制造是什么
我们先看看制造究竟是一个什么过程。生产制造过程就是把一组原材料转换为产品,比如投入钢板及相关零部件通过生产过程产出一辆汽车。那么生产过程要涉及什么东西呢,我们看看制造业的组织架构
制造业组织结构
如上图,我们先关注中间一部分,也就是生产部分,制造业的核心环节。
计划控制:可以理解为生产的大脑中枢,它决定了生产什么,何时生产,生产多少。同时也调度生产资源(人,设备,物料,技术,能源)合理分配实现资源利用最大化。
采购:根据生产计划,确定何时需要采购什么原材料
制造:包括加工、组装、工装工具等管理
质量保证:对外购零部件、材料以及生产过程中的产品进行质量检验和质量管理等
设计:产品的设计和研发
所以,制造过程是需要以上所有相关部门的密切配合、协调工作的。制造过程是一个多部门参与、协调的过程。任何一个小的环节出现问题,生产都会被迫中断。
智能制造干什么
当前阶段
上面我们说了,制造过程涉及到多个部门的协作,那么当然,智能制造中的智能也要覆盖到所有这些相关部门。
智能实际上更需要靠软件来实现,目前我们离真正的智能还很远。目前我们大多还是在做信息化,信息化,数字化是智能的基础。看看各个环节都需要什么信息化系统吧。
设计:CAD/CAE,PLM等
计划控制:ERP,APS等
采购:ERP
制造:MOM/MES,精益生产,智能设备,工业物联网
质量:MOM/QMS
所以,目前普遍意义上说的做智能制造相关工作,基本是在做上面这些信息化系统。当然也有一些做工业大数据分析的,当然工业大数据的数据来源就是上面我们所说的各种信息化系统
真正的智能制造
看过安筱鹏博士的书,里面提到智能制造的本质是以数据的自动流动化解复杂系统的不确定性,优化制造资源的配置效率。
这句话的意思可以用我们自身来类比一下,我们的大脑很智能吧,他可以感知外界环境的变化来控制我们的身体来做出对应的反应。对应三步,感知、分析、决策
智能制造中的智能就是要打造出一个制造系统的大脑中枢,这个大脑可以感知到整个生产环节的各种因素的变化,并且经过分析计算做出最优的决策。
第一步就是感知,首先要掌握外界的信息。在生产系统中可以理解为通过数据采集来实时掌握生产环节的各个状态,比如原材料库存情况,设备运行情况,人员情况等。目前我们的工业物联网,各个环节的信息化系统都可以理解为数据采集。工业物联网采集的是设备的运行数据,各个业务系统采集的是业务数据。
第二步是数据的流动和数据分析。首先实现各个系统数据的互联互通。比如采购就影响着原材料库存,库存又影响着生产,所以我们要让不同系统中的数据建立联系。之后通过大数据分析或者各种人工智能算法得出某个环节的最优解。
第三步就是决策,通过分析,智能系统可以控制生产环节做出调整。最简单的就是调度,比如发现某一产品原材料库存不足会自动切换另一种产品。发现一台设备有空闲,利用率不够,可以自主分配任务给此设备,提高资源利用率。
此时,整个生产环节,从采购到生产到质量控制到交付。全部由智能系统来调度,仿佛是有一个大脑在控制着各个环节做出相应的动作。
所以,你看。我们目前大部分只是在做第一步,极少一部分在做第二步的工作。至于最终目标的实现还有很远的距离。
这一部分也回答了开头的第二个,第三个问题。正是因为生产环节涉及到机械设备、自动控制、软件分析、生产流程等,所以智能制造就必须是一个交叉学科。
专业及就业
来回答你的第四个问题,大学本科里面的培养方案都是一些基础学科的教育,是让我们对此有基本的理论知识和概念。和实际工作中用到的还是有很大差距的。可以理解为,专业是一个很宽的概念,交给你很多方向的基本概念,但是工作就是从中选择一个方向并深入下去。
所以,即使你要做本专业的工作,也只会是做智能制造体系中的某一个环节。也许是各个信息化系统的实施,也许是工业物联网,也许是数据分析,智能算法等。
你的培养方案中关于软件方面并不算多,我建议你选择一到两门编程语言及一种关系型数据库,达到熟练掌握的地步。
至于深造的话,更多的就偏向于理论研究了,我朋友圈中也有几个硕士,博士在做智能制造方向的理论和算法研究。这个看个人选择了。
至于你题目中提到的和计科,智科对比,我认为没必要,既然选择了这个专业就好好的学习这个专业,目前全世界的制造业都在寻求转型,实现生产力的进一步提高,另外政策层面也是非常给力的。不要过多纠结于选择上。
思想价值决定企业命运的时代已经到来。
在日益全球化和移动互联、人工智能技术日趋普及的趋势下,优势企业之间的最高阶段的竞争,不能局限于硬技术的竞争,而是体现在企业软实力的竞争,亦即思想的竞争。面对今天的市场格局及为未来趋势,你的企业应该有什么样的价值判断,应该有什么样的思想基础,应该发出什么样的声音,这才是关键。
巴黎高科路桥大学秉承法国精英式高等教育体系,针对工业发展需求,将技术、人文与管理相结合,教学内容具有更新快,目的性强的特点,在学术科研上以项目为主线,拥有强大的企业合作背景和资源。学校注重全球发展和国际合作,在四大洲共有67个合作伙伴院校。
ENPC DBA(IM)项目关注学员成长,更关注学员背后企业和行业发展,旨在为学员提供前沿的学术思想,科学的理论支持,同时结合中国当前制造业发展,为学员提供理论与实践之间科学转换的视角、方法和工具。
更多招生简章、项目信息,欢迎私信了解详情~~~~~~
APS 毋庸置疑,你的第一专业将肯定作为重要考察部分。但是你也需要告知审核部,你的未来的计划,即申请研究生的方向。
最好的办法是你直接到北京去咨询,打电话和写信时常联系不畅,而且打的人极多,会经常打不进去。亲自去最清楚白了,我和我的很多同学多是这样的。这些问题只有在审核部才能得到最好的答案,其它的推测和办法可能会走弯路。而且去过的人都知道,APS是一个比较BT的部门,虽然很有礼貌。
既然去他那里考,还是去他那里咨询!
诚谏!工业大数据应用将带来工业企业创新和变革的新时代。通过互联网、移动物联网等带来的低成本感知、高速移动连接、分布式计算和高级分析,信息技术和全球工业系统正在深入融合,给全球工业带来深刻的变革,创新企业的研发、生产、运营、营销和管理方式。这些创新不同行业的工业企业带来了更快的速度、更高的效率和更高的洞察力。工业大数据的典型应用包括产品创新、产品故障诊断与预测、工业生产线物联网分析、工业企业供应链优化和产品精准营销等诸多方面。本文我们讲就工业大数据在制造企业的应用场景进行逐一梳理。
一、加速产品创新
客户与工业企业之间的交互和交易行为将产生大量数据,挖掘和分析这些客户动态数据,能够帮助客户参与到产品的需求分析和产品设计等创新活动中,为产品创新作出贡献。福特公司是这方面的表率,他们将大数据技术应用到了福特福克斯电动车的产品创新和优化中,这款车成为了一款名副其实的“大数据电动车”。第一代福特福克斯电动车在驾驶和停车时产生大量数据。在行驶中,司机持续地更新车辆的加速度、刹车、电池充电和位置信息。这对于司机很有用,但数据也传回福特工程师那里,以了解客户的驾驶习惯,包括如何、何时以及何处充电。即使车辆处于静止状态,它也会持续将车辆胎压和电池系统的数据传送给最近的智能电话。
这种以客户为中心的大数据应用场景具有多方面的好处,因为大数据实现了宝贵的新型产品创新和协作方式。司机获得有用的最新信息,而位于底特律的工程师汇总关于驾驶行为的信息,以了解客户,制订产品改进计划,并实施新产品创新。而且,电力公司和其他第三方供应商也可以分析数百万英里的驾驶数据,以决定在何处建立新的充电站,以及如何防止脆弱的电网超负荷运转。
二、设备故障分析及预测
在制造业生产线上,工业生产设备都会受到持续的振动和冲击,这导致设备材料和零件的磨损老化,从而导致工业设备容易产生故障,而当人们意识到故障时,可能已经产生了很多不良品,甚至整个工业设备已经奔溃停机,从而造成巨大的损失。
如果能在故障发生之前进行故障预测,提前维修更换即将出现问题的零部件,这样就可以提高工业设备的寿命以及避免某个设备突然出现故障对整个工业生产带来严重的影响。随着工业40的到来,智能工厂的工业设备都配上了各种感应器,采集其振动、温度、电流、电压等数据显得轻而易举,通过分析这些实时的传感数据,对工业设备进行故障预测将是一种行之有效的措施。
因此设备故障预测方案成为了制造行业所青睐的解决方案,其具备的核心功能有:
1、故障超前预警,减少设备停机时间;
2、分析结果实时推送,减少人工成本;
3、适用于企业各种类型的设备,通用性强。
三、工业物联网生产线的大数据应用
现代化工业制造生产线安装有数以千计的小型传感器,来探测温度、压力、热能、振动和噪声。因为每隔几秒就收集一次数据,利用这些数据可以实现很多形式的分析,包括设备诊断、用电量分析、能耗分析、质量事故分析(包括违反生产规定、零部件故障)等。
首先,在生产工艺改进方面,在生产过程中使用这些大数据,就能分析整个生产流程,了解每个环节是如何执行的。一旦有某个流程偏离了标准工艺,就会产生一个报警信号,能更快速地发现错误或者瓶颈所在,也就能更容易解决问题。利用大数据技术,还可以对工业产品的生产过程建立虚拟模型,仿真并优化生产流程,当所有流程和绩效数据都能在系统中重建时,这种透明度将有助于制造商改进其生产流程。再如,在能耗分析方面,在设备生产过程中利用传感器集中监控所有的生产流程,能够发现能耗的异常或峰值情形,由此便可在生产过程中优化能源的消耗,对所有流程进行分析将会大大降低能耗。
四、产品销售预测与需求管理
近年来,保险业加速了数字化进程,大数据与保险营销深度融合,成为现代化保险营销的重要武器。慧都大数据助力保险行业精准营销,并成功帮助中意人寿保险有限公司更好地服务客户和发挥忠诚客户,提高销售效率及客户复购率。
五、工业供应链的分析与优化
当前,大数据分析已经是很多电子商务企业提升供应链竞争力的重要手段。例如,电子商务企业京东商城,通过大数据提前分析和预测各地商品需求量,从而提高配送和仓储的效能,保证了次日货到的客户体验。RFID等产品电子标识技术、物联网技术以及移动互联网技术能帮助工业企业获得完整的产品供应链的大数据,利用这些数据进行分析,将带来仓储、配送、销售效率的大幅提升和成本的大幅下降。
六、生产计划与排程
制造业面对多品种小批量的生产模式,数据的精细化自动及时方便的采集(MES/DCS)及多变性导致数据剧烈增大,再加上十几年的信息化的 历史 数据,对于需要快速响应的APS来说,是一个巨大的挑战。大数据可以给予我们更详细的数据信息,发现 历史 预测与实际的偏差概率,考虑产能约束、人员技能约束、物料可用约束、工装模具约束,通过智能的优化算法,制定预计划排产,并监控计划与现场实际的偏差,动态的调整计划排产。帮我们规避“画像”的缺陷,直接将群体特征直接强加给个体(工作中心数据直接改变为具体一个设备、人员、模具等数据)。通过数据的关联分析并监控它,我们就能计划未来。
七、生产质量分析与预测
在工业生产中,设备失效、人员疏忽、参数异常、原材料差异、环境波动等因素而导致质量偏离,引起质量等级的缺陷和损失非常巨大。工艺流程复杂的大型制造业,如钢铁、 汽车 、电子、服装等行业,信息数据孤岛凸显,导致质量问题频发,尤其需要“及时发现和预测异常,迅速控制和分析质量异常的原因,进行生产过程改进,稳定生产过程,减少产品质量波动”。
生产质量分析,从工厂订单下单-订单生产-流入市场, 针对整个生产链进行全面的质量分析。其中,打通质量和人、机、料、法、环等数据,各生产数据环环相扣,聚焦质量管理的全量数据分析,帮助企业快速 探索 缺陷根本原因。
1、打通质量和人、机、料、法、环,对影响质量的全量数据进行交互分析, 探索 相互关系,挖掘数据背后的真实原因,获取结果“是什么”,回答“为什么”。
2、将传统的静态汇报模式,改为交互式动态会议,随时随地可以组织生产、质量相关专题会议。通过对维度展示生产和质量KPI,实时预警、掌握产线运营状况。
3、简单易上手的质量分析工具,员工只需对数据进行选取、拖曳,自助灵活地达成期望的数据结果。
4、摒弃以往静态的数据报表,整合多个业务系统数据,多场景数据大屏,自适应多屏,进行综合展示分析,让决策更清晰。
————————————————
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)