AGC、AFC、PLL;频率合成技术等。《高频电子线路》使学生受到严格的科学思维和科学研究初步训练,逐步培养能在电子信息科学与技术、计算机科学与技术及相关领域和行政部门从事科学研究、教学、科技开发、产品设计及管理工作的能力。 高频小信号放大器主要用于放大高频小信号,属于窄带放大器。由于采用谐振回路作负载,解决了放大倍数、通频宽带、阻抗匹配等问题,高频小信号放大器又称为小信号谐振放大器。就放大过程而言,电路中的晶体管工作在小信号放大区域中,非线性失真很小。一方面可以对窄带信号实现不失真放大,另一方面又对带外信号滤除,有选频作用。因此,从原理上深刻理解谐振负载的选频和阻抗变换作用,对于我们掌握《高频电子线路》在无线通信中的应用的知识是非常重要的。通过《高频电子线路》的学习,我们充分了解高频小信号放大器的工作原理及特点。掌握高频小信号放大器的电路组成、晶体管工作的内部物理机制、高频参数、高频等效电路、参数等效电路。掌握高频小信号放大器放大倍数、输入阻抗、输出导纳的计算公式的推导与使用方法。充分理解理解高频小信号放大器的内部反馈及稳定工作条件,掌握消除内部反馈的原理与基本方法。掌握高频小信号放大器阻抗匹配、接入系数的概念与基本计算方法。我们要学习高频小信号放大器的等效电路,掌握其分析过程。 高频放大器与低频放大器的主要区别是二者的工作频率范围和所需通过的频带宽度都有所不同,所以采用的负载也不相同。低频放大器的工作频率低,但整个工作频带宽度很宽,例如20—20 000Hz,高低频率的极限相差达到1000倍,所以它们都是采用无协调负载,例如电阻、有铁心的变压器等。高频放大器的中心频率一般在几百千赫致至几百兆赫,但所需通过的频率范围(频带)和中心频率往往是很小的,或者只是工作于某一频率,因此一般都是采用选频网络组成谐振放大器或非谐振放大器。所谓谐振放大器,就是采用谐振回路作负载的放大器。根据谐振回路的特性,谐振放大器对于靠近谐振频率的信号,有较大的增益,对于远离谐振频率的信号,增益迅速下降。所以谐振放大器不仅有放大作用,而且也起着滤波或选频的作用。 对于高频小信号放大器来说,由于信号小,可以认为它工作在晶体管(或场效应管)的线性范围内。这就允许把晶体管看成现行元件,因此可作为有源线性四端网络(等效电路)来分析。为了分析高频小信号放大器,首先应当了解实际运用时对它的要求如何,也就是应当先讨论它的主要质量指标。对高频小信号放大器提出的主要指标如下: 1 增益(放大倍数) 放大器输出电压V O(或功率P O)与输入电压V i(或功率P i )之比,称为放大器的增益或放大倍数,用A v ( 或 A p ) 表示(有时以dB数计算)。 电压增益 : (3-1) 功率增益 : 分贝表示 : 2 通频带 放大器的电压增益下降到最大值的 07(即 1/ )倍时,所对应的频率范围称为放大器的通频带,用BW=2Δf 07表示,如图 3-1 。2Δf 07 也称为 3 分贝带宽。 高频小信号放大器的通频带 由于放大器所放大的一般都是已调制的信号,已调制的信号都包含一定的频谱宽度,所以放大器必须有一定的通频带,以便让必要的信号中的频谱分量通过放大器。 与谐振回路相同,放大器的通频带决定于回路的形式和回路的等效品质因数Q L 。此外,放大器的总通频带,随着级数的增加而变窄。并且,通频带愈宽,放大器的增益愈小。 3 选择性 从各种不同频率信号的总和(有用的和有害的)中选出有用信号,抑制干扰信号的能力称为放大器的选择性,选择性常采用矩形系数和抑制比来表示。 4 工作稳定性 指在电源电压变化或器件参数变化时,以上三参数的稳定程度。一般的不稳定现象是增益变化,中心频率偏移、通频带变窄等,不稳定状态的极端情况是放大器自激,以致使放大器完全不能工作。 为使放大器稳定工作,必须采取稳定措施,即限制每级增益,选择内反馈小的晶体管,应用中和或失配方法等。 5 噪声系数 放大器的噪声性能可用噪声系数表示 : N F 越接近 1 越好,在多级放大器中,前二级的噪声对整个放大器的噪声起决定作用,因此要求它的噪声系数应尽量小。 高频放大器利用三极管的电流控制作用或场效应管的电压控制管的集电极电流永远是基极电流的β倍,β是三极管的交流放大倍数,应用这一点,若将小信号注入基极,则集电极流过的电流会等于基极电流的β倍,然后将这个信号用隔直电容隔离出来,就得到了电流(或电压)是原先的β倍的大信号,这现象成为三极管的放大作用。经过不断的电流及电压放大,就完成了功率放大。功率放大器,简称“功放”。很多情况下主机的额定输出功率不能胜任带动整个音响系统的任务,这时就要在主机和播放设备之间加装功率放大器来补充所需的功率缺口,而功率放大器在整个音响系统中起到了“组织、协调”的枢纽作用,在某种程度上主宰着整个系统能否提供良好的音质输出。作用将电源的功率转换为按照输入信号变化的电流。因为声音是不同振幅和不同频率的波,即交流信号电流,三极 无线通信主要包括微波通信和卫星通信。随着电子技术和通信技术的不断发展,高频电子线路目前也在从分立元件向集成电路化方向发展。在谐振放大器中,主要应用线性集成电路。他具有可靠性,性能好,体积小,重量轻,便于安装调试和适合于大量生产等优点。目前线性集成电路大多由多个NPN型晶体管和少量电阻。电容组成。放大器或其他电路中所需要的大电阻、大电容和电感均必须外接。所以现时的集成电路谐振放大器还是由负担放大信号的集成电路和具有一定带宽的选择性回路两部分组成,另外加接一些大的电阻和大电容所组成的附属电路,如滤波去耦电路等。 目前电子设备的性能在很大程度上与干扰和噪声有关。例如,接收机的理论灵敏度可以非常高,但是考虑了噪声以后,实际灵敏度就不可能做到很高。在通信系统中,提高接收机的灵敏度比增加发射机烦的成功率更为有效。在其他电子仪器,它们的准确性。灵敏度等也与噪声有很大的关系。另外,由于各种干扰的存在,大大影响了接收机的工作,因此,研究各种干扰和噪声的特性,以及降低干扰和噪声的方法十分必要。这时,便需要将高频小信号放大器中的知识运用到通信之中。 随着科技技术的发展,以及人类对通信领域越来越深刻的研究,《高频电子线路》的知识成为了无线通信领域中不可或缺的一部分知识,只有在掌握好了这门课程的知识,才能将里面的要点融会贯通到无线通信的应用之中,《高频电子线路》是无线电技术类各专业的一门主要技术的基础课,他的任务是研究高频电子线路的基本原理和基本分析方法,以单元电路的分析和设计为主。只要在熟练掌握了这门知识,以后才有可能在无线通信理论中有所造诣。物联网技术的主要作用是对特定模式的响应将变得自动化,就意味着提高效率和舒适度,并通过自动化降低成本和工作量、帮助识别瓶颈,或者监控情况和识别结果,而这是通过人类设置的规则来实现的。
物联网还会有许多广泛的用途,遍及智能交通、环境保护、政府工作、公共安全、平安家居、智能消防、工业监测、老人护理、个人健康、花卉栽培、水系监测、食品溯源、敌情侦查和情报搜集等多个领域。
物联网把新一代 IT 技术充分运用在各行各业之中,具体地说,就是把感应器嵌入和装备到电网、铁路、桥梁、隧道、公路、建筑、供水系统、大坝、油气管道等各种物体中,然后将“物联网”与现有的互联网整合起来,实现人类社会与物理系统的整合,在这个整合的网络当中,存在能力超级强大的中心计算机群,能够对整合网络内的人员、机器、设备和基础设施实施实时的管理和控制。
在此基础上,人类可以以更加精细和动态的方式管理生产和生活,达到“智慧”状态,提高资源利用率和生产力水平,改善人与自然间的关系。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)