2006至2020年,物联网应用从闭环、碎片化走向开放、规模化,智慧城市、工业物联网、车联网等率先突破。中国物联网行业规模不断提升,行业规模保持高速增长,江苏、浙江、广东省行业规模均超千亿元。
截至到2019年,我国物联网市场规模已发展到15万亿元。未来巨大的市场需求将为物联网带来难得的发展机遇和广阔的发展空间。
近年来,我国政府出台各类政策大力发展物联网行业,不少地方政府也出台物联网专项规划、行动方案和发展意见,从土地使用、基础设施配套、税收优惠、核心技术和应用领域等多个方面为物联网产业的发展提供政策支持。在工业自动控制、环境保护、医疗卫生、公共安全等领域开展了一系列应用试点和示范,并取得了初步进展。
目前我国物联网行业规模已达万亿元。中国物联网行业规模超预期增长,网络建设和应用推广成效突出。在网络强国、新基建等国家战略的推动下,中国加快推动IPv6、NB-IoT、5G等网络建设,消费物联网和产业物联网逐步开始规模化应用,5G、车联网等领域发展取得突破。
政策推动我国物联网高速发展
自2013年《物联网发展专项行动计划》印发以来,国家鼓励应用物联网技术来促进生产生活和社会管理方式向智能化、精细化、网络化方向转变,对于提高国民经济和社会生活信息化水平,提升社会管理和公共服务水平,带动相关学科发展和技术创新能力增强,推动产业结构调整和发展方式转变具有重要意义。
以数字化、网络化、智能化为本质特征的第四次工业革命正在兴起。物联网作为新一代信息技术与制造业深度融合的产物,通过对人、机、物的全面互联,构建起全要素、全产业链、全价值链全面连接的新型生产制造和服务体系,是数字化转型的实现途径,是实现新旧动能转换的关键力量。
我国物联网行业呈高速增长状态 未来将有更广阔的空间
自2013年以来我国物联网行业规模保持高速增长,增速一直维持在15%以上,江苏、浙江、广东省行业规模均超千亿元。中国通信工业协会的数据表明,随着物联网信息处理和应用服务等产业的发展,中国物联网行业规模已经从2013年的4896亿元增长至2019年的15万亿元。
虽然我国物联网发展显著,但我国物联网行业仍处于成长期的早中期阶段。目前中国物联网及相关企业超过3万家,其中中小企业占比超过85%,创新活力突出,对产业发展推动作用巨大。
物联网作为中国新一代信息技术自主创新突破的重点方向,蕴含着巨大的创新空间,在芯片、传感器、近距离传输、海量数据处理以及综合集成、应用等领域,创新活动日趋活跃,创新要素不断积聚。
物联网在各行各业的应用不断深化,将催生大量的新技术、新产品、新应用、新模式。未来巨大的市场需求将为物联网带来难得的发展机遇和广阔的发展空间。
在政策、经济、社会、技术等因素的驱动下,2020年GSMA移动经济发展报告预测,2019-2025年复合增长率为9%左右,2020年中国物联网行业规模目标16亿元,按照目前物联网行业的发展态势,十三五规划的目标有望超预期完成;预计到2025年,中国物联网行业规模将超过27万亿元。
未来物联网行业将向着多元方向发展
标准化是物联网发展面临的最大挑战之一,它是希望在早期主导市场的行业领导者之间的一场斗争。目前我国物联网行业百家争鸣,还未有一个统一的标准出现。因此在未来可能通过不断竞争将会出现限数量的供应商主导市场,类似于现在使用的Windows、Mac和Linux *** 作系统。
合规化同样是当下物联网面临的问题之一,特别是数据隐私问题。目前数据隐私已成为网络社会的一个关键词,各种用户数据泄露或被滥用的事件频发,特别是Facebook的丑闻引发了全球担忧。
因此在未来,我国各种立法和监管机构将提出更加严格的用户数据保护规定,,用户的敏感数据可能会随着时间的推移而受到更严格的监管。
安全化是指预防物联网软件遭受网络黑客攻击,在未来,以安全为重点的物联网设施将受到更多的关注,特别是某些特定的基础行业,如医疗健康、安全安防、金融等领域。
多重技术推动物联网技术创新
从技术创新趋势来看,物联网行业发展的内生动力正在不断增强。连接技术不断突破,NB-Iot、eMTC、Lora等低功耗广域网全球商用化进程不断加速;物联网平台迅速增长,服务支撑能力迅速提升;
区块链、边缘计算、人工智能等新技术题材不断注入物联网,为物联网带来新的创新活力。受技术和产业成熟度的综合驱动,物联网呈现“边缘的智能化、连接的泛在化、服务的平台化、数据的延伸化”等特点。
上数据来源于前瞻产业研究院《中国物联网行业应用领域市场需求与投资预测分析报告》。
物联网技术虽然发展迅速,但仍存在以下不足之处:1 安全问题:物联网设备和系统的安全问题一直是一个热点和难点,缺乏有效的安全保护措施容易导致设备被攻击、信息泄露等问题。
2 标准化问题:由于物联网涉及到多个领域和技术,标准化工作并不完善,导致不同厂商和设备之间的兼容性和互联互通存在问题。
3 能耗问题:由于物联网设备需要不断收集和传输数据,因此能源消耗较大,需要更加智能化和节能的设计。
4 隐私问题:物联网设备收集的数据可能包含用户的隐私信息,如何保护用户的隐私成为一个重要的问题。
5 数据处理问题:物联网设备所产生的数据量庞大,如何高效地处理和分析数据,提取有用的信息,是一个需要解决的问题。
6 成本问题:物联网设备和系统的成本较高,对于一些中小企业和个人用户来说可能承受不起。
因此,未来需要在这些方面加强研究和改进,提高物联网技术的安全性、标准化、能源效率、隐私保护、数据处理和成本效益等方面的表现,以推动物联网技术的可持续发展。 1)安全隐私
如射频识别技术被用于物联网系统时,RFID标签被嵌入任何物品中,比如人们的日常生活用品中,而用品的拥有者不一定能觉察,从而导致用品的拥有者不受控制地被扫描、定位和追踪,这不仅涉及到技术问题,而且还将涉及到法律问题。
2)智能感知节点的自身安全问题
即物联网机器/感知节点的本地安全问题。由于物联网的应用可以取代人来完成一些复杂、危险和机械的工作,所以物联网机器/感知节点多数部署在无人监控的场景中。那么攻击者就可以轻易地接触到这些设备,从而对它们造成破坏,甚至通过本地 *** 作更换机器的软硬件。
3)假冒攻击
由于智能传感终端、RFID电子标签相对于传统TCP/IP网络而言是“裸露”在攻击者的眼皮底下的,再加上传输平台是在一定范围内“暴露”在空中的,“窜扰”在传感网络领域显得非常频繁、并且容易。所以,传感器网络中的假冒攻击是一种主动攻击形式,它极大地威胁着传感器节点间的协同工作。
4)数据驱动攻击
数据驱动攻击是通过向某个程序或应用发送数据,以产生非预期结果的攻击,通常为攻击者提供访问目标系统的权限。数据驱动攻击分为缓冲区溢出攻击、格式化字符串攻击、输入验证攻击、同步漏洞攻击、信任漏洞攻击等。通常向传感网络中的汇聚节点实施缓冲区溢出攻击是非常容易的。
5)恶意代码攻击
恶意程序在无线网络环境和传感网络环境中有无穷多的入口。一旦入侵成功,之后通过网络传播就变得非常容易。它的传播性、隐蔽性、破坏性等相比TCP/IP网络而言更加难以防范,如类似于蠕虫这样的恶意代码,本身又不需要寄生文件,在这样的环境中检测和清除这样的恶意代码将很困难。
6)拒绝服务
这种攻击方式多数会发生在感知层安全与核心网络的衔接之处。由于物联网中节点数量庞大,且以集群方式存在,因此在数据传播时,大量节点的数据传输需求会导致网络拥塞,产生拒绝服务攻击。
7)物联网的业务安全
由于物联网节点无人值守,并且有可能是动态的,所以如何对物联网设备进行远程签约信息和业务信息配置就成了难题。另外,现有通信网络的安全架构都是从人与人之间的通信需求出发的,不一定适合以机器与机器之间的通信为需求的物联网络。使用现有的网络安全机制会割裂物联网机器间的逻辑关系。
8)传输层和应用层的安全隐患
在物联网络的传输层和应用层将面临现有TCP/IP网络的所有安全问题,同时还因为物联网在感知层所采集的数据格式多样,来自各种各样感知节点的数据是海量的、并且是多源异构数据,带来的网络安全问题将更加复杂“大数据时代,在充分挖掘和发挥大数据价值同时,解决好数据安全与个人信息保护等问题刻不容缓。”中国互联网协会副秘书长石现升在贵阳参会时指出。
员工监守自盗数亿条用户信息
今年初,公安部破获了一起特大窃取贩卖公民个人信息案。
被窃取的用户信息主要涉及交通、物流、医疗、社交和银行等领域数亿条,随后这些用户个人信息被通过各种方式在网络黑市进行贩卖。警方发现,幕后主要犯罪嫌疑人是发生信息泄漏的这家公司员工。
业内数据安全专家评价称,这起案件泄露数亿条公民个人信息,其中主要问题,就在于内部数据安全管理缺陷。
国外情况也不容乐观。2016年9月22日,全球互联网巨头雅虎证实,在2014年至少有5亿用户的账户信息被人窃取。窃取的内容涉及用户姓名、电子邮箱、电话号码、出生日期和部分登陆密码。
企业数据信息泄露后,很容易被不法分子用于网络黑灰产运作牟利,内中危害轻则窃财重则取命,去年8月,山东高考生徐玉玉被电信诈骗9900元学费致死案等数据安全事件,就可见一斑。
去年7月,微软Window10也因未遵守欧盟“安全港”法规,过度搜集用户数据而遭到法国数据保护监管机构CNIL的发函警告。
上海社会科学院互联网研究中心发布的《报告》指出,随着数据资源商业价值凸显,针对数据的攻击、窃取、滥用和劫持等活动持续泛滥,并呈现出产业化、高科技化和跨国化等特性,对国家和数据生态治理水平,以及组织的数据安全能力都提出了全新挑战。
当前,重要商业网站海量用户数据是企业核心资产,也是民间黑客甚至国家级攻击的重要对象,重点企业数据安全管理更是面临严峻压力。
企业、组织机构等如何提升自身数据安全能力?
企业机构亟待提升数据安全管理能力
“大数据安全威胁渗透在数据生产、流通和消费等大数据产业的各个环节,包括数据源、大数据加工平台和大数据分析服务等环节的各类主体都是威胁源。”上海社科院信息所主任惠志斌向记者分析称,大数据安全事件风险成因复杂交织,既有外部攻击,也有内部泄密,既有技术漏洞,也有管理缺陷,既有新技术新模式触发的新风险,也有传统安全问题的持续触发。
5月27日,中国互联网协会副秘书长石现升称,互联网日益成为经济社会运行基础,网络数据安全意识、能力和保护手段正面临新挑战。
今年6月1日即将施行的《网络安全法》针对企业机构泄露数据的相关问题,重点做了强调。法案要求各类组织应切实承担保障数据安全的责任,即保密性、完整性和可用性。另外需保障个人对其个人信息的安全可控。
石现升介绍,实际早在2015年国务院就发布过《促进大数据发展行动纲要》,就明确要“健全大数据安全保障体系”、“强化安全支撑,提升基础设施关键设备安全可靠水平”。
“目前,很多企业和机构还并不知道该如何提升自己的数据安全管理能力,也不知道依据什么标准作为衡量。”一位业内人士分析称,问题的症结在于国内数据安全管理尚处起步阶段,很多企业机构都没有设立数据安全评估体系,或者没有完整的评估参考标准。
“大数据安全能力成熟度模型”已提国标申请
数博会期间,记者从“大数据安全产业实践高峰论坛”上了解到,为解决此问题,全国信息安全标准化技术委员会等职能部门与数据安全领域的标准化专家学者和产业代表企业协同,着手制定一套用于组织机构数据安全能力的评估标准——《大数据安全能力成熟度模型》,该标准是基于阿里巴巴提出的数据安全成熟度模型(Data Security Maturity Model, DSMM)进行制订。
阿里巴巴集团安全部总监郑斌介绍DSMM。
作为此标准项目的牵头起草方,阿里巴巴集团安全部总监郑斌介绍说,该标准是阿里巴巴基于自身数据安全管理实践经验成果DSMM拟定初稿,旨在与同行业分享阿里经验,提升行业整体安全能力。
“互联网用户的信息安全从来都不是某一家公司企业的事。”郑斌称,《大数据安全能力成熟度模型》的制订还由中国电子技术标准化研究院、国家信息安全工程技术研究中心、中国信息安全测评中心、公安三所、清华大学和阿里云计算有限公司等业内权威数据安全机构、学术单位企业等共同合作提出意见。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)