a 已知带宽B=1MHz,信噪比SNR=63
由香农公式C= B log2(1+SNR)
=106×log2(1+63)
=6Mbps
b.若数据率为最高理论上限的2/3,则有奈奎斯特公式得:
2/3C=2B log2M
2/3×6×106 =2×106×log2M
2= log2M
M=4
注:其中的106其实是10的6次方,log2其实是底为2的log函数,因为文本无法输入公式的原因,主要是香农公式,与奈奎斯特公式,多看书就明白
信道的定义:
一是指词语,表示知道的意思,二是指通信的通道,是信号传输的媒介。
信息是抽象的,但传送信息必须通过具体的媒质。例如二人对话,靠声波通过二人间的空气来传送,因而二人间的空气部分就是信道。邮政通信的信道是指运载工具及其经过的设施。无线电话的信道就是电波传播所通过的空间,有线电话的信道是电缆。每条信道都有特定的信源和信宿。在多路通信,例如载波电话中,一个电话机作为发出信息的信源,另一个是接收信息的信宿,它们之间的设施就是一条信道,这时传输用的电缆可以为许多条信道所共用。在理论研究中,一条信道往往被分成信道编码器、信道本身和信道译码器。人们可以变更编码器、译码器以获得最佳的通信效果,因此编码器、译码器往往是指易于变动和便于设计的部分,而信道就指那些比较固定的部分。但这种划分或多或少是随意的,可按具体情况规定。例如调制解调器和纠错编译码设备一般被认为是属于信道编码器、译码器的,但有时把含有调制解调器的信道称为调制信道;含有纠错编码器、译码器的信道称为编码信道。
所有信道都有一个输入集A,一个输出集B以及两者之间的联系,如条件概率P(y│x),x∈A,y∈B。这些参量可用来规定一条信道。
输入集就是信道所容许的输入符号的集。通常输入的是随机序列,如X1,X2,…,Xn,…,各X∈A(r=1,2,…)。随机过程在限时或限频的条件下均可化为随机序列。在规定输入集A时,也包括对各随机变量X的限制,如功率限制等。输出集是信道可能输出的符号的集。若输出序列为Y1,Y2,…,Yn,…,各Y∈B。这些X和Y可以是数或符号,也可以是一组数或矢量。
按输入集和输出集的性质,可划分信道类型。当输入集和输出集都是离散集时,称信道为离散信道。电报信道和数据信道就属于这一类。当输入集和输出集都是连续集时,称信道为连续信道。电视和电话信道属于这一类。当输入集和输出集中一个是连续集、另一个是离散集时,则称信道为半离散信道或半连续信道。连续信道加上数字调制器或数字解调器后就是这类信道。
输入和输出之间有一定的概率联系。信道中一般都有随机干扰,因而输出符号和输入符号之间常无确定的函数关系,须用条件概率P(y1,y2,…,yn|x1,x2,…,xn)来表示。其中各x和y(r=1,2,…,n)分别是输入随机序列和输出随机序列的样,且x∈A,y∈B。当这条件概率可分解成的形式时,信道称为无记忆信道,否则就是有记忆信道。无记忆意味着某个输出样y只与相应的输入样x有关,而与前后的输入样无关。当只与前面有限个输入样有关时,可称为有限记忆信道;当与前面无限个输入样有关,但关联性随间隔加大而趋于零时,可称为渐近有记忆信道。此外,当上式中的P1,P2,…等条件概率是同样的函数时,称为平稳信道。这也适用于有记忆信道,即变量的下标顺序推移时,条件概率的函数形式不变。
输入和输出都是单一的情况,这类信道是单用户信道,或简称为信道。当输入和(或)输出不止一个时,称为多用户信道,也就是几个用户合用一个信道。但当几个用户的信息通过复用设备合并后再送入信道时,这个信道仍为单用户信道。只有当这个信源分别用编码器变换后再一起送入信道,或在信道的输出上接有几个译码器分别提取信息给信宿,也就是信道的输入端或输出端不止一个时,才称为多用户信道。当有几个输入如Xa,Xb,…而输出只有一个Y时,习惯上称为多址接入信道。它可用条件概率P(y|Xa,Xb,…)来规定;当只有一个输入X,而输出有几个Ya,Yb,…时,就称为广播信道,可用条件概率P(ya│x),P(yb│x),…来规定。广播信道还有一个特例称为退化型广播信道,此时各条件概率应满足下列各式:就是说,x,ya,yb,yc,…组成马尔可夫链。一般的多用户信道可以有几个输入和几个输出。当然多用户信道也有离散和连续,无记忆和有记忆之分。
其实,上述分类是可以组合的,例如平稳无记忆离散信道,正态无记忆平稳连续信道等。后者是指P(y│x)为正态分布,这种信道常简称为高斯信道。
音频光端机就是发射端把传统的音频模拟信号转换成光信号,通过光纤传输到接收端,在接收端再转换成模拟信号的一种音频设备。 1、比特率:
16bits 20bits 24bits,比特率越高越能细致地反映声音的细微变化。
2、采样精度:
48K 96K(CD的采样精度为441KHz/s),专业的音频光端机一般采用48K采样,96K是未来的一个方向。
3、信噪比
即我们通常说的 动态范围,单位是DB,动态范围和比特率的关系是:比特率每增加1比特,动态范围就增加6dB。16比特时,动态范围是96dB。这可以满足一般的需求了,24比特可以做到144 dB的动态范围,是发烧级的。所以目前专业的光端机指标可以总结为:24比特 48K采样 90DB 。
音频光端机分为1~N路音频或者加上1路控制数据,还要注意音频中单声道/双声道(及立体声),单向/双向,平衡输出/非平衡输出的细节。 数字非压缩传输
●视频采用8位数字编码
●彩色图像信号
●高质量实时传输
●10 Hz -24 kHz 声音频宽
●完全兼容NTSC, PAL, SECAM制式图像
●可传输RS232, RS485, RS422标准数据
●可同时传输以太网信号
●指示灯能帮助对系统故障做出快速诊断
●在各种户外条件下的高可靠性
●支持网管功能
●安装简易,无需调节 1光跳线
主要起到连接作用,它将光端机和光纤连接起来。那么,从光跳线两端的连接器上来看,光跳线分为FC跳线、ST跳线、SC跳线;从光跳线的长度来看,它可分为3米跳线、5米跳线、10米跳线等。
常用光纤规格:单模:8/125μm,9/125μm,10/125μm 多模:50/125μm,欧洲标准 625/125μm,美国标准 工业,医疗和低速网络:100/140μm,200/230μm 塑料:98/1000μm,用于汽车控制
2.终端盒
终端盒又称熔接盒,主要是保护光跳线和光纤之间的熔接处,通过光纤熔接机将光纤与跳线熔接进终端盒内。通常情况下,在前端每个光发射机处分别需要一个终端盒,在中心控制室只需要一个终端盒。终端盒从它的容积上看,可以分为8口、12口和24口。
3.法兰盘
法兰盘也是一种连接器,通常光端机上有一个光纤接口,这就是法兰盘,也就是连接光跳线和光端机的一个连接器。从它的规格上来看,它可以分为FC、ST、SC三种。
4、光熔接机
它主要是通过电极,在瞬间放电的情况下,将光纤与光跳线熔接在一起,在熔接时,要注意光纤端面要切割整齐,并保持端面的干净。
5、OTDR光时域反射仪
这是一种检测仪器,它主要检测在光纤传输中,是否有光纤断裂的情况。
6、光功率计
从字面上看,它是一种测功率的仪器,但它测的不是电压功率,而是光纤传输中光的功率,以及光在传输过程的衰减大小。
工程的应用中,我们用到的音视频光端机不同于电话光端机的应用:
1)音视频光端机通常是音频信号与视频信号一起应用于安防系统中,用来传输监控的摄像头视频和监听头音频;而电话光端机称为PCM,属于传统的电信产品,比如通过光纤传输30路程控电话。
2)传统2M网如果要传输视频则需要配备音视频编解码器,这样音视频就可以通过SDH网传输
3)市场中,音视频光端机是按照路数来区别产品报价的,有1、2、4、8、16等路数,而电话光端机则是在同一块主板上叠加,例如8路的主板上6路电话和7路电话价格差不大,30路的板子上25路和30路价格差不大。
4)音视频光端机和电话光端机都可以叠加以太网、工控数据等,具体根据各个厂家的做法而异。
5)一芯的光纤可以传输最多128路无压缩视频,一芯的光纤最多可以传输480路电话(30/E1 6E1=480) 1、光端机供电及安装环境
一般发射机由于安装位置跟随前端视频采集设备,所以安装位置都比较分散,需要配独立的机壳给其供电。在安防监控供电方面通常有两种方式:中心集中供电和本地供电,由于采用光端机传输的现场,前后端距离都较远,所以较少使用集中供电方式。接收机一般都位于监控中心的机房内,不像发射机那么分散,在供电方式上如果跟前端的发射机一样采用机壳电源供电的话,会占用机房大量空间,显得杂乱无章,无法统一管理。因此中心接收机供电可以采用插卡式机箱供电,不要把插槽全插满,可以每隔几个插槽空开一个,有利于光端机散热。需要注意的是光端机的激光器组件和光电转换模块最忌瞬时脉冲电流的冲击,因此不宜频繁开关机。 前端发射机多安装在前端配电箱中,要注意做好配电箱的防尘防水,在配电箱塞和较满时为了利于光端机散热就要考虑带风扇的配电箱。监控中心的机房要保持环境整洁,经常注意清理,不要有结尘,最好是在机房装修好后再将设备装入机房,如遇机房装修改造,要及时清理干净。机房内一般会有很多设备集中安装在机柜中,设备发热量很大,在通风散热条件又差时,最好安装空调系统以保证光端机正常工作。 安装光端机时要做好现场的防护措施,防潮、防水、防尘,同时注意现场的实际 *** 作,必须配备合适的光纤使用,不能使用残缺故障的光纤,如果不匹配,则会严重影响光端机传输质量,涉及光缆熔接时,也要注意测量光缆的光衰减或损耗在有效值范围内。
2、光端机防雷
光端机特别是作为前端设备的发射机通常安装于室外的设备箱中,现场环境相当恶劣,防雷就显得异常重要,防雷措施的优劣直接决定了光端机发生故障的几率。雷电的破坏方式主要分为直击雷、感应雷和地电位反击三种形式,对光端机而言影响最严重的主要是地电位反击。
所谓地电位反击是当避雷针等接闪器将直击雷强大的雷电流经过引下线和接地体泄入大地时,在引下线,接地体以及与其相连的金属物体上会产生相当高的瞬间电压,这个高电压会对离他们很近但是又没有直接接触的金属物体、线缆等电子设备之间产生巨大的电位差,这个电位差引起的电击就是地电位反击。地电位反击是通过以下形式对光端机造成损坏的:当雷电流泄入大地时,接地网的地电位会在数微秒之内被抬高到数万或数十万伏。高度破坏性的雷电流将从各种设备的接地部分流向这些设备,或者通过击穿大地绝缘而流向其它附近设备,最终造成设备的破坏或损害(破坏示意图见图2),损坏的部分主要有:机壳电源的PCB板上电子元器件、视频接口处芯片及其相关电子元器件、音频及数据端口处芯片。
虽然雷电的破坏形式多种多样,但还是可以通过采取科学的防护措施来降低光端机故障发生几率。首先,保证接地装置效果良好是防雷措施的前提,因为所有感应电流最后都是要泄入大地的。一般而言,接地电阻越小泄流效果越好,通常将接地电阻控制在4欧姆以内为佳,可使用接地钳表对接地电阻进行测量。对于某些土壤电阻率高的地方,可以考虑在土壤中加入降阻剂,从而降低接地电阻。其次,前端设备要加装浪涌保护器,正常电压时,浪涌保护器呈高阻状态,只有很小的泄漏电流,功率损耗很小,当线路中出现过压时,浪涌保护器呈低阻状态,过电压以放电电流的形式通过浪涌保护器流入大地,过电压被抑制下来,浪涌电压过后,线路电压恢复正常时,浪涌保护器又呈高阻绝缘状态,因此浪涌保护器必须有良好的接地装置与之配合。前端摄像机的视频信号输出口和发射机的视频输入口处接浪涌保护器,若发射机连有其他一些数据线时,需要在控制信号线的起始端和结束端加装数据防雷器,并在摄像机和光端机的电源输入端也加上电源防雷器等防雷设备。装防雷器时务必使防雷器紧贴接入口,若防雷器距离视频口、数据口太远是发挥不了防雷效果的。
加好防雷设备后,剩下的便是接地网的设计问题。接地桩一定要打到位,保证光端机良好接地,一个好的低阻抗接地网设计能够保证系统中的防雷设备发挥良好效果且能有效均衡整个传输系统内各部位电压,防止地电位差对线路中设备的干扰,同时也可有效避免地电位反击对设备的损坏。
3、光端机的调试
做好以上几点后,就要开始正常的调试了,主要是对光纤和数据通道的调试。由于光端机数据的可选类型较多,根据现场的实际需求不同,现场使用的光端机数据类型也不尽相同,在调试时一定要参照相应的说明书,按照说明书上的数据拨码和接口定义来进行数据接线。
由于光端机现场安装的环境复杂,有些用户在调试不通的情况下通常首先怀疑产品有故障,其实光端机产品技术已非常成熟,产品出厂前都经过反复测试与拷机,所以产品本身问题可能性较小,因此,在现场有问题时首先需要考虑的是安装问题,可以从以下几个方面去排查:
·光纤本身没有经过测试,光路不通或不稳定或光衰减过大等;
·前端设备故障,如摄像机没有视频或没通电等;
·后端设备故障,如监视器无视频,键盘控制协议不对,本身不能控制等;
·连接线路故障,如视频头没的焊接好不通,控制线接错,或连接线交叉接错、接反等。
以上现象尤其是线路故障发生的概率最大,在遇到问题时需要仔细检查。排除故障时,可以采用排除法,一个设备一个设备排除,最后准确判断问题关键所在。在判断光端机是否有问题时建议用户将发射机与接收机放在一起近距离测试,如若还不通,则为光端机本身故障,就需要跟厂家联系调换了。为了减少问题,用户尽可能在安装前,近距离测试光端机,这样便能快速通过安装与调试,节省工期。
4、光端机日常保养
通常状况光端机的工作环境相当恶劣,使用时要注意保持光纤头的清洁。光端机对灰尘非常敏感,而由于光端机运输过程中或是客户使用一段时间后,都有可能在光纤口处出现灰尘或杂物造成堵塞,从而影响视频及数据的正常传输,此时可使用工业无水酒精和无尘纸对光纤头进行清洗,避免粘附灰尘。
光端机内部的光纤跳线与外部光纤是通过适配器连接的,通常适配器为陶瓷管芯,在插拔光纤头时要特别注意,切勿用力不当以防将陶瓷套管挤裂或是压碎,造成光端机无法正常传输信号。 光端机是光通信系统中的传输设备,主要是进行光电转换及传输功用。光端机一般成对使用,由发射端和接收端构成。发射端将用户端的模拟信号通过放大、A/D转换、复用等处理,最后通过电/光转换把电信号转换成可经光纤传输的光信号由光纤传输到接收端。在接收端则进行相反的处理,先经过光/电转换把接收的光信号还原为电信号,电信号解复用,再通过D/A及放大滤啵送给客户端。不同种类光端机原理都是这样的。常说的光端机指的是用于监控系统用来传输视频、数据、以太网、音频等综合信息的光端机。主要分模拟光端机和数字光端机。基于传输的介质的不同有单模光端机和多模光端机之分。
数字光端机是将所要传输的图像、语音以及数据信号进行数字化处理,再将这些数字信号进行复用处理,使多路低速的数字信号转换成一路高速信号,并将这一信号转换成光信号。在接收端将光信号还原成电信号,还原的高速信号分解出原来的多路低速信号,最后再将这些数据信号还原成图像、语音以及数据信号。模拟光端机就是将要传输的信号进行幅度或频率调制然后将调制好的电信号转化成光信号。在接收端将光信号还原成电信号,再把信号进行解调,还原出图像、语音或数据信号。
数字光端机传输信号质量高,没有模拟调频、调相、调幅光端机多路信号同传时的交调干扰严重、容易受环境影响、传输质量低劣、长期工作稳定性差的缺点,因此,数字光端机将逐渐取代模拟光端机。
光端机多用与监控系统中,当同轴电缆传输距离不够时候采用光缆传输可采用光端机光端机不仅可传输视频信号还可以传输音频信号即现场的视\音频一起传输到控制中心,最常见利用光端机的例子就是十字路口的监控一般这些摄象机离控制中心都几公里远用铜缆+放大器都无法达到距离的时候采用光端机用光缆传输。
目前在高速公路、交通、电子警察、监控、安防、工业自动化、电力、海关、水利、银行等领域,视频图像、音频、数据、以太网等光端机已开始普遍大量应用。 用户在选择音频光端机时一般从它的先关参数和实用性考虑,相关参数在光端机出厂说明书都有具体说明,再次我们从实用性方面讲述下音频光端机的选择。
1、外观大方,结构合理
音频光端机技术含量高,其外观应小巧精致,美观大方,整体结构必须尽量的符合工程安装要求。一般室内型数字视频光端机除采用19 寸机柜外,还应能兼顾工程中将光端机置于桌面或壁挂的需要。数字光端机 另外,音频光端机还必须具有良好的散热性能和电气接触性能。
2、接口丰富,布局合理
音频光端机除要求足够的视频接口外,还可能要求或者将来可能要求配备其他功能丰富的接口,如高保真音频接口、电话接口、异步数据接口、以太网接口和开关量接口等,这就要求选择的数字视频光端机必须具备系统升级能力,不至于因网络升级或系统功能改变而完全更换设备,从而保护用户的前期投资,电话光端机接口种类多,数量多,与这些接口相配套的可能还有一些模式设置拨码开关,所有这些元素构成的用户 *** 作界面应该布局合理,接口间留有相当的 *** 作空间,方便工程安装和维修,例如视频接口太过密集,实际应用中就会出现了为维修某一个视频接头,必须拔掉其他正常视频接头的尴尬局面。
3、 指示灯含义明确,方便工程开通和维护
为方便工程开通和工程维护,电话光端机应标示有含义明确的指示灯。除电源指示灯外,数字视频光端机的收发端机都必须具备视频有无指示灯,指示相应的视频通道有无视频信号输入或输出,工程人员和用户在工程开通阶段和工程维护阶段就可以根据视频指示灯的指示,判断开通和维护中的情况,定位故障点,尽快地解决可能发生的问题。 在选择音频光端机时,我们不仅要注意它的参数和实用性,还要注重它的的售后服务,如果所选品牌的售后服务不到位,光端机出现故障时维修检测就会相对的麻烦,会给工程带来极大的不变。
国外部分品牌(排名不分先后):
NTK、INFINOVA、ANV、Diview、BIC、CWY、STV、MRD、OSD、OPTILINKS、PELCOOPTELECOM、Meridian(子午线)、Siemens (西门子)、Alcatel(阿尔卡特)、雅图等。
国内部分品牌(排名不分先后)
光网视(ONV)、北京阳光耀华、北网通信、成都哈雷、安特视讯、成都安视、松拓网络、深圳科姆仕、成都安视、讯维、 广州银讯 、视桥光网 、 新创、 华龙、 奥普泰、 天翼讯通(WINGMAX) 、北京奥博光电子(AOBO)、北京华兴易诚、北京视得清、讯维、华诚、上海来威、北京誉华、
1 请确保手机4G或5G信号正常
如果手机信号异常,会影响到上网质量。
2 请确认是否使用了上网
如果手机状态栏有钥匙形状的图标。可能是您使用了上网导致无法上网或上网慢。建议您打开设置,在最上方搜索栏输入,点击跳转到设置界面,根据实际情况选择断开网络或关闭软件后重试。
3 请确认是否使用物联网卡/流量卡上网慢
由于签约信息的差异,部分物联网卡/流量卡会出现上网慢的情况,请更换普通的卡后重试。
4 请确认副卡是否为欠费卡或无效卡
当副卡是欠费卡或者无效卡时,副卡会频繁抢占主卡资源,导致主卡上网慢,您可以把副卡拔出或者关闭副卡:打开手机设置,在最上方搜索栏输入SIM 卡管理或双卡管理,点击进入设置界面,直接将副卡关闭。
5 个别应用或个别网站上网慢
第三方服务器异常导致,建议您更换同类型应用或网站尝试,或反馈给第三方客服。
6 请确认是否使用了磁吸保护壳、金属保护壳、磁吸支架或磁力吸盘
金属和磁性材质容易对信号造成干扰,导致手机信号变差,影响上网速度。建议您取下后尝试。
7 请您变动当前所处地点尝试
建议您对比周边使用相同运营商SIM卡的手机,如果均有此现象,可能是您所在的位置网络质量较差导致上网慢,换到其他地方后就可以恢复正常。
8 请确认流量是否超出了运营商卡套餐限额
部分运营商的无限流量套餐有流量上限,流量使用超过上限后,会降低上网速度,您可以联系运营商客服确认手机卡的套餐是否超过流量上限。
9 请重置APN尝试
方法 1:
a点击设置;
b在顶部搜索栏内输入“APN”,点击接入点名称 (APN)进入移动数据页面;
c点击接入点名称 (APN),进入APN页面;
d打开右上角的三个点按钮或四个点按钮;
e点击重置为默认设置。
方法 2:
如果您的手机是EMUI 100及以上的系统,或HarmonyOS 20及以上,您还可以按照以下步骤进行 *** 作:
a点击设置;
b点击移动网络,随后点击移动数据;
c在移动数据页面中点击接入点名称 (APN),进入APN页面;
d打开右上角的三个点按钮或四个点按钮;
e点击重置为默认设置。
温馨提醒:
如果您的手机是EMUI 8X 、EMUI 9X的系统,您可以按以下步骤进行 *** 作:
设置 > 无线和网络 > 移动网络 > 接入点名称(APN) > 打开右上角的三个点按钮 > 重置为默认设置。
10 请还原网络设置尝试
(1)进入设置 ,在搜索栏中搜索重置,点击还原网络设置。
(2)在还原网络设置页面,点击还原网络设置(双卡手机需选择要还原的电话卡),根据屏幕提示输入锁屏密码。
(3)点击还原网络设置,成功后屏幕下方会提示网络设置已还原。
温馨提醒:还原网络设置将还原所有的网络设置,包括WLAN、移动数据网络、蓝牙的设置,不会删除其他数据或修改其它设置。
如果以上排查无法解决问题,请提前备份好数据(微信/QQ等应用需单独备份),并携带相关购机凭证,到附近的华为客户服务中心检测。
4G是第四代移动通信技术的简称。其中TD-LTE是高带宽、高质量的新一代无线宽带通信标准之一,具有高速度、低时延、国际化的特点。
和3G相比, LTE的特点可用“多”“快”“好”“省”来概括。
业务种类“多”:LTE不仅能够支持2G/3G网络下的话音、短信、彩信;同时还能够支持高清视频会议、实时视频监控、视频调度等高带宽实时性业务。
上网速度“快”:LTE峰值速率能达到百兆以上,是目前3G速度的5倍多。
用户感知“好”:LTE 网络时延比3G网络一半还要低,对于在线游戏、视频实时传送等这些实时性要求高的业务感知特别好。
频谱资源“省”:和3G相比,在组网频宽上,LTE可以用14、3、5、10、15、20Mhz六种频宽进行组网,频谱利用率要高于3G,能更好的利用目前非常宝贵的频率资源。
“噪声”的简单定义就是:“在处理过程中设备自行产生的信号”,这些信号与输入信号无关。因此与音质高低音效果是没有直接联系的对于MP3播放器来说,信噪比都是一个比较重要的参数,它指音源产生最大不失真声音信号强度与同时发出噪音强度之间的比率称为信号噪声比,简称信噪比(Signal/Noise),通常以S/N表示,单位为分贝(dB)。对于播放器来说,该值当然越大越好。不过个人觉得,信噪比稍低一点人耳是很难听出差别的目前MP3播放器的信噪比有60dB、65dB、85dB、90dB、95dB等等,我们在选择MP3的时候,一般都选择60dB以上的,但即使这一参数达到了要求,也不一定表示机子好,毕竟它只是MP3性能参数中要考虑的参数之一。
满量程的意思。
full scale range。
分辨率—A/D转换器所能分辨的模拟输入信号的最小变化量。显示分辨率(屏幕分辨率)是屏幕图像的精密度,是指显示器所能显示的像素有多少。由于屏幕上的点、线和面都是由像素组成的,显示器可显示的像素越多,画面就越精细。
设A/D转换器输出数字信号的比特数为n,满量程电压为FSR,则分辨率定义为:
分辨率 =FSR/2n
分辨率也就是A/D转换器的最小量化单位——量阶。相对分辨率定义为:相对分辨率 =分辨率/FSR×100%=n×100%
扩展资料:
描述分辨率的单位有:dpi(点每英寸)、lpi(线每英寸)、ppi(像素每英寸)和PPD(PPPixels Per Degree 角分辨率,像素每度)。
但只有lpi是描述光学分辨率的尺度的。虽然dpi和ppi也属于分辨率范畴内的单位,但是他们的含义与lpi不同。而且lpi与dpi无法换算,只能凭经验估算。PPD 是头戴影院、VR眼镜、VR一体机类产品的参数,可以衡量用户使用该类型产品时的对显示画面的清晰感受 。
另外,ppi和dpi经常都会出现混用现象。但是他们所用的领域也存在区别。从技术角度说,“像素”只存在于电脑显示领域,而“点”只出现于打印或印刷领域。
参考资料来源:百度百科—分辨率
经国网多年的合作开发,宽带(中频)电力线载波通信技术规模化应用的时机终于来临!中国现代电网量测技术平台
张春晖
2018年6月21日
1)IEEE19011国际标准
网上报道:中国电科院发布”IEEE19011国际标准”
— 2018年5月22日,由中国电科院、国网信通产业集团等企业联合制订的IEEE19011《适用于智能电网应用的中频(低于12MHz)电力线载波通信技术标准》正式发布实施。
—该标准是以国网Q/GDW 11612 《低压电力线宽带载波通信互联互通技术规范》为基础,大量使用创新技术,提出以OFDM、双二元Turbo编码、时频分集拷贝为核心的物理层通信技术规范,以及以信道时序优化、树形组网、多台区网络协调为代表的数据链路层技术规范。
该标准的发布,填补了中频电力线载波通信应用在智能电网领域国际标准的空白,提升我国在物联网领域的国际影响力和话语权。
— IEEE19011标准通过构建高带宽、高可靠、低时延、低成本的电力线通信网络,支持远程自动抄表、配电台区监测等多种应用场景,实现以电力线载波通信为基础的物联网技术在能源互联网中的有效应用。
该标准将促进电力线载波通信芯片、通信模组、智能终端全产业的发展。
2)国网,宽带(中频)电力线载波通信技术合作开发进程
国网为何重视宽带(中频)电力线载波通信技术的开发
国网的用电信息采集系统建设,从2010年开始,2017年基本完成,用电信息采集43亿户,覆盖率99%,用于用电信息采集设备及用户工程投资巨额,约510亿元。其中,70%的本地通信方式采用窄带(低速)电力线载波通信技术。经过多年的运行,窄带(低速)载波通信方式的通信速率慢,自动采集成功率低,有的居民小区的单相电表,24h都抄不到表,成为本地通信的技术瓶颈,一时难以解决。由此,国网利用配电网户户通电电力线的资源优势,将宽带(中频)电力线载波通信实用化应用,列为通信新技术重点开发课题。
根据中国电科院专家提出的配电、用电管理通信流量的预测:宽带(中频)载波通信速率需满足下列用电信息采集的要求:
· AMR/AMI的通信速率:12/20 k bps
·负荷管理10 k bps
·扩大到配电业务,配电自动化、报警管理、DG均为10 k bps;
·配电视频监控要求1 M bps;配电新提出的其它视频通信要求。
— 2012年7月,国网”新一代智能电力线载波通信关键技术研究”项目启动。该智能PLC是具有跨频带(150 k Hz---10 M Hz)、频率自认知、自适应、自组网、协调通信功能的载波通信技术。
该项目由中国电科院牵头,国网通信公司、南瑞集团参与。
2014年11月,该项目通过验收。其智能PLC系统在绍兴、长春电网的中、低压电力线路上开展了实际测试与验证。
— 2014年7月,在本文作者组织召开的《进口高端电能全性能研究》课题(长沙:威胜)技术交流会议上,华为海思公司介绍了自主设计的Hi3911型宽带(中频)载波芯片,频段:2---12MHz,通信速率200k---14M bps。
由此估计:华为海思公司的中频载波芯片推出时间还要更喜欢早一点。
— 2014年10月,国网召开低压电力线宽带载波通信技术标准研讨会,提出宽带载波通信单元技术规范、检验规范、通信协议(初稿)。
— 2014年11月,在本文作者组织召开的电力线载波通信新标准、新产品(青岛:东软)技术交流会议上,重点交流国际/国内宽带与OFDM窄带载波通信新技术。
— 2015年,据了解,华为海思公司将(中频载波芯片)物理层及通信协议在国网宽带载波通信技术企业标准中进行共享。各宽带载波芯片厂家在芯片物理层统一的前提下,自主开发宽带载波产品。
— 2016年,在本文作者组织召开的当前电表行业发展热点问题(重庆华立)讨论会上,重庆市电科院介绍了在大型公变台区(约700户)进行现场宽带载波通信互联互通测试结果。
— 2017年,江苏省电科院完成宽带载波模块互联互通测试,验证宽带载波模块在架空线路、预埋电缆、城市及农村等现场复杂运行工况下的互联互通情况。
— 2017年,重庆邮电大学、重庆市电科院《基于System Generator的宽带电力线脉冲噪声实现方法》提出:实现基于FPGA的Class A 噪声发生器,将有利于宽带PLC产品抗噪声性能评估测试。
— 2017年,国网发布:《低压电力线宽带载波通信互联互通技术规范(Q/GDW 11612---2016)》
据了解,该标准分为6个部分:
第1部分:总则
第2部分:技术要求
第3部分:检验方法
第4部分:物理层及通信协议
第5部分:链路层及通信协议
第6部分:应用层技术要求
— 2018年5月,中国电科院发布:《适用于智能电网应用的中频(低于12MHz)电力线载波通信技术标准(IEEE19011)》
3)青岛东软公司:推出符合IEEE19011国际标准的宽带(中频)载波通信芯片,并获得国际通行证
网上报道:”IEEE发布载波新标准,东软载波芯片获国际通行证”
—东软推出新的载波(中频)芯片的型号:
Eastsoft SSC1667。现在,已有至少100万颗芯片在网使用,并不断深化应用,拥有超级电容停电上报台区自动识别等功能。
—东软SSC1667型宽带(中频)载波通信芯片的设计性能
· 40nm Flash工艺,SOC芯片集成度高,Flash内置,外围成本低
· OFDM正交频分复用调制技术
·通信速率6MHz
·通信频带07MHz---12MHz
·功耗更低:静态功耗07W/动态1W
·支持新的/老的国网宽带互联互通标准,支持频段切换功能
· 4频段、6种模式,具体支持的标准和频段:(略)。
4)点评
—我国在电力线载波通信技术国际标准制订方面实现零的突破
在国际上,由中国电科院等单位联合制订的《适用于智能电网应用的中频(低于12MHz)电力线载波通信技术标准(IEEE19011)》,填补了中频电力线载波通信应用在智能电网领域国际标准的空白。
经查证:
·国际上,宽带(高频:2MHz及以上)电力线载波通信标准的制订:先期研究的重点领域是智能家居网络,后来面向家庭数字多媒体、视频、音频、数据、能源智能化控制等通信的需求。这方面,Home Plug(家居即插)联盟提出的宽带电力线载波通信技术标准较早、面广,其中的部分宽带载波通信标准,已经转换成IEEE国际标准:
从2001年的Home Plug 10标准,数据速率最高达14M bps,主要定位于家庭网络应用,也有用于低压宽带接入;2004年的Home Plug 10 ---Turbo标准,提升数据速率,最高数据速率85M bps,;2005年的Home Plug AV标准,频段:18---25MHz,最高数据速率200M bps,用于传输视频、音频、数据;2006年的Home Plug Green PHY标准,是为家庭和建筑物中嵌入式智慧能源和自动化应用而设计,它与IEEE1901/Home Plug AV标准的电力线网络协议互 *** 作,并具有将数据速率由200M bps降低为低速率(注:10M bps)、低功耗(注:功耗降低80%)、低成本和宽广家庭覆盖能力等特性。
·国际上的窄带(低频:500kHz及以下)OFDM电力线载波通信标准的制订:
2009年,MAXIM公司发布G3标准
2011年,PRIME联盟成立,发布G3---PLC标准;ITU(国际电信联盟)的G9955兼容G3---PLC物理层;IEEE P 19012兼容G3---PLC物理层
2012年,G3---PLC更新,由ITUG9903发布;10月发布更新版本
2013年,ITUG9903发布更新版本;IEEE19012投票通过成为正式版本
2014年,ITU G9903发布再更新版本。
这些窄带通信标准,使用OFDM的低频窄带载波通信技术,以较高的传输速率及频段具有d性等优势而快速兴起,主要用于自动抄表管理、智能家居网络,频段:10k---500k Hz ,数据传输速率20k---150k bps。
·以上情况说明:
a1 国际上,长期以来,适用于智能电网用电信息采集的中频(150k---12MHz)电力线载波通信方式,一直未推出国际标准。
a2 国内,自2009年国网提出开展电力用户用电信息采集系统建设之后,对适用于智能电网应用的中频(低于12MHz)电力线载波通信技术进行多方位的合作研究。
IEEE19011国际标准的提出,是基于国内通过几年的宽带(中频)电力线载波通信的中频载波芯片开发、现场宽带载波通信干扰性能测试、宽带载波通信互联互联讨论、宽带载波通信标准制订等多方位的合作创新、系统研究成果。
—从应用的视角,中频(低于12MHz)电力线载波通信有哪些技术难点与争议
国际上,迟迟未能推出适用于智能电网应用的中频(低于12MHz)电力线载波通信国际标准,估计主要有应用技术难点与争议。
经综合2014年青岛电力线载波通信新标准/新产品技术交流会议、2016年重庆电表行业发展热点问题讨论会议的情况,本文作者提出中频电力线载波通信应用技术开发的3个难点与争议问题:
其一,中频电力线载波通信双向高频干扰。网上报道:2013年6月,ITU---R(国际电信联盟无线电通信部门)发布《电力线通信系统对工作在80MHz以下的无线电通信系统的影响(ITU---R SM2158---3报告)》,对电力线载波通信方式提出质疑。
注:SM系列,频谱管理。
(说明:目前尚未看到国内有关部门对ITU--R SM2158---3报告的评论)
其二,配网预埋电缆、无功补偿装置对中频电力线载波通信影响的严重程度与改进措施的合理性评估。经现场实测,有时将集中器布置在
无功补偿装置之前(电源侧),自动抄表成功率极低甚至抄不到表。
其三,宽带载波通信互联互通问题。据了解,在国内,各宽带载波芯片厂家的中频载波芯片物理层及通信协议已经统一,网络的路径选择和中继功能还是各不相同,在现场实际的组网和抄表时,互联互通的效果并不理想。
针对以上难点与争议问题,据了解,国网计量部门统一组织了现场测试分析,提出一些改进措施。但是从期刊、网上很少见到这方面的报道。
这次,IEEE19011国际标准提出中频(低于12MHz)电力线载波通信网络的物理层、数据链路层技术规范,其大量使用的创新技术,提高了通信信号(位、帧)的收发质量和数据传输性能。据了解,随后国内有意向继续合作开发中频载波通信网络的网络层及其它层级的技术规范,期望在组网技术、路由算法、数据传输、互联互通等深层次通信技术进行开发统一,实现大幅度提升用电信息采集速率、自动采集成功率,化解中频载波通信质量引发的应用难题。
同时,本文作者提出尚需合作研究制订另一个重要标准:中频电力线载波通信信道监测、管理技术规范。该技术规范制订的建议,在本文第5)部分叙述。
中频电力线载波通信的高质量,只有从中频载波通信网络技术性能开发与信道监测管理两个方面措施相结合,才能较好地化解中频电力线载波通信应用的3个难题。
—载波模块价位。与窄带(低速)载波模块相比,目前的中频载波模块价位还高,将影响其大规模推广应用。但是,可以预期,随着中频载波模块应用量不断增长,其价位可以降到合理水准。
—拓展载波模块更新资金渠道
2010---2017年,国网用电信息采集设备的招标量:集中器约464万台,采集器约5115万台。如集中器、采集器的窄带载波模块70%,更新为中频载波模块,按目前的中频载波模块价位估计,集中器的新模块投资65亿元,采集器的新模块投资25亿元,单相载波表的新模块(按国网供电服务区457亿户的15%估算)投资34亿元。以上3项合计,国网采用中频载波模块需投资655亿元。按传统电子式电表8年轮换周期,每年需载波模块更新资金82亿元。
2017年底,国网用电信息采集系统建设基本完成。现在要申请进行用电信息采集载波模块的更新资金,化解本地通信技术瓶颈,这条资金渠道是否可以走通,还难以预料。国网,当前投资的重点还是特高压工程与推进配电网智能化建设。
目前,居民用电低压电网的主动故障报警与抢修,电能质量监测与控制,配电网与用户之间实用互动功能开发,是国网推进智能配电网建设的短板。由此,通过各级电网配电管理部门提出要求:拓展用电信息采集系统配电用新功能,申请中频载波模块购置资金,则是另一条合理渠道。
5)国内,中频电力线载波通信信道监测、管理技术规范制订的建议
国际上,EN50065:《3kHz至1485kHz频段的低压电气装置上的信号传输》:
第1部分: 一般要求、频带和电磁骚扰
第2---1部分: 95kHz至1485kHz频段用于住宅、商业和轻工业环境下工作的交流电源通信设备与系统的抗扰度要求
第2---2部分: 95kHz至1485kHz频段用于工业环境下工作的交流电源通信设备与系统的抗扰度要求
第2---3部分: 3kHz至95kHz频段用于电力提供商和分销商工作的交流电源通信设备与系统的抗扰度要求
第4---1部分: 低压去藕滤波器 --- 通用规范
第4---2部分: 低压去藕滤波器 --- 安全要求
第4---3部分: 低压去藕滤波器 --- 输入滤波器
第4---4部分: 低压去藕滤波器 --- 阻抗滤波器
第4---5部分: 低压去藕滤波器 --- 分段滤波器
第4---6部分:低压去藕滤波器 --- 相位藕合器
第7部分: 设备阻抗
国内:中频电力线载波通信信道监测、管理技术规范的制订,可参考EN60065系列标准,结合中频电力线载波通信的特征,需要涵盖中频频带和双向电磁骚扰限值;中频载波信号衰减及信噪比测量,集中器选址勘测;双向高频干扰监测;
各类应用环境的抗传导、幅射干扰要求;预埋电缆、无功补偿设备对中频载波通信影响测试及处理方案;同频干扰测试及改进方法;各类去藕滤波器;设备阻抗;双向通信与网关技术规范;其它要求。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)