1
一是智能设备,包括自动识别设备、人机交互系统、工业机器人、数控机床等具体设备。
2
二是智能工厂,包括智能设计、智能生产、智能管理和集成优化等具体内容。
3
最后是智能服务,包括大规模定制、远程运维、预测与维护等具体服务模式。
工业40是由德国提出的,在2020年建成智慧工业模式,利用人工智能等技术建造智慧化工厂。互联网+指的是将互联网应用于各种产业中,利用互联网进行各种商业活动。通俗的理解就是要用到互联网,例如互联网金融,便是利用互联网这种基础,开展各种金融活动。云计算是高性能计算的一种,可以说是高性能计算发展的最新最高境界,综合了其他各种高性能计算模式,为大数据的发展提供了有力支持。
大数据,通俗的理解便是具有5v特性的数据。但是有一点需要强调,大数据不仅仅是指数据量大,而且更要强调数据的全面性,也就是说对某一类问题尽可能全面的数据。对这种全面的数据进行分析,更能得出可靠结论。
更多有关人工智能的资讯、深度报道、采访欢迎在线咨询
作为一位物联网小白,是时候分享自己对物联网这个庞然大物一些简单的解析了。众所周知,物联网的范围很广很广。在人们都意识生活离不开互联网的时候,你会发现,其实物联网也无处不在。但是物联网又没有像互联网一样应用的很明显,能够通过音视频表现出来。物联网从2016、2017年的LoRa、NB-Iot等技术站在风口上,到2018年渐渐进入一个平稳期,很多人不确定其方向到底在哪里。
近两年一直从事物联网相关的硬件产品开发,对物联网相关知识有了浅陋的了解,对物联网方向也简单认识。简答发表个人见解。
智能家居
提到智能家居,现在我们首先想到的就是AI音箱,它是智能家居的入口,它融合了AI、物联网、大数据等技术一体,实现了人与物、物与物的相连。此类产品有亚马逊的Echo、小米的小爱、京东的叮咚、阿里的天猫精灵等。已经深入到人们的生活中。与我们的智能家居(家用电器等)相接、控制,提供人们的生活质(bi)量(ge)。未来,智能家居行业将会围绕着AI音箱等作更广的发展。如扩展到智能穿戴设备、智能医疗等方面。
畜牧业、农业物联网应用
我国是一个农业大国,也是一个畜牧业大国。物联网在农业中的应用包括植物生长环境的数据采集、农业物流跟踪、食品安全跟踪、农作物生长控制等。目前的市场来看,物联网在农业方面的应用主要还是应用于农场、果蔬基地等,其他,如物流市场、食品安全市场等都还没有很好的应用。这个和现有技术、成本以及需求等相关
畜牧业主要包括牛、羊、猪、鸡鸭鹅等。物联网在畜牧业中应用案例比较多。例如,网易猪、京东的跑步鸡、牛耳标、羊耳标等。物联网在畜牧业中应用主要是动物数据采集(健康、生长周期等)、实时定位、动物溯源(食品安全)等。现在虽有大量案例,但是技术的成熟型以及产品的必要性一直制约其发展。(只针对畜牧业本身,不涉及对应的物联网+畜牧业+金融贷款的组合产品,因为涉及到畜牧业+金融,现在就可以考虑加入区块链)
工业物联网
工业物联网的市场与应用是我目前认为市场行情最好的,也是目前物联网效果最能体现的应用场景。工厂设备改造、无线监控、设备状态检测、工业园区人员监控等需求非常多。工业物联网的应用主要是现代企业需要提高效率、降低人力成本以及维护成本,而现在的物联网解决方案恰好帮助他们解决了。其次,工业应用不像商用对产品性能以及外观等最求很高,其对使用时间,寿命稳定性等要求比较高。这些恰恰是符合物联网终端设备的要求。还有就是现在的窄带物联网技术满足长距离传输需求,符合工业场所的需求。需求和技术都能满足,所以工业物联网的前景非常明朗。
智慧城市
智慧城市这个概念比较大,智慧城市的目的是方便人们生活,智慧城市的每个部分都离不开物联网,包括安防监控、环保、停车等。智慧城市的发展在一定程度上会方便人们的生活,提高生活质量。但是,从现在已经部署的智慧城市的效果来看,并不明显。个人认为其主要原因是人们对物联网的概念还不深入,一直停留在过去的生活方式中,并且生活中的一些微小的变化并不会立刻显示出来,不会像移动互联网那样表现的特别明显。我们现在要做的就是适应时代的变化,让科技进入生活,改变生活。
物联网的应用远不止这么点,它无处不在,让科技进入我们的生活,让物联网提高我们的生活质量,这个是我们作为物联网产品人的职责。让产品进入生活,改变生活,改变物与物,万物互联。主要用于判断与逻辑分析物联网中所采集到的传感器数据,然后为决策提供依据。
物联网技术的人工智能化也在工业领域发挥着重要作用。以往很多问题我们都依赖于人工技术解决,存在滞后性,假设一个机器出现问题导致整个工厂停工一天,所带来的损失有些可高达数十万。部署物联网之后,器自动化企业通过自动装置自身发送的信息就能及时了解问题,预测成本高昂的故障停机,然后执行远程故障排除,节约技术人员工时和成本。AIoT(人工智能物联网)未来发展前景十分广阔。它将使用AI技术实现对设备、数据和应用的连接,从而为企业带来新的发展机遇。AIoT可以帮助企业实现效率的大幅度提升,同时也可以帮助企业减少成本开销。此外,AIoT还能够帮助企业针对不断变化的需要快速作出决定和行动。
数字化
就目前来看,国内工业物联网处于早期阶段,不论是网络及硬件设备都尚未成熟,基础设施建设和数据采集这一步还没有全部完成。
工厂首先需要为生产设备装上传感器和控制装置,打通生产设备、生产管理、制造执行及规划系统,更实时透明地掌控生产进度。
自动化
除了汽车制造业,中国大量的工厂自动化程度仍然偏低。2015年,根据经济学人发布的统计,中国虽然每年采购全球最多的机器人,但整个国家平均每万工人只配备了50个机器人。
而在自动化程度相对发达的德国和日本这个数字是约300个,在韩国甚至是500个之多。如果要继续提高生产效率,那么自动化生产系统一定会在工厂普及。
智能化
历史上,“自动化”代表着机器可以执行某个具体独立的任务,例如根据定义好的规则开启和关闭泵。
自动化是取代人做重复性的劳动,而智能化是做人做不了的事情。智能工厂的定义是一个灵活的协同系统,自主运行整个生产流程,在全局范围内自我优化,实时地适应新的环境。它代表着一个持续的自适应的过程,而不是过去“一劳永逸”的升级改造。
人工智能在制造业的主要应用
1、大数据分析 - 设备预测性维护
在传统工厂里,生产设备依然不能联网,只有在设备出现故障后再去维修,或者采取定期维护的方式而不考虑设备实际的运行情况。
一旦出现计划外的宕机就需要临时性地采购零件,花高额费用做紧急检修,以便尽快恢复正常的生产。就算没有宕机,当人发现机器故障时,它可能已经制造了不合格的产品,给工厂带来经济损失。
美国的AI工业预测平台Uptake,通过在工厂的设备里置入传感器,可以采集前端设备的各项运营数据,结合大数据分析以及机器学习技术为工业客户提供设备的预测性诊断和能效优化等管理建议。工厂可以实时监测运行状态,对比历史数据,预判潜在的设备故障,有效规避正常生产的中断。
如果以后将设备预测性维护的数据整合到ERP系统中,企业就可以实现生产流程的最优化,通过动态调整生产计划,将设备故障带来的经济损失降到最低。
对不同数据源,生产设备以及管理系统进行集成和分析将成为未来制造企业进行决策的标准配置。
2、自动质量控制 - 机器视觉检测
在深度神经网络发展起来之前,机器视觉已经应用在工业自动化系统中了,如拾取放置、对象跟踪、计量、缺陷检测等。其中,将近80%的工业视觉系统集中在缺陷检测。
人眼也可以发现产品的异常,即使这种异
人工智能类似软件,需要物联网作为载体,物联网类似个硬件,是需要人工智能来驱动的。人工智能需要落地的应用作为载体,物联网就是一个最重要的载体。
人工智能为物联网提供强有力的数据扩展
物联网可以说成是互联设备间数据的收集及共享,而人工智能将是将数据提取出来后做出分析和总结,促使互联设备间更好的携同工作。
人工智能让物联网更加智能化
在物联网应用中,人工智能技术在某种程度上可以帮助互联设备应对突况。当设备检测到异常情况时,人工智能技术会为它做出如何采取措施的进一步选择,这样可以大大提高了处理突发事件的准确度。
人工智能有助于物联网提高运营效率
人工智能通过分析、总结数据信息,从而解读企业服务生产的发展趋势并对未来事件作出预测。例如,利用人工智能监测工厂设备零件的使用情况,从数据分析中发现可能出现问题的几率,并做出预警提醒,这样一来,会从很大程度上减少故障影响,提高运营效率。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)