console模式既是即时命令行模式, 也可以称之为交互模式, 就像micropython的交互模式一样
烧录console模式脚本, 烧录方法和第一篇中讲解的一样, 脚本是luattools v2自带的,在 \resource\8910_script\script_LuaTask_V236\demo\console 目录下
烧录完成后, 我们需要用一条micro-USB数据线连接UART接口, 然后打开电脑上的串口调试助手, 我们可以看到串口调试助手进入了console
根据air724ug a13原理图: >常见的大数据术语表(中英对照简版):
A
聚合(Aggregation) – 搜索、合并、显示数据的过程
算法(Algorithms) – 可以完成某种数据分析的数学公式
分析法(Analytics) – 用于发现数据的内在涵义
异常检测(Anomaly detection) –
在数据集中搜索与预期模式或行为不匹配的数据项。除了“Anomalies”,用来表示异常的词有以下几种:outliers, exceptions,
surprises, contaminants他们通常可提供关键的可执行信息
匿名化(Anonymization) – 使数据匿名,即移除所有与个人隐私相关的数据
应用(Application) – 实现某种特定功能的计算机软件
人工智能(Artificial Intelligence) –
研发智能机器和智能软件,这些智能设备能够感知周遭的环境,并根据要求作出相应的反应,甚至能自我学习
B
行为分析法(Behavioural Analytics) –
这种分析法是根据用户的行为如“怎么做”,“为什么这么做”,以及“做了什么”来得出结论,而不是仅仅针对人物和时间的一门分析学科,它着眼于数据中的人性化模式
大数据科学家(Big Data Scientist) – 能够设计大数据算法使得大数据变得有用的人
大数据创业公司(Big data startup) – 指研发最新大数据技术的新兴公司
生物测定术(Biometrics) – 根据个人的特征进行身份识别
B字节 (BB: Brontobytes) – 约等于1000 YB(Yottabytes),相当于未来数字化宇宙的大小。1
B字节包含了27个0!
商业智能(Business Intelligence) – 是一系列理论、方法学和过程,使得数据更容易被理解
C
分类分析(Classification analysis) – 从数据中获得重要的相关性信息的系统化过程; 这类数据也被称为元数据(meta
data),是描述数据的数据
云计算(Cloud computing) – 构建在网络上的分布式计算系统,数据是存储于机房外的(即云端)
聚类分析(Clustering analysis) –
它是将相似的对象聚合在一起,每类相似的对象组合成一个聚类(也叫作簇)的过程。这种分析方法的目的在于分析数据间的差异和相似性
冷数据存储(Cold data storage) – 在低功耗服务器上存储那些几乎不被使用的旧数据。但这些数据检索起来将会很耗时
对比分析(Comparative analysis) – 在非常大的数据集中进行模式匹配时,进行一步步的对比和计算过程得到分析结果
复杂结构的数据(Complex structured data) –
由两个或多个复杂而相互关联部分组成的数据,这类数据不能简单地由结构化查询语言或工具(SQL)解析
计算机产生的数据(Computer generated data) – 如日志文件这类由计算机生成的数据
并发(Concurrency) – 同时执行多个任务或运行多个进程
相关性分析(Correlation analysis) – 是一种数据分析方法,用于分析变量之间是否存在正相关,或者负相关
客户关系管理(CRM: Customer Relationship Management) –
用于管理销售、业务过程的一种技术,大数据将影响公司的客户关系管理的策略
D
仪表板(Dashboard) – 使用算法分析数据,并将结果用图表方式显示于仪表板中
数据聚合工具(Data aggregation tools) – 将分散于众多数据源的数据转化成一个全新数据源的过程
数据分析师(Data analyst) – 从事数据分析、建模、清理、处理的专业人员
数据库(Database) – 一个以某种特定的技术来存储数据集合的仓库
数据库即服务(Database-as-a-Service) – 部署在云端的数据库,即用即付,例如亚马逊云服务(AWS: Amazon Web
Services)
数据库管理系统(DBMS: Database Management System) – 收集、存储数据,并提供数据的访问
数据中心(Data centre) – 一个实体地点,放置了用来存储数据的服务器
数据清洗(Data cleansing) – 对数据进行重新审查和校验的过程,目的在于删除重复信息、纠正存在的错误,并提供数据一致性
数据管理员(Data custodian) – 负责维护数据存储所需技术环境的专业技术人员
数据道德准则(Data ethical guidelines) – 这些准则有助于组织机构使其数据透明化,保证数据的简洁、安全及隐私
数据订阅(Data feed) – 一种数据流,例如Twitter订阅和RSS
数据集市(Data marketplace) – 进行数据集买卖的在线交易场所
数据挖掘(Data mining) – 从数据集中发掘特定模式或信息的过程
数据建模(Data modelling) – 使用数据建模技术来分析数据对象,以此洞悉数据的内在涵义
数据集(Data set) – 大量数据的集合
数据虚拟化(Data virtualization) –
数据整合的过程,以此获得更多的数据信息,这个过程通常会引入其他技术,例如数据库,应用程序,文件系统,网页技术,大数据技术等等
去身份识别(De-identification) – 也称为匿名化(anonymization),确保个人不会通过数据被识别
判别分析(Discriminant analysis) –
将数据分类;按不同的分类方式,可将数据分配到不同的群组,类别或者目录。是一种统计分析法,可以对数据中某些群组或集群的已知信息进行分析,并从中获取分类规则。
分布式文件系统(Distributed File System) – 提供简化的,高可用的方式来存储、分析、处理数据的系统
文件存贮数据库(Document Store Databases) – 又称为文档数据库(document-oriented database),
为存储、管理、恢复文档数据而专门设计的数据库,这类文档数据也称为半结构化数据
E
探索性分析(Exploratory analysis) –
在没有标准的流程或方法的情况下从数据中发掘模式。是一种发掘数据和数据集主要特性的一种方法
E字节(EB: Exabytes) – 约等于1000 PB(petabytes), 约等于1百万 GB。如今全球每天所制造的新信息量大约为1
EB
提取-转换-加载(ETL: Extract, Transform and Load) –
是一种用于数据库或者数据仓库的处理过程。即从各种不同的数据源提取(E)数据,并转换(T)成能满足业务需要的数据,最后将其加载(L)到数据库
F
故障切换(Failover) – 当系统中某个服务器发生故障时,能自动地将运行任务切换到另一个可用服务器或节点上
容错设计(Fault-tolerant design) – 一个支持容错设计的系统应该能够做到当某一部分出现故障也能继续运行
G
游戏化(Gamification) –
在其他非游戏领域中运用游戏的思维和机制,这种方法可以以一种十分友好的方式进行数据的创建和侦测,非常有效。
图形数据库(Graph Databases) –
运用图形结构(例如,一组有限的有序对,或者某种实体)来存储数据,这种图形存储结构包括边缘、属性和节点。它提供了相邻节点间的自由索引功能,也就是说,数据库中每个元素间都与其他相邻元素直接关联。
网格计算(Grid computing) – 将许多分布在不同地点的计算机连接在一起,用以处理某个特定问题,通常是通过云将计算机相连在一起。
H
Hadoop – 一个开源的分布式系统基础框架,可用于开发分布式程序,进行大数据的运算与存储。
Hadoop数据库(HBase) – 一个开源的、非关系型、分布式数据库,与Hadoop框架共同使用
HDFS – Hadoop分布式文件系统(Hadoop Distributed File
System);是一个被设计成适合运行在通用硬件(commodity hardware)上的分布式文件系统
高性能计算(HPC: High-Performance-Computing) – 使用超级计算机来解决极其复杂的计算问题
I
内存数据库(IMDB: In-memory) –
一种数据库管理系统,与普通数据库管理系统不同之处在于,它用主存来存储数据,而非硬盘。其特点在于能高速地进行数据的处理和存取。
物联网(Internet of Things) – 在普通的设备中装上传感器,使这些设备能够在任何时间任何地点与网络相连。
J
法律上的数据一致性(Juridical data compliance) –
当你使用的云计算解决方案,将你的数据存储于不同的国家或不同的大陆时,就会与这个概念扯上关系了。你需要留意这些存储在不同国家的数据是否符合当地的法律。
K
键值数据库(KeyValue Databases) –
数据的存储方式是使用一个特定的键,指向一个特定的数据记录,这种方式使得数据的查找更加方便快捷。键值数据库中所存的数据通常为编程语言中基本数据类型的数据。
L
延迟(Latency) – 表示系统时间的延迟
遗留系统(Legacy system) – 是一种旧的应用程序,或是旧的技术,或是旧的计算系统,现在已经不再支持了。
负载均衡(Load balancing) – 将工作量分配到多台电脑或服务器上,以获得最优结果和最大的系统利用率。
位置信息(Location data) – GPS信息,即地理位置信息。
日志文件(Log file) – 由计算机系统自动生成的文件,记录系统的运行过程。
M
M2M数据(Machine2Machine data) – 两台或多台机器间交流与传输的内容
机器数据(Machine data) – 由传感器或算法在机器上产生的数据
机器学习(Machine learning) –
人工智能的一部分,指的是机器能够从它们所完成的任务中进行自我学习,通过长期的累积实现自我改进。
MapReduce – 是处理大规模数据的一种软件框架(Map: 映射,Reduce: 归纳)。
大规模并行处理(MPP: Massively Parallel Processing) –
同时使用多个处理器(或多台计算机)处理同一个计算任务。
元数据(Metadata) – 被称为描述数据的数据,即描述数据数据属性(数据是什么)的信息。
MongoDB – 一种开源的非关系型数据库(NoSQL database)
多维数据库(Multi-Dimensional Databases) – 用于优化数据联机分析处理(OLAP)程序,优化数据仓库的一种数据库。
多值数据库(MultiValue Databases) – 是一种非关系型数据库(NoSQL),
一种特殊的多维数据库:能处理3个维度的数据。主要针对非常长的字符串,能够完美地处理HTML和XML中的字串。
N
自然语言处理(Natural Language Processing) –
是计算机科学的一个分支领域,它研究如何实现计算机与人类语言之间的交互。
网络分析(Network analysis) – 分析网络或图论中节点间的关系,即分析网络中节点间的连接和强度关系。
NewSQL – 一个优雅的、定义良好的数据库系统,比SQL更易学习和使用,比NoSQL更晚提出的新型数据库
NoSQL –
顾名思义,就是“不使用SQL”的数据库。这类数据库泛指传统关系型数据库以外的其他类型的数据库。这类数据库有更强的一致性,能处理超大规模和高并发的数据。
O
对象数据库(Object Databases) –
(也称为面象对象数据库)以对象的形式存储数据,用于面向对象编程。它不同于关系型数据库和图形数据库,大部分对象数据库都提供一种查询语言,允许使用声明式编程(declarative
programming)访问对象
基于对象图像分析(Object-based Image Analysis) –
数字图像分析方法是对每一个像素的数据进行分析,而基于对象的图像分析方法则只分析相关像素的数据,这些相关像素被称为对象或图像对象。
*** 作型数据库(Operational Databases) –
这类数据库可以完成一个组织机构的常规 *** 作,对商业运营非常重要,一般使用在线事务处理,允许用户访问 、收集、检索公司内部的具体信息。
优化分析(Optimization analysis) –
在产品设计周期依靠算法来实现的优化过程,在这一过程中,公司可以设计各种各样的产品并测试这些产品是否满足预设值。
本体论(Ontology) – 表示知识本体,用于定义一个领域中的概念集及概念之间的关系的一种哲学思想。(译者注:
数据被提高到哲学的高度,被赋予了世界本体的意义,成为一个独立的客观数据世界)
异常值检测(Outlier detection) –
异常值是指严重偏离一个数据集或一个数据组合总平均值的对象,该对象与数据集中的其他它相去甚远,因此,异常值的出现意味着系统发生问题,需要对此另加分析。
P
模式识别(Pattern Recognition) – 通过算法来识别数据中的模式,并对同一数据源中的新数据作出预测
P字节(PB: Petabytes) – 约等于1000 TB(terabytes), 约等于1百万 GB
(gigabytes)。欧洲核子研究中心(CERN)大型强子对撞机每秒产生的粒子个数就约为1 PB
平台即服务(PaaS: Platform-as-a-Service) – 为云计算解决方案提供所有必需的基础平台的一种服务
预测分析(Predictive analysis) –
大数据分析方法中最有价值的一种分析方法,这种方法有助于预测个人未来(近期)的行为,例如某人很可能会买某些商品,可能会访问某些网站,做某些事情或者产生某种行为。通过使用各种不同的数据集,例如历史数据,事务数据,社交数据,或者客户的个人信息数据,来识别风险和机遇
隐私(Privacy) – 把具有可识别出个人信息的数据与其他数据分离开,以确保用户隐私。
公共数据(Public data) – 由公共基金创建的公共信息或公共数据集。
Q
数字化自我(Quantified Self) – 使用应用程序跟踪用户一天的一举一动,从而更好地理解其相关的行为
查询(Query) – 查找某个问题答案的相关信息
R
再识别(Re-identification) – 将多个数据集合并在一起,从匿名化的数据中识别出个人信息
回归分析(Regression analysis) –
确定两个变量间的依赖关系。这种方法假设两个变量之间存在单向的因果关系(译者注:自变量,因变量,二者不可互换)
RFID – 射频识别; 这种识别技术使用一种无线非接触式射频电磁场传感器来传输数据
实时数据(Real-time data) – 指在几毫秒内被创建、处理、存储、分析并显示的数据
推荐引擎(Recommendation engine) – 推荐引擎算法根据用户之前的购买行为或其他购买行为向用户推荐某种产品
路径分析(Routing analysis) –
针对某种运输方法通过使用多种不同的变量分析从而找到一条最优路径,以达到降低燃料费用,提高效率的目的
S
半结构化数据(Semi-structured data) –
半结构化数据并不具有结构化数据严格的存储结构,但它可以使用标签或其他形式的标记方式以保证数据的层次结构
情感分析(Sentiment Analysis) – 通过算法分析出人们是如何看待某些话题
信号分析(Signal analysis) – 指通过度量随时间或空间变化的物理量来分析产品的性能。特别是使用传感器数据。
相似性搜索(Similarity searches) – 在数据库中查询最相似的对象,这里所说的数据对象可以是任意类型的数据
仿真分析(Simulation analysis) –
仿真是指模拟真实环境中进程或系统的 *** 作。仿真分析可以在仿真时考虑多种不同的变量,确保产品性能达到最优
智能网格(Smart grid) – 是指在能源网中使用传感器实时监控其运行状态,有助于提高效率
软件即服务(SaaS: Software-as-a-Service) – 基于Web的通过浏览器使用的一种应用软件
空间分析(Spatial analysis) – 空间分析法分析地理信息或拓扑信息这类空间数据,从中得出分布在地理空间中的数据的模式和规律
SQL – 在关系型数据库中,用于检索数据的一种编程语言
结构化数据(Structured data)
-可以组织成行列结构,可识别的数据。这类数据通常是一条记录,或者一个文件,或者是被正确标记过的数据中的某一个字段,并且可以被精确地定位到。
T
T字节(TB: Terabytes) – 约等于1000 GB(gigabytes)。1 TB容量可以存储约300小时的高清视频。
时序分析(Time series analysis) –
分析在重复测量时间里获得的定义良好的数据。分析的数据必须是良好定义的,并且要取自相同时间间隔的连续时间点。
拓扑数据分析(Topological Data Analysis) –
拓扑数据分析主要关注三点:复合数据模型、集群的识别、以及数据的统计学意义。
交易数据(Transactional data) – 随时间变化的动态数据
透明性(Transparency) – 消费者想要知道他们的数据有什么作用、被作何处理,而组织机构则把这些信息都透明化了。
U
非结构化数据(Un-structured data) – 非结构化数据一般被认为是大量纯文本数据,其中还可能包含日期,数字和实例。
V
价值(Value) – (译者注:大数据4V特点之一)
所有可用的数据,能为组织机构、社会、消费者创造出巨大的价值。这意味着各大企业及整个产业都将从大数据中获益。
可变性(Variability) – 也就是说,数据的含义总是在(快速)变化的。例如,一个词在相同的推文中可以有完全不同的意思。
多样(Variety) – (译者注:大数据4V特点之一)
数据总是以各种不同的形式呈现,如结构化数据,半结构化数据,非结构化数据,甚至还有复杂结构化数据
高速(Velocity) – (译者注:大数据4V特点之一) 在大数据时代,数据的创建、存储、分析、虚拟化都要求被高速处理。
真实性(Veracity) – 组织机构需要确保数据的真实性,才能保证数据分析的正确性。因此,真实性(Veracity)是指数据的正确性。
可视化(Visualization) –
只有正确的可视化,原始数据才可被投入使用。这里的“可视化”并非普通的图型或饼图,可视化指是的复杂的图表,图表中包含大量的数据信息,但可以被很容易地理解和阅读。
大量(Volume) – (译者注:大数据4V特点之一) 指数据量,范围从Megabytes至Brontobytes
W
天气数据(Weather data) – 是一种重要的开放公共数据来源,如果与其他数据来源合成在一起,可以为相关组织机构提供深入分析的依据
X
XML数据库(XML Databases) –
XML数据库是一种以XML格式存储数据的数据库。XML数据库通常与面向文档型数据库相关联,开发人员可以对XML数据库的数据进行查询,导出以及按指定的格式序列化
Y
Y字节 (Yottabytes) – 约等于1000 ZB (Zettabytes),
约等于250万亿张DVD的数据容量。现今,整个数字化宇宙的数据量为1 YB, 并且将每18年翻一番。
Z
Z字节 (ZB: Zettabytes) – 约等于1000 EB (Exabytes), 约等于1百万
TB。据预测,到2016年全球范围内每天网络上通过的信息大约能达到1 ZB。
附:存储容量单位换算表:
1 Bit(比特) = Binary Digit
8 Bits = 1 Byte(字节)
1,000 Bytes = 1 Kilobyte
1,000 Kilobytes = 1 Megabyte
1,000 Megabytes = 1 Gigabyte
1,000 Gigabytes = 1 Terabyte
1,000 Terabytes = 1 Petabyte
1,000 Petabytes = 1 Exabyte
1,000 Exabytes = 1 Zettabyte
1,000 Zettabytes = 1 Yottabyte
1,000 Yottabytes = 1 Brontobyte
1,000 Brontobytes = 1 Geopbyte
一、智慧农业
1、定义
智慧农业就是将物联网技术运用到传统农业中去,运用传感器和软件通过移动平台或者电脑平台对农业生产进行控制,使传统农业更具有“智慧”。除了精准感知、控制与决策管理外,从广泛意义上讲,智慧农业还包括农业电子商务、食品溯源防伪、农业休闲旅游、农业信息服务等方面的内容。
2、应用领域
农业生产环境监控:通过布设于农田、温室、园林等目标区域的大量传感节点,实时地收集温度、湿度、光照、气体浓度以及土壤水分、电导率等信息并汇总到中控系统。农业生产人员可通过监测数据对环境进行分析,从而有针对性地投放农业生产资料,并根据需要调动各种执行设备,进行调温、调光、换气等动作,实现对农业生长环境的智能控制。
食品安全:利用技术,建设农产品溯源系统,通过对农产品的高效可靠识别和对生产、加工环境的监测,实现农产品追踪、清查功能,进行有效的全程质量监控,确保农产品安全。物联网技术贯穿生产、加工、流通、消费各环节,实现全过程严格控制,使用户可以迅速了解食品的生产环境和过程,从而为食品供应链提供完全透明的展现,保证向社会提供优质的放心食品,增强用户对食品安全程度的信心,并且保障合法经营者的利益,提升可溯源农产品的品牌效应。
二、农业物联网
1、定义
农业物联网,即在大棚控制系统中,运用物联网系统的温度传感器、湿度传感器、PH值传感器、光传感器、CO2传感器等设备,检测环境中的温度、相对湿度、PH值、光照强度、土壤养分、CO2浓度等物理量参数,通过各种仪器仪表实时显示或作为自动控制的参变量参与到自动控制中,保证农作物有一个良好的、适宜的生长环境。远程控制的实现使技术人员在办公室就能对多个大棚的环境进行监测控制。采用无线网络来测量获得作物生长的最佳条件,可以为温室精准调控提供科学依据,达到增产、改善品质、调节生长周期、提高经济效益的目的。
2、应用功能
a实时监测功能
通过传感设备实时采集温室(大棚)内的空气温度、空气湿度、二氧化碳、光照、土壤水分、土壤温度、棚外温度与风速等数据;将数据通过移动通讯网络传输给服务管理平台,服务服管理平台对数据进行分析处理。
b远程控制功能
针对条件较好的大棚,安装有电动卷帘,排风机,电动灌溉系统等机电设备,可实现远程控制功能。农户可通过手机或电脑登录系统,控制温室内的水阀、排风机、卷帘机的开关;也可设定好控制逻辑,系统会根据内外情况自动开启或关闭卷帘机、水阀、风机等大棚机电设备。
c查询功能
农户使用手机或电脑登录系统后,可以实时查询温室(大棚)内的各项环境参数、历史温湿度曲线、历史机电设备 *** 作记录、历史照片等信息; 登录系统后,还可以查询当地的农业政策、市场行情、供求信息、专家通告等,实现有针对性的综合信息服务。
d警告功能
警告功能需预先设定适合条件的上限值和下限值,设定值可根据农作物种类、生长周期和季节的变化进行修改。 当某个数据超出限值时,系统立即将警告信息发送给相应的农户,提示农户及时采取措施。
三、智能大棚监控系统
1、定义
深圳信立科技有限公司智能大棚监控系统集传感器、自动化控制、通讯、计算等技术于一体,通过用户自定仪作物生长所需的适宜环境参数,搭建温室智能化软硬件平台,实现对温室中温度、湿度、光照、二氧化碳等因子的自动监测和控制。
智能大棚监控系统可以模拟基本的生态环境因子,如温度、湿度、光照、CO2浓度等,以适应不同生物生长繁育的需要,它由智能监控单元组成,按照预设参数,精确的测量温室的气候、土壤参数等,并利用手动、自动两种方式启动或关闭不同的执行结构(喷灌、湿帘水泵及风机、通风系统等),程序所需的数据都是通过各类传感器实时采集的。 该系统的使用,可以为植物提供一个理想的生长环境,并能起到减轻人的劳动强度、提高设备利用率、改善温室气候、减少病虫害、增加作物产量等作用。
2、系统组成
整个系统主要三大部分组成:数据采集部分、数据传输部分、数据管理中心部分。
A、数据管理层(监控中心):硬件主要包括:工作站电脑、服务器(电信、移动或联通固定IP专线或者动态ip域名方式); 软件主要包括: *** 作系统软件、数据中心软件、数据库软件、温室大棚智能监控系统软件平台(采用B/S结构,可以支持在广域网进行浏览查看)、 防火墙软件;
B、数据传输层(数据通信网络):采用移动公司的GPRS网络传输数据,系统无需布线构建简单、快捷、稳定;移动GPRS无线组网模式具有:数据传输速率高、信号覆盖范围广、实时性强、安全性高、运行成本低、维护成本低等特点;
C、数据采集层(温室硬件设备):远程监控设备:远程监控终端;传感器和控制设备:温湿度传感器、二氧化碳传感器、光照传感器、土壤湿度传感器、喷灌电磁阀、风机、遮阳幕等;
在当今各种产业、技术深度嵌入在全球的网络之中,每个国家或企业都专注于自身擅长的领域。即使华为这样的企业,其技术创新也源于全球人才的共同努力,而非由单一的因素决定。
文 | 郑伟彬
5月17日,美国商务部宣布将中国企业华为列入“实体名单”。也就是说,华为被美国政府“封杀”了。
事情的影响很快显现。
谷歌公司表示将停止对华为新制成的终端设备支持,毫无疑问,这对华为智能手机将产生巨大的影响。
面对美国凌厉的攻势,华为启动了“B计划”。使用海思研发的芯片作为手机现有芯片的替代品,同时华为也宣布其自主研发的 *** 作系统最晚于明年春天面市。
该系统打通了手机、电脑、平板、电视、 汽车 以及其它智能穿戴设备,兼容所有的全部安卓应用和WEB应用,是面向下一代技术设计的 *** 作系统。但是,这样的新系统是否为市场、用户所接受,仍然是个未知数。
华为的力量不可低估
不过,如果认为华为受特朗普政府的禁令影响,仅限于此,那么就是对华为公司的低估。
华为绝不仅仅只是一家5G网络或智能手机的供应商,同时是它在物联网、云计算及云服务、人工智能等方面均具备相当实力的混合型企业。在2018年的年报中,华为将公司愿景描述为:构建万物互联的智能世界。
基于该愿景以及华为不断顺应ICT产业的变化,目前在业务上已经形成了端、管、云的综合数字能力。
其中,端,即为面向消费者业务,即以华为智能手机为主入口,平板、电视、车机以及其它各类可穿戴、智能硬件等辅助入口,为用户打造全景式的智慧生活。
管,即为运营商业务,5G时代的到来以及华为在这方面的技术优势将为其带来巨大的增长空间。
云,即基于云平台及无处不在的连接、无所不及的智能构建的面向企业业务。
从行业领域角度来看,华为这些业务已经涵盖智慧城市、车联网、智能 汽车 、智能家居、智能制造(工业)等领域,相应地建立起了智慧城市数字平台、车联网云平台、HiLink平台(智能家居)等平台,构建起完整的产业生态系统,支持企业转型、产业升级和城市智慧化。
在其背后,则是强大的底层基础设施支撑能力。简单来说,包括算法、算力以及网络等方面的业务生产力支撑。
以算力为例,数字化时代对数据的处理能力,决定着相关产品性能的优劣。其中芯片作为算力的承载力,成为布局算力的重要阵地。
目前华为自主设计的芯片涵盖手机SoC芯片、AI异构芯片、服务器芯片、5G芯片以及其他专用芯片等领域,以强大的算力来支撑万物互联的智能世界。据DIGITIMES统计,2018年华为海思在芯片设计业务实现收入7570亿美元,在全球芯片设计企业中排名第5位,仅次于博通、高通、英伟达、联发科。
可以说,在数字时代来临时,华为已经基于其强大的数字能力,将其业务拓展涵盖从个人到企业,从产业到城市的全方位生态系统。由此,尽管美国政府针对华为,频繁对其欧洲盟友施压,但其获得成功的可能性较低。这些工业化的欧洲国家,不太可能放弃通过华为性价比高的产品及服务上的优势,来建立起他们安全、智能化的城市,助力其工业的数字化转型。
所以,面对美国政府的强大攻势,华为自然有足够的自信与从容。但从长远来看,美国政府的禁令仍然具有不可忽略的一面。
割裂的全球技术网络,会伤害人类 社会 本身
同样以芯片为例,目前华为在主要的数字芯片及部分的模拟芯片上,已经具备了相当的自主知识产权和自研自产能力。但高性能的模拟及射频芯片仍是其短板,华为目前主要还是依赖于进口。如果特朗普的禁令最终落地,那么华为依赖外部市场的业务将不可避免受到迟滞。
从产业链替换的角度上看,华为即使能够借助国内其他厂商或类似的产品进行替换,但国内厂商的产品在性能上仍落后于国际上主要的竞争力,也势必将产生一定的负面效应。比如用于最先进的5G蜂窝塔的FPGA(现场可编程门阵列)芯片,目前由美国的赛灵思和英特尔垄断,国内同行诸如紫光同创等虽然也能生产,但在性能上落后其2-3代。如果改用ASIC芯片,成本则相应地提高。
即使从长期来看,华为产业链上主要的产品即使能实现相当程度的国产自主化,但在全球各地供应的原材料,在贸易冲突的背景下也可能存在不确定性。
此外,即使此次美国政府的禁令最终取消,但鉴于中美关系及地缘政治的潜在影响,未来各个国家在诸如5G网络、智慧城市建设等方案上,将采取更为多元化、多样化的策略,以便在类似的时刻,能够起到对冲的作用,避免过度依赖于某个公司或国家。
最后,我们需要强调的是,在当今各种产业、技术深度嵌入在全球的网络之中,每个国家或企业都专注于自身擅长的领域。即使华为这样的企业,其技术创新也源于全球人才的共同努力,而非由单一的因素决定。
更何况,技术的目标在于提升人类生活质量,技术是驱动人类文明发展的动力。一个割裂的全球技术网络和市场,最终不仅伤害技术本身,也伤害人类 社会 本身。无论最终华为事件如何结束,我们都期望它不影响全球化驱动下的技术创新与市场的繁荣、开放。
□郑伟彬(新京报智慧城市研究院研究员)
编程语言Toit开源了!Toit 是一种面向对象的物联网编程语言,在 IoT设备上能够实现秒级代码部署(注:如果使用C语言,一个简单的代码更改需要几分钟才能重新部署);同时,Toit也是一种现代的、内存安全的编程语言,集成了先进的编辑器功能,如语法高亮、goto-definitions 、代码自动补全等等。
Toit 编程语言具备以下特征:
Toit的出现是因为有一群软件工程师对IoT开发的现状感到不满,凭借着在Google为Flutter构建V8 JavaScript 引擎和Dart语言的丰富经验,他们开始自己构建适用于IoT的最佳平台。也正是在平台构建过程中,他们意识到必须有一种高效的编程语言来满足物联网的需求。最开始,他们尝试使用了Python和JavaScript,但在微控制器上,这两种语言的速度都不够快。
为了解决性能和健壮性问题,Toit团队开始研究Toit语言,经过测试发现,Toit在 ESP32 上的执行代码速度比 MicroPython 快 30 倍以上,同时学习门槛也很低,Python开发人员在几小时内就可以学会它。
为什么会选择开源Toit?Toit团队表示:“从一开始,我们就明确知道Toit肯定是会在某个时刻开源的,因为所有主流的编程语言都是开源的。开源可以获得充满活力的生态系统,编程语言才能被大规模采用。经过多次迭代和实际环境的应用,Toit语言已经成为微控制器编写强大软件的利器,我们希望更多开发者能够从中受益,因此选择将它开源出来。”
链接:>
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)