物联网工程学什么课程

物联网工程学什么课程,第1张

物联网是学物联网概论、物联网硬件基础、无线传感网应用技术、RFID 应用技术、M2M 应用技术、物联网应用软件开发、Android 移动开发等。

主要学:离散数学、程序设计、数据结构、计算机组成、计算机网络、 *** 作系统、数据库系统、物联网通信技术、RFID原理及应用、传感器原理及应用、物联网中间件设计、嵌入式系统与设计、物联网控制原理与技术等。

物联网工程专业是一门普通高等学校本科专业,属于计算机类专业,基本修业年限为四年,授予工学学士学位。

该专业要求掌握数学和其他相关的自然科学基础知识以及和物联网相关的计算机、通信和传感的基本理论、基本知识、基本技能和基本方法,培养能够系统地掌握物联网的相关理论、方法和技能,具备通信技术、网络技术、传感技术等信息领域宽广的专业知识的高级工程技术人才。

就业前景

物联网是继计算机、互联网和移动通信之后的又一次信息产业的革命性发展,目前被正式列为国家重点发展的战略性新兴产业之一。物联网产业具有产业链长、涉及多个产业群的特点,其应用范围几乎覆盖了各行各业。物联网专业是教育部允许高校增设新专业后,高校申请最多的学校,这也说明了国家对物联网经济的重视和人才培养的迫切性。

物联网工程专业毕业生能在政府管理部门、科学研究机构、设计院、咨询公司、建筑工程公司、物业及能源管理、建筑节能设备及产品制造生产企业等单位从事建筑节能的研究、设计、施工、运行、监测与管理工作。

物联网就业前景很好,物联网产业具有产业链长、涉及多个产业群的特点,其应用范围几乎覆盖了各行各业。

物联网专业是教育部允许高校增设新专业后,高校申请最多的学校,这也说明了国家对物联网经济的重视和人才培养的迫切性。物联网的产业规模比互联网产业大20倍以上,而物联网技术领域需要的人才每年也将在百万人的量级。

物联网的基本特征从通信对象和过程来看,物与物、人与物之间的信息交互是物联网的核心。物联网的基本特征可概括为整体感知、可靠传输和智能处理。

整体感知—可以利用射频识别、二维码、智能传感器等感知设备感知获取物体的各类信息。

可靠传输—通过对互联网、无线网络的融合,将物体的信息实时、准确地传送,以便信息交流、分享。

智能处理—使用各种智能技术,对感知和传送到的数据、信息进行分析处理,实现监测与控制的智能化。

高考 填报志愿 时,物联网应用技术 专业怎么样 、 就业方向 有哪些、主要学什么是广大考生和家长朋友们十分关心的问题,以下是相关介绍,希望对大家有所帮助。
1、培养目标
本专业培养德智体美劳全面发展,掌握扎实的科学文化基础和感知识别技术、无线传输技术、嵌入式技术、物联网云平台应用等知识,具备物联网设备选型、物联网应用开发、物联网项目规划和管理、物联网云平台数据存储和管理等能力,具有工匠精神和信息素养,能够从事物联网设备安装配置和调试、物联网系统运行管理和维护、物联网系统应用开发、物联网项目规划和管理等 工作 的高素质技术技能人才。
2、 就业 方向
面向物联网安装调试员、物联网工程技术人员、 计算机 网络工程技术人员、计算机硬件工程技术人员、嵌入式系统设计工程技术人员等职业,物联网设备安装配置和调试、物联网系统运行管理和维护、物联网系统应用开发、物联网项目规划和管理等岗位(群)。
3、主要专业能力要求
具有感知识别设备选型、装调、数据采集与运行维护的能力;
具有无线传输设备选型与装调及无线网络组建、运行维护与故障排查的能力;
具有嵌入式设备开发环境搭建、嵌入式应用开发与调测的能力;
具有物联网系统安装配置、调试、运行维护与常见故障维修的能力;
具有物联网移动应用开发、平台系统安装测试、数据应用处理和运行维护的能力;
具有初步的物联网工程项目施工规划、方案编制与项目管理的能力;
具有物联网云平台配置、测试、数据存储与管理的能力;
具有探索将5G、人工智能等现代信息技术应用于物联网技术领域的能力;
具有探究 学习 、终身学习和可持续发展的能力。
4、主要专业课程与 实习 实训
专业基础课程:物联网工程导论、电工电子技术、计算机网络技术应用、程序设计基础、数据库技术及应用、单片机技术。
专业核心课程:传感器应用技术、无线传输技术、自动识别应用技术、物联网嵌入式技术、物联网设备装调与维护、物联网系统部署与运维、物联网应用开发、物联网工程设计与管理。
实习实训:对接真实职业场景或工作情境,在校内外进行物联网设备装调与维护、物联网系统部署与运维、物联网应用开发等实训。在物联网行业的集成与应用、物联网应用开发、工程设计与管理等单位进行岗位实习。
5、职业类 证书 举例
职业技能等级证 书 :传感网应用开发、移动应用开发、计算机视觉应用开发、大数据应用开发(Java)、物联网智能家居系统集成和应用、物联网工程实施与运维、物联网云平台运用
6、接续专业举例
接续高职本科专业举例:物联网工程技术、电子信息工程技术、嵌入式技术、工业互联网技术
接续普通本科专业举例:物联网工程、电子信息工程、电子信息科学与技术、计算机科学与技术

数据分析、机器学习与物联网
我们当前所处的世界,联网程度不断上升,低成本传感器和分布式智能也在不断普及,产业即将面临这一切带来的革命性的冲击;同时,在此过程中还会产生大量的数据,其规模将庞大到远远超过人类所能处理的范畴。对此,企业是否能足够迅速地适应并演进自身的业务,以维持在竞争格局中所处的位置?面对我们栖身的环境中植入的这些全新的信息来源和智能设备,人类应当如何掌握它们并从中获益?利用不断演进的技术组织机构将需要建立起内部数据仓库,以便能够利用新的数据源和数据流。智能接入设备亦将在某些情况下取代人的角色,它们将能够自行决策、执行自我调整,或是根据需要引发对自身的纠正和修复。在另一些情景中,众多设备的集合将聚集在一起成为完整的系统,这样的系统可以采用新的方法进行优化;而由系统聚集成的系统,将会彼此共享数据,并成为由数据和设备组成的生态系统。机器学习(指从数据中推导出意义的众多方法)注定将成为这个生态系统中的一部分;此外,随着企业着手为物联网(IoT)做准备,传统业务和数据分析技术也同样将被纳入到该生态系统之中物联网——某些人更愿意称之为“万物互联”(Internet of Everything)——正处于不断上升的轨道上。一项Gartner研究指出,在2020年IoT单元的数量将达到260亿,而IoT产品和服务的市值将达到3000亿美元1。另外,GE在工业互联网(Industrial Internet)——这一概念包含用于监控和优化工业设备(例如喷气式引擎、铁路机车、动力涡轮机和制造工艺)性能的机制和应用——领域已经活跃了很长时间。根据GE的估算和预测,在接下来20年中,工业互联网将帮助全球GDP产值提高10到15万亿美元(没错,万亿量级)。当然,围绕着已问世的全新技术和正在逐步浮现的技术概念,市场中充斥着大量炒作。例如,Gartner备受争议的 “成熟度曲线”(注:也有些人使用“炒作周期”这一贬义说法)报告就把IoT摆在了“翘首以望的顶峰”的位置上(而大数据作为之前的热点,已经进入了“理想幻灭的低谷” 3)。然而,哪怕企业家们为之表现出群情激昂的兴奋,或是记者们在笔下展现出了对未来的狂热展望,在现实中依旧存在着大量的挑战,组织机构必须克服它们,才能够真正乘上这次技术演进的东风。挑战组织机构必须聚焦于:了解产品技术和IT领域中,企业能力的相对成熟度;了解可以纳入哪些类型的IoT功能,以及新能力将会在哪些方面对客户价值带来影响;了解机器学习和预测分析模型的角色;基于市场变化的迅捷程度和竞争对手的相对敏捷度,重新思考业务模型和价值链。接下来,让我们对这些挑战逐一进行更详细地分析。理解产品和IT成熟度可以从产品和IT两个维度分别进行分析。首先,产品组合的成熟度如何?它是属于变更较缓慢且逐步演进的传统类型的产品,还是属于前进速度更快,同时具有更复杂生态系统的产品?矿产设备在技术上非常复杂。并且,与科学研究仪器相比,它拥有更为漫长的设备生命周期,和相对更缓慢的演进速度。然而,这并不意味着科研仪器的公司,在利用IoT产品进行系统优化方面更具优势。另一个需要考虑的因素是IT流程的成熟度。各种类型的组织机构都可能会因采用IoT而获益;然而,要想达成这一目标,它们所需采用的模型却各不相同。让我们进一步分析一下IT成熟度水平这个因素。举例来说,科学研究仪器供应商或许拥有先进技术,但却可能缺乏强有力的IT架构、流程和IT治理能力。与之相反,矿业设备制造商或许拥有非常成熟的内部IT流程。对科学研究仪器公司而言,IoT将让它们能够对安置在现场的仪器设备进行功能升级;但面对由多种类型设备组成的实验室信息生态系统库,公司并不一定愿意尝试去进行优化。(当然,以IT作为成本中心——例如内部IT管理——方面的成熟度不足,并不等于以IT作为利润中心——例如IT产品——方面成熟度的缺失;但当开发或拓展IT服务的时候,许多组织机构都选择在现有的基础IT能力之上构建。)在去年的哈佛商业评论(Harvard Business Review)中,讨论了一个矿业设备领域的例子:Joy Global是一家矿业设备制造商,其专家团队横跨与采矿作业相关的多种系统和流程。Joy Global以此为依托,针对来自多家供货商的一系列设备,提供监控、维护和优化的服务4。了解IoT能力接下来,应该考虑一下使用智能联网设备中的哪些能力。刚刚提到的哈佛商业评论刊登的文章4指出,IoT包含四种类型的能力:监视——传感器提供关于运行环境、产品使用和性能方面的数据;控制——可以控制并定制个性化产品功能;优化——来自监视与控制的反馈回路,能够提供更高的效率、更好的性能、预防性维护,以及诊断和修复;自治——监视、控制和优化将支持独立运行、不同系统间的协作、与环境交互、个性化、补给,以及自我诊断和修复。这四个层级的能力,将为重新定义供应链并重新配置价值链提供支持。我们不应该抱有产品的功能应固定不变的观点;相反,我们应该认为它们将更具灵活性和适应性。那些智能联网设备和产品将具有可变特性,并能够随着用户需求的变化而改变。在数年以前,软件制造商就已经认识到了这一点。而现在,物理对象也正在逐渐转变为软件驱动功能的载体或容器。上述这些层级的能力要求越来越精密的数据分析方法——从收集和应用数据,到支持算法自身运用数据并在同时进行学习。第一个层级的能力——监视——将成为一套实时的机制,我们可以运用它更好地了解现场情况和用户需求,并提供新的能力。这意味着组织机构的传统产品和服务将不再泾渭分明,而且二者的边界将彼此渗透。在过去,现场设备的维护由某个现场服务承包公司承担,设备制造商的业务并不涉及此环节。而在智能设备与监视能力结合后,设备可以在故障发生前将所需的服务提前告知制造商。同时,设备制造商也可以将常规维护纳入自己的服务范畴。不过,如果利润和物流对组织机构而言是个问题的话,那么复杂的维修工作将依旧由专业承包商完成。这一“去中介化”(disintermediation)的模式也可以运用到分发链中。设备可以自动发起补充供应的请求,从而降低甚至消除供应链中的物流和库存压力。控制是建立在监视之上的更复杂的应用。我们可以监视设备运行情况,并通过控制设备的多个部分或多个系统,来扩展人工干预的边界。想象一下,在 *** 作大部分功能都是自动化执行的系统或机器时,人类所扮演的角色:人类指导机器运转,并寻找系统设计的时候没有预料到(或是基于经济划算的角度未设计应对预设)的边界条件、异常和例外。接下来,人类使用自己的判断做出变更、纠正或调整。我们并不需要(在空间上)与设备在一起,或许我们也无需实时监视它们(这取决于流程)。我们通过监视层面采集数据并进行处理(某些数据处理必须在特定时刻完成),并通过控制层面将这些数据实时(或准实时)地运用到设备或装置的运行上。需要组织机构做出的战略决策是,是否以及何时在产品中提供更多的控制能力,以及是将其作为一种服务向客户开放,还是让客户拥有这些功能。第三个层级的能力——优化——可以拓展到某个单体对象、一系列对象,或是一套由来自多家制造商、使用不同技术的对象组成的生态系统的表现方面。是否将提供的服务拓展到这一领域,取决于围绕着价值链和流程边界的知识和经验的水平。前面提到的矿业的例子,反映出Joy Global与供应商相比的优势,主要在于拥有在流程生态系统中更加聚焦的视角。以卡车制造商为例,它无法很好地优化复杂的矿业设备,但却会凭借对自己的一系列卡车(以及潜在的一系列其他制造商生产的卡车)进行优化而获益——如果行业动态确实具有商业意义的话。要将优化的范围延伸到独立运行,还需要对这三个层级的能力进行一些拓展,以支持与环境及其他系统进行受限程度更低的交互。自治要求围绕着算法提供更多的智能,以便应对计划外的情况——程序员和系统工程师未能明确设计这些情况下的方案。自主运行需要整合具有适应性的机器学习方法,以应对新出现的情况,并将之纳入到用于监视、控制和优化的核心算法中。了解分析和机器学习2014年11月,施乐公司帕洛阿尔托研究中心的Mike Kuniavsky在IDTechEx上进行了一场名为“IoT领域中预测分析方面的用户体验”的演讲。在演讲中他表示,我们应该将几乎所有功能都存放(或是在不久的将来存放)在云上。数据和功能可以从任何位置、通过任何设备访问。而专业设备则提供用户访问数据的环境。健康手环可以通过iPhone或笔记本电脑,在特定的锻炼环境中访问用户的身体健康数据。在这种情况下,健康手环扮演了IoT传感器的角色,同时也提供了访问和使用数据的一种途径,而且它还通过软件功能包含了其他一些设备(例如计步器)的能力。设备上产生的数据可以为厂家提供额外的洞见,帮助其了解消费者的使用情况和喜好,并藉此升级功能或开发新特性。如果汇聚来自用户群的数据并结合其他数据集,那么新的洞见可以阐明流行病方面的数据、人群活动水平、生活方式和人口统计数据。对市场人员、健康服务提供者、保险公司和政府机构来说,这些信息具有宝贵的价值。(当然,我们必须认真对待隐私和数据使用许可方面的责任。)我们可以使用机器学习算法,基于这些数据模式作出预测。例如,在一份来自Mayo Clinic的研究中,发掘出了活动数据与心脏病人恢复速度的相关性5。同样的机器学习和预测算法也是许多联网智能消费设备的基础。例如,Nest恒温器是一套能够使用数据模式的设备,它预测消费者对于某个特定房间、在一天中的某个特定时刻的温度要求。(另一个控制和优化的例子体现在聚居区的层面。在获得了业主许可的情况下,电力设施可以通过远程调节的方式,控制成百上千的Nest设备,将室温调高或调低几度,从而完成高峰期的用能负载调度)。这类消费设备涵盖了从声音模式(例如亚马逊的个人助理输入设备Echo6)到更复杂的行为和活动模式(例如捷豹的路虎监视系统,它依赖于一套复杂的软件系统,该系统让汽车能够学习、预测和检查,并提醒车上的乘客帮助驾驶员自动委派次要任务,以便驾驶员将更多的注意力集中在驾驶上7)进行学习的范围。优化算法通过使用机器学习机制,来利用从动态环境下交互的传感器和智能设备传回的数据。算法不能基于特定的参数,精确地预测这些多变的情况,而是需要不断地感知、响应并适应。例如,随着汽车从驾驶员身上分担了更多的责任,它们需要与周边环境中更多的数据来源进行交互(传感器、灯光、其他车辆等等)。在工业自动化、物流和交通运输、电力网络与能源系统、交通管理、安全系统以及其他“系统的系统”等领域中的各类应用,都将让机器直接与其他机器进行交流。此外,这些应用还将基于能够演进和自适应的算法,帮助机器翻译数据流,从而使机器能够依据给定的运行参数达到要求的最终状态。反思业务模型和价值链智能联网设备要求组织机构重新检视,它们处在市场中的什么位置、以什么方式创造价值,以及这些价值将如何随着竞争环境和信息生态系统的演进而增加或减少。分析将帮助验证某些决策(例如,在对特性进行变更或是增加服务和功能后,获得实时使用数据);不过,市场新进入者和新的价值链结构或许会对业务模式带来巨大的转变,而基于公司传统业务模式做出的分析将不再具有相关性。因此,产品或服务的基础,或许会转变为来自传统产品的数据流,而不是来自产品本身的收入。新的业务模式将得以延展,甚至有可能远远超出产品本身的范畴,覆盖上游供应商或下游消费者。最重要的是,所有这些可能性,都会要求组织机构拥有围绕着其内部数据健康度和用于分析的基础设施的基础能力:数据“打捞”(curation)、所有制和质量标准、具有一致性的企业架构、干净整洁地集成在一起的系统、自动化的数据载入流程,以及成熟的分析专家。如果欠缺或未能有效管理这些基础条件,组织机构将很难进行快速反应,并演化出新的分析和数据管理功能与能力。IoT将基于数据流和复杂的方法,从信息中获取洞见,并通过与企业知识整合,将之运用到价值创造方面。而不具备这些能力的组织机构将在市场上落后,或是降级到低价值、低利润的层次。数据被称为“新的石油”——我们可以拓展这一比喻,这意味着通过分析能力中的知识提炼环节,数据将被精炼为高价值产品。组织机构现在就需要在构建此类基础设施的方面投入资源,以便为接下来数年中应对供应链和价值创造环节的转型、扰动和颠覆做好准备。信息敏捷性将成为必备的核心能力。

通过从传感器、计量器等器件获取环境、资产或者运营状态信息,在进行适当的处理之后,通过传感器传输网关将数据传递出去;同时通过传感器接收网关接收控制指令信息,在本地传递给控制器件达到控制资产、设备及运营的目的

通过公网或者专网以无线或者有线的通信方式将信息、数据与指令在感知与控制层、平台服务层、应用服务层之间传递,主要由运营商提供的各种广域IP通信网络组成,包括ATM、xDSL、光纤等有线网络,以及GPRS、3G、4G、NB-IoT等移动通信网络

物联网平台是物联网网络架构和产业链条中的重要环节,通过它不仅实现对终端设备和资产的“管、控、营”一体化,向下连接感知层,向上面向应用服务提供商提供应用开发能力和统一接口,并为各行各业提供通用的服务能力,如数据路由、数据处理与挖掘、仿真与优化、业务流程和应用整合、通信管理、应用开发、设备维护服务等

丰富的应用是物联网的最终目标,未来基于政府、企业、消费者三类群体将衍生出多样化的物联网应用,创造巨大的社会价值。根据企业业务需要,在平台服务层之上建立相关的物联网应用,例如,城市交通情况的分析与预测,城市资产状态监控与分析,环境状态监控、分析与预警(如风力、雨量、滑坡),健康状况监测与医疗方案建议等

向下接入分散的物联网传感层,汇集传感数据
向上面向应用服务提供商提供应用开发的基础性平台和面向底层网络的统一数据接口,支持具体的基于传感数据的物联网应用

从设备底层到云端应用都由技术人员自行开发,对研发能力和开发时间都是不小的挑战
物联网应用存在共性需求如安全是否可以以云服务的方式提供这些功能?
物联网平台使物联网应用的快速实现成为可能,并从开发难度、功能性能和稳定可靠等多方面提供服务保证

DMP一般集成在整套端到端M2M设备管理解决方案中,解决方案提供商联合合作伙伴一起,提供通信网关、通信模块、传感器、设备管理云平台、设备连接软件,并开放接口给上层应用开发商,提供端到端的解决方案

大部分DMP提供商本身也是通信模组、通信设备提供商,如DiGi,Bosch等,本身拥有连接设备、通信模组、网关等产品和设备管理平台,因此能帮助企业实现设备管理的整套解决方案

一般DMP部署在整套设备管理解决方案中,整体报价收费;也有少量单独提供设备管理云端服务的厂商,每台设备每个月收取一定的运营管理费用

M2M连接数大、SIM卡使用量大、管理工作量大、应用场景复杂、要求灵活的资费套餐、低的ARPU值、对成本管理要求高

包含基础大数据分析服务和机器学习两大功能

未来物联网平台上的机器学习将向人工智能过渡,比如IBM Watson拥有IBM独特的DeepQA系统,结合了神经元系统,模拟人脑思考方式总结出来强大的问答系统,可帮助企业解决更多商业问题

AWS IoT可在连接了Internet的设备(如传感器、制动器、嵌入式微控制器或智能设备)与AWS云之间提供安全的双向通信,并使云中的应用程序能够与连接了Internet的设备进行交互。这样,用户能从多台设备收集遥测数据,然后存储和分析数据;也可以创建应用程序来通过手机或平板电脑控制这些设备

AWS IoT包括设备网关、消息代理、规则引擎、安全和身份服务、Device Shadow服务等组件

平台案例

通过使用AWS的服务,艾拉物联可以无需投资传统数据中心,便可提供企业级服务。在AWS的支持下,艾拉物联将全球的服务都可以整合到一个云平台上,以最小成本开拓了国际业务,使得各地都可以使用同样的开发及运维工具

AWS云服务安全、稳定、可扩展以及全球覆盖的特性加快了涂鸦业务的全球化部署,为保证海外涂鸦客户和合作伙伴能够享受到本地化的服务体验提供了坚强保障

使用AWS云平台给Sengled生迪带来的好处包括简化运维、节省人力成本、节省资源成本,同时可以灵活地扩展应用系统。AWS提供的丰富功能,使运维工程师不必研究学习传统的运维工具和方法,就可以建立起一套完整、可靠的交付系统和运维平台

物联网平台是阿里云针对物联网领域开发人员推出的一款设备管理平台。高性能IoT Hub实现设备与云端稳定通信,全球多节点部署有效降低通信延时,多重防护能力保障设备云端安全。此外,物联网平台还提供丰富的设备管理功能、稳定可靠的数据存储能力,以及规则引擎。使用规则引擎,您仅需在Web上配置简单规则,即可将设备数据转发至阿里云其他产品,获得数据采集、数据计算、数据存储的全栈服务,真正实现物联网应用的灵活快速搭建

平台案例

24小时ATM式自助售药机支持用户线下24h到店扫码付款,当场取货;线上平台下单,骑手限时送达。同时提供完备的商户管理后台,可以进行订单管理、货道管理与财务管理

仓库猫用于解决仓库的科学监测、信息化、网络化管理等问题。可以做到防火监测、防盗监测、防水监测、防潮监测、能够帮助企业快速搭建店铺的监测系统,报警系统,云存储系统

OneNET定位为PaaS服务,即在物联网应用和真实设备之间搭建高效、稳定、安全的应用平台

OneNET包括设备接入、设备管理、API,>属于处理层。主要技术包括数据库,智能处理,云计算与普适计算等。云计算和普世计算是这一层的主要技术。在将来甚至会出现更适合物联网的新的计算技术。虚拟集群是基于云计算的虚拟化技术的基础上实现的,以虚拟化方式为用户提供服务。

01

物联网应用技术主要课程:物联网产业与技术导论、C语言程序设计、Java程序设计、无线传感网络概论、TCP/IP网络与协议、嵌入式系统技术、传感器技术概论、RFID技术概论等。

物联网专业是一门交叉学科,涉及计算机、通信技术、电子技术、测控技术等专业基础知识,以及管理学、软件开发等多方面知识。作为一个处于摸索阶段的新兴专业,各校都专门制定了物联网专业人才培养方案。学生需要学习包括计算机系列课程、信息与通信工程、模拟电子技术、物联网技术及应用、物联网安全技术等几十门课程,同时还要打牢坚实的数学和物理基础。另外,优秀的外语能力也是必备条件,因为目前物联网的研发、应用主要集中在欧美等国家,学生需要阅读外文资料和应对国际交流。

物联网应用技术是普通高等学校专科专业,属于电子信息类专业。该专业培养德、智、体、美全面发展,具有良好职业道德和人文素养,掌握RFID、无线传感网、嵌入式开发、传感器等基础知识,具备物联网系统集成、安装调试、软件编程和测试等能力,从事物联网应用系统集成、安装调试、维护和相关软件开发、测试等工作的高素质技术技能人才。

就业主要面向物联网行业,在物联网系统集成、安装和调试、编程、测试和售后服务等岗位群,从事物联网应用系统集成、安装调试、维护,以及相关软件开发和测试等工作。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13075500.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-30
下一篇 2023-05-30

发表评论

登录后才能评论

评论列表(0条)

保存