IoT,简单来说,就是物联网,是Internet of things的简称,是物物相连的互联网,既能实现物与物之间的信息交换,又能实现物与人之间的信息交流。IoT是即计算机,互联网之后的又一大信息产业发展浪潮,可谓是发展前景十分广阔。
目前,IoT的一个重要应用就是智能家居,智能家居作为一个已经发展了几十年的产业,在最近几年终于迎来了大爆发,智能语音也成为继路由器之后的又一智能家居控制中心,带着新中心的浪潮,IoT产业也迎来了大爆发。
按小米CEO雷军的说法,小米的IOT战略经历了2个阶段。
第一个阶段 以“参股+实业”来扩张生态链
小米的生态链布局,采取的是“参股+实业”的双向驱动方式 ,以“占股不控股”的模式不断扩张其生态链规模。
小米之所以取得这么大的成就,表面上看,是小米已经形成的庞大的智能硬件生态链和整个生态的环境,营销渠道有线上的小米商城和线下的小米之家;实际上,却是小米对生态链企业“投资而不控股”的策略,这与苹果、Google等同样布局 loT 生态的厂商有很大不同。
小米的“造链运动”就是这么来的。雷军在布局IOT之初,就提出了“100 家生态链企业”的战略目标。时至今日,小米生态链已经成为拥有上百家硬件厂商,其IOT开发者平台也接入了多达上亿台设备,成为目前“最大消费IOT平台 ”。
这种模式的好处是见效快,能够快速的打开市场。但潜在的问题是,真正能够进入小米IOT平台的智能设备,大多来自于甘愿接受小米管控的小企业。市面上销量大、口碑好的家电、智能设备厂商都很难进入这个“圈子”,这就让消费者的选择极其有限。
2017年11月,小米对外宣布开放小米IoT开发者平台。
小米公司创始人、董事长兼CEO雷军正式宣布,小米IoT平台联网设备超过8500万台,日活设备超过1000万台,合作伙伴超400家,已经稳居全球最大的智能硬件IoT平台;雷军认为小米已经成为全球最大智能硬件IoT平台。
在大会上,小米 科技 董事长兼CEO雷军表示小米初步完成了当初的目标,现在要开启小米IoT战略第二阶段,小米将全面开放IoT平台并启动小米IoT开发者计划,AI+IOT战略。
而在小米IoT战略的第二阶段,“AI”将成为关键词,小米方面表示希望能在AI 技术的加持下,将硬件、软件、云服务和新零售业务串联起来。
所谓AI+IoT,就是人工能智能+物联网。人工智能技术现在基本上都是基于机器学习和大数据,还不能算是真正的智能。但物联网已经逐渐发展起来了,尤其是即将到来的5G时代,很有可能促进物联网行业的进一步起飞。
从小米第一阶段的IOT战略布局,我们可以了解到:
一,现在接入的智能产品主要有三种
1,小米自有品牌的智能产品,如小米手机、小米手环、小米音箱、小米智能空气净化器等
2,小米生态链产品,即小米投资入股的产品
3,第三方产品,这也是小米更加开放的表现。
二,小米布局AIoT有三大优势:硬件优势、大数据优势和丰富的生态链布局优势。
1,硬件优势
小米AIoT战略,也是以手机作为第一入口,然后以小米音箱、小米手环、空气净化器、智能灯等与家庭相关的智能产品作为辅助入口,进而建个人、家庭的智能家居场景 。
雷军在2018 MIDC 小米AIoT开发者大会宣布,2018年小米IoT平台已连接了超过132亿台智能设备(不含手机和笔记本电脑),遍布全球超过200个国家和地区,日活设备超过2000万台,每日处理设备请求高达800亿次。内置小爱同学的激活设备数超过1亿台,月活跃用户超3400万。
活跃的物联网设备为海量数据获取及万物互联提供了坚实基础,这是小米布局AIoT战略的硬件优势。
2,大数据优势
2018年7月,在中国大数据应用大会上,小米大数据产品总监赵辉华曾表示,小米有三亿的用户,在三亿用户中有超过日活21个的千万小米应用,这些应用都沉淀到云服务上;在大数据全局搜索方面,小米已经接入了16类的垂直内容,日均用户量是1600万,日均请求量四千多万。
3,丰富的生态链布局优势
AI+IoT 是如今小米最有想象力的业务,远胜于手机。大到智能电视、空调、洗衣机,小到闹钟、移动电源、电动牙刷,小米生态链已经形成了一张大网,小米凭借着用户量、设备数与数据积累,正试图构建一个完整的生态。随着 5G 商用的加速,设备的连接能力将有明显的飞跃,因此 IoT 也将迎来发展的黄金期。在AIoT领域,小米布局很早,积累也较为深厚,已经形成了强大的生态链体系,且线上线下渠道也都已打通。这是小米AIoT战略布局的生态链布局优势。
对于小米来说,推动AIoT战略加速落地,不仅是时机成熟,更是势在必行,所以就有了后面一系列的大动作!
在2017年11月的小米IoT大会上,小米宣布在人工智能领域与百度达成合作,双方将在知识图谱、深度学习、语音、视觉、自然语言处理、人机交互、机器人、无人驾驶、AI芯片等领域展开深度合作。也就是说,小米的智能硬件需要通过DuerOS等外援来补充技术。
2018年第二次开发者大会上,小米AIoT将开放全面升级,Zigbee方案接入到小米IoT平台,云云互联,可以与其他云,并支持标准蓝牙Mesh
在落地应用上,小米开始在AR(owlii)、智慧酒店(全季酒店)、智慧家装(爱空间)上进行落地。
AIoT平台将接入智能门锁。
2018年,小米也开始向海外扩张IoT业务,2018年2月,智能电视进入印度市场,并在2018年第四季度在印度市场出货量排名第四。
最后,我们再来看看小米2018年年度财报,2019年3月19日,小米发布了2018年财报。
2018年,小米智能手机收入1138亿元,同比增长413%。报告期内,小米智能手机出货量达119亿台,同比增长298%。
2018年,小米IoT与生活消费产品分部的收入为438亿元,较去年增长869%,也成为小米2018年增速最快的业务。
从该业务在整体营收中的占比来看,2018年全年达到251%,而2017年为205%;2018年第四季度,该业务营收占比甚至达到了336%,而2017年同期为242%。IoT业务无疑成为小米2018年第四季度和全年的最大亮点。
根据财报公布的数据,截至2018年12月31日,小米IoT平台已连接的IoT设备数(不包括智能手机和笔记本电脑)约为151亿,同比增长1932%。拥有5个以上小米IoT设备(不包括智能手机和笔记本电脑)的用户数约230万,同比增长1091%。
此外,小爱音箱累计出货量超900万台,小米电视全球出货量840万,同比增长2255%。报告期内,小米也开始向白电领域进军,分别在2018年7月和12月推出了米家空调和米家互联网洗烘一体机。
从2018年的年报可以看出,今年开始,小米的动作也确实比以往更频繁。
1月11日,他们宣布启动“手机+AIoT”双引擎战略,雷军称小米将在未来的5年内,持续在AIoT领域投入累计超过100亿元,ALL in AIoT;
2月26日,又成立集团技术委员会,成立人工智能部、大数据部、云平台部;
3月7日,小米成立了AIoT战略委员会,由IoT平台部、人工智能部、生态链部、智能硬件部等十几个核心业务部门的总经理、副总经理组成。
2019年4月2日,小米决定拆分松果电子部分团队为大鱼半导体,新部门以后将专注AI、IoT芯片研发,而松果电子继续研发手机芯片。
而这些动作背后都有一个整体的指导思想,AIoT战略要如何深入?设备层面,小米已经积累了五六年的优势,很显然,想要真正把握住这个万亿级的大市场,只有由设备下潜到基础核心技术层面,包括芯片、人工智能、连接技术、边缘计算等等。移动互联网时代的无数次实践已经证明,只有对全产业链的把握,才能在千变万化的时代中以不变应万变,小米跑得更早,所以也有更多的时间积淀这个能力。
我们看到,在小米前进的路途上,也在不停的思考,及时更新战略。胜不喜,败不骄之余,小米的AIOT战略也有不得不要面对和考虑的问题。
一,AI技术先天不足
IoT是一个生态,并非是单一的设备模式,核心驱动力肯定离不开AI技术。而在小米IoT战略的第二阶段,人工智能成了整个生态的关键词,小米希望在AI技术的加持下,将硬件、软件、云服务和新零售业务串联起来。
小米在AI技术上的不足,导致小米的IoT模式不够完美,甚至还容易遭到外界和投资者的“挑刺“。
所以,在2017年11月的小米IoT大会上,小米宣布在人工智能领域与百度达成合作,双方将在知识图谱、深度学习、语音、视觉、自然语言处理、人机交互、机器人、无人驾驶、AI芯片等领域展开深度合作。也就是说,小米的智能硬件需要通过DuerOS等外援来补充技术。
小米之所以和百度合作,原因有二
1,在国内的互联网巨之头中,百度是最早选择“All in AI”的玩家,数据上的优势加之时间上的红利,百度在人工智能技术上有着深厚的基础。尤其是以对话式人工智能 *** 作系统DuerOS的出现,打开了国内人工智能 *** 作系统的先河。在DuerOS的合作名单中,已经出现了美的、海尔、TCL、vivo、海信、HTC、联想等超过130家的合作伙伴,在AI技术方面的积累与小米在硬件场景上的布局有着很强的互补性。
2,百度也是这场合作的受益者,小米庞大的IoT基础和大数据,不仅可以为百度的人工智能提供丰富的训练样本,也在加速人工智能技术在实际场景中的落地。除此之外,DuerOS和小米IoT在场景和应用上存在一定的交叉,百度和小米的合作便意味着,小米的供应链优势可以丰富百度人工智能生态,将AI技术应用到更多场景,进而为DuerOS和小米用户带来更好的用户体验。
二,研发资金不足
AI技术研发的投入和生态打造,是一件相当长周期的事儿。拿百度在AI技术领域的投入为例,5年前就一直持续砸资金,直到今天还谈不上形成规模化收入。所以,技术是需要积淀的,需要长期研发,共同攻关,不是临时抱佛脚就能解决的。而且更关键的一点是,与主流互联网企业百度、腾讯、阿里和美团比,小米身上的硬件痕迹过重,缺乏应用服务的场景支持,少了大数据这一侧持续训练和学习的支持,玩AI的难度就更大一些了。
在人工智能方面,华为终端今年预计投400亿研发iot物,百度每年在此技术的投入均在15%以上,阿里在未来对达摩研究院投入1000亿以上。而小米姗姗来迟,在2016年才涉足AI研发,在接下来的五年里,小米将继续在AIoT上投资100多亿元。
三,IoT芯片“核芯”不足
从IoT的开发上看,大致可以分为三个层级:硬件设备、 *** 作系统和处理芯片。目前国内没有哪一家公司能够将这三个层级全部做好。小米做到了最大普及程度的消费级硬件设备,百度、阿里则是拿出了 *** 作系统,华为在芯片和硬件上更为侧重。
从物联网产业链来看,主要包括感知层、网络层、平台层、应用层几大方面。除了网络层之外,其他方面则厂商争夺的重点。而从产业环节而言,芯片无疑是物联网系统的核心。为此,想要构建自主生态,打造低功耗连接,芯片的作用不可言喻。
小米由于缺乏核心技术,在许多关键领域都不得不依赖其他企业。例如,在手机AI芯片、IOT 芯片方面,小米都缺乏实力,无法像华为那样依托自家的麒麟芯片实现自主的产品以及技术迭代。这也导致了小米在高性能、低功耗IOT芯片方面的研发能力和产品迭代速度也远远落后于华为。
相对于手机芯片,物联网芯片本质上还是通信芯片,具有一定的相通性,但对于小米而言想要进入也并非易事。
以华为这么大的投入力度,在芯片自主研发的路上也不是一帆风顺。自2004年开始,华为就开始布局自主研发芯片,2009年才研发出第一颗K3芯片,并且还是试水。之后更是经历了多次实验,才在2014年成功研制麒麟芯片,并最终应用到华为手机之中。由此可见,芯片的研发难度有多大。
小米自2014年成立小米松果电子以来,第一款NB-IOT芯片在2017年底才推出。虽然在时间点上,并没有落后很多,但是显然华为等厂商已经抢先一步。从布局方面来看,首款NB-IOT芯片的推出,小米IOT生态布局也趋向于进一步完善。
而且,在小米的IOT产品系列中,除了手机这个核心产品掌握在自己手里外,其余产品大多依赖生态链企业去研发制造。问题是,这些生态链企业也和小米一样,面临“缺芯”的困扰。
所以,未来小米需要在IoT芯片领域加大研发力度。
四,生态链并非固若金汤
小米在布局生态链的过程中,采用“占股不控股”模式。看似明朗的背后,隐藏着哪些风险。
借助小米品牌的声誉以及小米在互联网渠道的优势,多家小米生态链企业迅速发展,更有数家企业年营收迅速从零增加至超过十亿元,这无疑进一步提升了小米的名声,但是随着小米生态链企业的成功,一些质疑也伴随而来,担忧它们过于依赖小米将难以持续发展壮大,去小米化呼声日益严重!
以小米生态链企业的典范--华米为例,2015年、2016年来自小米的收入占其营收的比例超过九成,而净利润分别为-038亿元、024亿元,到2017年、2018年来自小米的收入占比降低到八成以下,其净利润分别提升至2305亿元、4748亿元,华米也不忌言净利润的增长主要是由于自有品牌Amazfit业务发展所取得。
对比之下,可以看出华米虽然依赖小米贡献了大部分收入,但是小米方面带来的净利润较低,而它在2017年、2018年取得净利润的大幅增长主要来自于拓展自有品牌业务。
小米生态链企业,依托小米的销售渠道,离开小米将面临失去市场的风险。同时,小米对生态链企业的管控虽然越来越弱,要求却越来越严格。
不仅如此,竞争也是生态链企业面临的严峻考验。在内部,同一类别产品有多家企业竞争,例如,同时做智能锁的云丁、云柚和绿米;同时做空气净化器的睿米、琭珞含章和星月电器。
在外部,越来越多的企业加快了进军IOT市场的速度,华为与硬件厂商合作,在智能家居领域打造一个更开放的生态;OPPO、vivo、TCL 则是共同合作,宣布成立IoT开放生态联盟。
显然,IoT已经成了厂商们的第二战场,生态链企业面对的竞争日益激烈。
结语:
5G时代的到来,IoT业务也成为众多手机厂商发力的对象。OPPO和vivo在2018年联合多家家电企业成立了IoT开放生态联盟;华为在日前的AWE上宣布升级IoT战略,余承东还定下了三年内拿下中国三分之一IoT设备的目标。
2019年,是5G商用部署的元年,而5G的一个重要使命就是对海量物联网的连接提供支持,它的高速率、低时延、大容量等特性,是物联网体系成熟的必要条件,可以预见,从今年开始,随着5G商用的进程逐渐推进,IoT的发展将驶入快车道。
希望小米一路前行,再创辉煌!
我上一家公司用的就是航天信息的车辆管理系统,叫车总管,具体的功能我记不太清了,不过大致是车辆定位,预约调度之类的功能吧,车辆管理都差不多。我找了他们网站的介绍题主了解一下:
1、方案概述
航天信息在途定位监控系统提供了一个远程精确定位监控与查询的解决方案,借助北斗/GPS定位模块、监控摄像头、传感器等硬件设备,可采集实时精确位置信息,车辆里程、油耗、速度、电量信息,视频监控信息,温度、湿度等环境信息,适用于车辆、集装箱、货物、设备、资产等领域的实时定位和监控管理。
2、 功能描述
北斗/GPS实时定位:兼容北斗、GPS两种定位方式,定位精度可达25m;
分区域监控报警:可自定义重点监控区域,到达或离开监控区域自动报警;
历史轨迹查询:可随时随地查询历史轨迹,可视化追溯物品历史移动轨迹;
实时云端查询:云平台架构,支持电脑端、Pad端、手机端随时随地查询;
多维度统计分析:多维度交叉统计分析,深度了解车辆、设备、资产等监管对象的使用情况和使用状态,提升监管效率;
视频、传感器联动:可集成摄像头、传感器等硬件设备,获取相关监控视频信息、温湿度等环境信息,实现视频、传感器联动管理;
3、 方案价值
(1)实时监控报警,提高车辆、设备、资产的监管力度;
(2)历史轨迹查询,可视化追溯物品的移动轨迹;
(3)多维度智能化统计分析,洞察数据背后隐藏的问题,帮助管理决策;
(4)云平台免安装部署,维护成本低;
4、系统截图
1、oppo手机是有隐藏空间的,它的隐藏空间是私密相册,主要用于存储一些私密图册,用户可以自己设置密码。打开方法:在相册长按照片进入私密相册。2、OPPO公司全称是OPPO广东移动通信有限公司。OPPO于2008年推出第一款笑脸手机,由此开启探索和引领至美科技之旅。OPPO是专注于智能终端产品、软件和互联网服务的科技公司,由陈明永创立于2004年。OPPO业务遍及40多个国家和地区,拥有超过400,000个销售网点。OPPO在全球共有六大研究所和四大研发中心,拥有超过40,000名员工。
3、2019年1月,OPPO宣布与国家无线电监测中心检测中心正式签署战略合作框架协议。根据协议,双方实验室将结为战略合作实验室,并在国内无线电设备检测、国际认证、国内外运营商认证、实验室资源共享、5G及物联网等前沿技术的探索开展密切合作。
作者 | 网络大数据
来源 | raincent_com
随着物联网的演变和发展,所有可以想象到的东西(或事物)和产业都将变得更加智能:智能家居和智慧城市、智能制造机械、智能汽车、智能健康等等。无数被授权收集和交换数据的东西正在形成一个全新的网络——物联网——一个可以在云中收集数据、传输数据和完成用户任务的物理对象网络。
物联网和大数据正在走向胜利之路。不过,要想从这一创新中获益,还需要解决一些挑战和问题。在本文中,我们很高兴与大家分享多年来在物联网咨询领域积累的知识。
物联网大数据如何应用
首先,有多种方法可以从物联网大数据中获益:在某些情况下,通过快速分析就足够了,而一些有价值的见解只有在经过深入的数据处理之后才能获得。
实时监测。通过连网设备收集的数据可以用于实时 *** 作:测量家中或办公室的温度、跟踪身体活动(计算步数、监测运动)等;实时监测在医疗保健中被广泛应用(例如,获取心率、测量血压、糖分等);它还成功地应用于制造业(用于控制生产设备)、农业(用于监测牛和作物)和其他行业。
数据分析。在处理物联网生成的大数据时,我们有机会超越监测,并从这些数据中获得有价值的见解:识别趋势,揭示看不见的模式并找到隐藏的信息和相关性。
流程控制和优化。来自传感器的数据提供了额外的上下文情境信息,以揭示影响性能和优化流程的重要问题。
▲交通管理:跟踪不同日期和时间的交通负荷,以制定出针对交通优化的建议,例如,在特定时间段增加公共汽车的数量,看看是否有改观,以及建议引入新的交通信号灯方案和修建新的道路,以减少街道的交通拥堵状况。
▲零售:跟踪超市货架中商品的销售情况,并在商品快卖完之前及时通知工作人员补货。
▲农业:根据传感器的数据,在必要时给作物浇水。
预测性维护。通过连网设备收集的数据可以成为预测风险、主动识别潜在危险状况的可靠来源,例如:
▲医疗保健:监测患者健康状态并识别风险(例如,哪些患者有糖尿病、心脏病发作的风险),以便及时采取措施。
▲制造业:预测设备故障,以便在故障发生之前及时解决。
还应注意的是,并非所有的物联网解决方案都需要大数据(例如,如果智能家居拥有者要借助智能手机来关灯,则可以在没有大数据的情况下执行此 *** 作)。重要的是要考虑减少处理动态数据的工作量,并避免存储将来没有用处的大量数据。
物联网中的大数据挑战
除非处理大量数据以获取有价值的见解,否则这些数据完全没用。此外,在数据收集、处理和存储方面还有各种挑战。
▲数据可靠性。虽然大数据永远不会100%准确,但在分析数据之前,请务必确保传感器工作正常,并且用于分析的数据质量可靠,且不会因各种因素(例如,机器运行的不利环境、传感器故障)而损坏。
▲要存储哪些数据。连网设备会产生万亿字节的数据,选择存储哪些数据和删除哪些数据是一项艰巨的任务。更重要的是,一些数据的价值还远远没有显现出来,但将来您可能需要这些数据。如果您决定为将来存储数据,那么面临的挑战就是以最小的成本做到这一点。
▲分析深度。一旦并非所有大数据都很重要,就会出现另一个挑战:什么时候快速分析就足够了,什么时候需要进行更深入的分析以带来更多价值。
▲安全。毫无疑问,各个领域的连网事物可以让我们的生活变得更加美好,但与此同时,数据安全也成一个非常重要的问题。网络罪犯可以侵入数据中心和设备,连接到交通系统、发电厂、工厂,并从电信运营商那里窃取个人数据。物联网大数据对于安全专家来说还是一个相对较新的现象,相关经验的缺失会增加安全风险。
物联网解决方案中的大数据处理
在物联网系统中,物联网体系架构的数据处理组件因输入数据的特性、预期结果等而不同。我们已经制定了一些方法来处理物联网解决方案中的大数据。
数据来自与事物相连的传感器。“事物”可以是任何物体:烤箱、汽车、飞机、建筑、工业机器、康复设备等。数据可以是周期性的,也可以是流式的。后者对于实时数据处理和迅速管理事物至关重要。
事物将数据发送到网关,以进行初始数据过滤和预处理,从而减少了传输到下一个物联网系统中的数据量。
边缘分析。在进行深入数据分析之前,有必要进行数据过滤和预处理,以选择某些任务所需的最相关数据。此外,此阶段还可以确保实时分析,以快速识别之前在云中通过深度分析所发现的有用模式。
对于基本协议转换和不同数据协议之间的通信,云网关是必需的。它还支持现场网关和中央物联网服务器之间的数据压缩和安全数据传输。
连网设备生成的数据以其自然格式存储在数据湖中。原始数据通过“流”进入数据湖。数据保存在数据湖中,直到可以用于业务目的。清理过的结构化数据存储在数据仓库中。
机器学习模块根据之前积累的历史数据生成模型。这些模型定期(例如,一个月一次)用新数据流更新。输入的数据被累积并应用于训练和创建新模型。当这些模型经过专家的测试和批准后,控制应用程序就可以使用它们,以响应新的传感器数据发送命令或警报。
总结
物联网产生大量数据,可用于实时监控、分析、流程优化和预测性维护等。然而,应该记住,从各种格式的海量数据中获得有价值的见解并不是一件容易事情:您需要确保传感器工作正常,数据得到安全传输和有效处理。此外,始终存在一个问题:哪些数据值得存储和处理。
尽管存在一些挑战和问题,但应记住,物联网的发展势头强劲,并可以帮助多个行业的企业开辟新的数字机遇。
Fedora IoT 是一个即将发布的、面向物联网的 Fedora 版本。去年 Fedora Magazine 的《 如何使用 Fedora IoT 点亮 LED 灯 》一文第一次介绍了它。从那以后,它与 Fedora Silverblue 一起不断改进,以提供针对面向容器的工作流的不可变基础 *** 作系统。Kubernetes 是一个颇受欢迎的容器编排系统。它可能最常用在那些能够处理巨大负载的强劲硬件上。不过,它也能在像树莓派 3 这样轻量级的设备上运行。让我们继续阅读,来了解如何运行它。
虽然 Kubernetes 在云计算领域风靡一时,但让它在小型单板机上运行可能并不是常见的。不过,我们有非常明确的理由来做这件事。首先,这是一个不需要昂贵硬件就可以学习并熟悉 Kubernetes 的好方法;其次,由于它的流行性,市面上有 大量应用 进行了预先打包,以用于在 Kubernetes 集群中运行。更不用说,当你遇到问题时,会有大规模的社区用户为你提供帮助。
最后但同样重要的是,即使是在家庭实验室这样的小规模环境中,容器编排也确实能够使事情变得更加简单。虽然在学习曲线方面,这一点并不明显,但这些技能在你将来与任何集群打交道的时候都会有帮助。不管你面对的是一个单节点树莓派集群,还是一个大规模的机器学习场,它们的 *** 作方式都是类似的。
一个“正常”安装的 Kubernetes(如果有这么一说的话)对于物联网来说有点沉重。K8s 的推荐内存配置,是每台机器 2GB!不过,我们也有一些替代品,其中一个新人是 k3s —— 一个轻量级的 Kubernetes 发行版。
K3s 非常特殊,因为它将 etcd 替换成了 SQLite 以满足键值存储需求。还有一点,在于整个 k3s 将使用一个二进制文件分发,而不是每个组件一个。这减少了内存占用并简化了安装过程。基于上述原因,我们只需要 512MB 内存即可运行 k3s,极度适合小型单板电脑!
安装 k3s 非常简单。直接运行安装脚本:
它会下载、安装并启动 k3s。安装完成后,运行以下命令来从服务器获取节点列表:
需要注意的是,有几个选项可以通过环境变量传递给安装脚本。这些选项可以在 文档 中找到。当然,你也完全可以直接下载二进制文件来手动安装 k3s。
对于实验和学习来说,这样已经很棒了,不过单节点的集群也不能算一个集群。幸运的是,添加另一个节点并不比设置第一个节点要难。只需要向安装脚本传递两个环境变量,它就可以找到第一个节点,而不用运行 k3s 的服务器部分。
上面的 example-url 应被替换为第一个节点的 IP 地址,或一个完全限定域名。在该节点中,(用 XXX 表示的)令牌可以在 /var/lib/rancher/k3s/server/node-token 文件中找到。
现在我们有了一个 Kubernetes 集群,我们可以真正做些什么呢?让我们从部署一个简单的 Web 服务器开始吧。
这会从名为 nginx 的容器镜像中创建出一个名叫 my-server 的 部署 (默认使用 docker hub 注册中心,以及 latest 标签)。
为了访问到 pod 中运行的 nginx 服务器,首先通过一个 服务 来暴露该部署。以下命令将创建一个与该部署同名的服务。
服务将作为一种负载均衡器和 Pod 的 DNS 记录来工作。比如,当运行第二个 Pod 时,我们只需指定 my-server(服务名称)就可以通过 curl 访问 nginx 服务器。有关如何 *** 作,可以看下面的实例。
默认状态下,一个服务只能获得一个 ClusterIP(只能从集群内部访问),但你也可以通过把它的类型设置为 LoadBalancer 为该服务申请一个外部 IP。不过,并非所有应用都需要自己的 IP 地址。相反,通常可以通过基于 Host 请求头部或请求路径进行路由,从而使多个服务共享一个 IP 地址。你可以在 Kubernetes 使用 Ingress 完成此 *** 作,而这也是我们要做的。Ingress 也提供了额外的功能,比如无需配置应用即可对流量进行 TLS 加密。
Kubernetes 需要 Ingress 控制器来使 Ingress 资源工作,k3s 包含 Traefik 正是出于此目的。它还包含了一个简单的服务负载均衡器,可以为集群中的服务提供外部 IP。这篇 文档 描述了这种服务:
Ingress 控制器已经通过这个负载均衡器暴露在外。你可以使用以下命令找到它正在使用的 IP 地址。
找到名为 traefik 的服务。在上面的例子中,我们感兴趣的 IP 是 10008。
让我们创建一个 Ingress,使它通过基于 Host 头部的路由规则将请求路由至我们的服务器。这个例子中我们使用 xipio 来避免必要的 DNS 记录配置工作。它的工作原理是将 IP 地址作为子域包含,以使用 10008xipio 的任何子域来达到 IP 10008。换句话说,my-server10008xipio 被用于访问集群中的 Ingress 控制器。你现在就可以尝试(使用你自己的 IP,而不是 10008)。如果没有 Ingress,你应该会访问到“默认后端”,只是一个写着“404 page not found”的页面。
我们可以使用以下 Ingress 让 Ingress 控制器将请求路由到我们的 Web 服务器的服务。
将以上片段保存到 my-ingressyaml 文件中,然后运行以下命令将其加入集群:
你现在应该能够在你选择的完全限定域名中访问到 nginx 的默认欢迎页面了。在我的例子中,它是 my-server10008xipio。Ingress 控制器会通过 Ingress 中包含的信息来路由请求。对 my-server10008xipio 的请求将被路由到 Ingress 中定义为 backend 的服务和端口(在本例中为 my-server 和 80)。
想象如下场景:你的家或农场周围有很多的设备。它是一个具有各种硬件功能、传感器和执行器的物联网设备的异构集合。也许某些设备拥有摄像头、天气或光线传感器。其它设备可能会被连接起来,用来控制通风、灯光、百叶窗或闪烁的 LED。
这种情况下,你想从所有传感器中收集数据,在最终使用它来制定决策和控制执行器之前,也可能会对其进行处理和分析。除此之外,你可能还想配置一个仪表盘来可视化那些正在发生的事情。那么 Kubernetes 如何帮助我们来管理这样的事情呢?我们怎么保证 Pod 在合适的设备上运行?
简单的答案就是“标签”。你可以根据功能来标记节点,如下所示:
一旦它们被打上标签,我们就可以轻松地使用 nodeSelector 为你的工作负载选择合适的节点。拼图的最后一块:如果你想在所有合适的节点上运行 Pod,那应该使用 DaemonSet 而不是部署。换句话说,应为每个使用唯一传感器的数据收集应用程序创建一个 DaemonSet,并使用 nodeSelector 确保它们仅在具有适当硬件的节点上运行。
服务发现功能允许 Pod 通过服务名称来寻找彼此,这项功能使得这类分布式系统的管理工作变得易如反掌。你不需要为应用配置 IP 地址或自定义端口,也不需要知道它们。相反,它们可以通过集群中的命名服务轻松找到彼此。
随着集群的启动并运行,收集数据并控制灯光和气候,可能使你觉得你已经把它完成了。不过,集群中还有大量的计算资源可以用于其它项目。这才是 Kubernetes 真正出彩的地方。
你不必担心这些资源的确切位置,或者去计算是否有足够的内存来容纳额外的应用程序。这正是编排系统所解决的问题!你可以轻松地在集群中部署更多的应用,让 Kubernetes 来找出适合运行它们的位置(或是否适合运行它们)。
为什么不运行一个你自己的 NextCloud 实例呢?或者运行 gitea ?你还可以为你所有的物联网容器设置一套 CI/CD 流水线。毕竟,如果你可以在集群中进行本地构建,为什么还要在主计算机上构建并交叉编译它们呢?
这里的要点是,Kubernetes 可以更容易地利用那些你可能浪费掉的“隐藏”资源。Kubernetes 根据可用资源和容错处理规则来调度 Pod,因此你也无需手动完成这些工作。但是,为了帮助 Kubernetes 做出合理的决定,你绝对应该为你的工作负载添加 资源请求 配置。
尽管 Kuberenetes 或一般的容器编排平台通常不会与物联网相关联,但在管理分布式系统时,使用一个编排系统肯定是有意义的。你不仅可以使用统一的方式来处理多样化和异构的设备,还可以简化它们的通信方式。此外,Kubernetes 还可以更好地对闲置资源加以利用。
容器技术使构建“随处运行”应用的想法成为可能。现在,Kubernetes 可以更轻松地来负责“随处”的部分。作为构建一切的不可变基础,我们使用 Fedora IoT。
via: >
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)