物联网架构按层级来划分可分为3个层级: 感知层、传输层、应用层。
首先底层是用来感知数据的感知层,感知层包括传感器等数据采集设备,包括数据接入到网关之前的传感器网络。感知层是物联网发展和应用的基础,RFID技术、传感和控制技术、短距离无线通信技术是感知层涉及的主要技术,其中又包括芯片研发、通信协议研究、RFID材料、智能节电供电等细分技术。
第二层是数据传输的传输层,网络层中的感知数据管理与处理技术是实现以数据为中心的物联网的核心技术,其包括传感网数据的存储、查询、分析、挖掘、理解及基于感知数据决策和行为的理论和技术。云计算平台作为海量感知数据的存储、分析平台,将是物联网网络层的重要组成部分。
最上层是应用层,物联网的应用层利用经过分析处理的感知数据为用户提供丰富的特定服务,可分为监控型(物流监控、污染监控)、查询型(智能检索、远程抄表)、控制型(智能交通、智能家居、路灯控制)、扫描型(手机钱包、高速公路不停车收费)等。应用层是物联网发展的目的,软件开发、智能控制技术将会为用户提供丰富多彩的物联网应用。
如果以人的神经网络做类比,那么人的感觉器官就是物联网的感知层,如眼睛能采集视觉信息,鼻子采集气味信息,嘴巴采集味道信息,而耳朵采集声音信息。这些信息通过神经元传递到大脑中枢,那么这些神经元形成的神经传输通道就相当于物联网中的传输层,它的作用是把信息传送到处理中心。那么人的大脑就相当于应用层了,当它接受到来自眼睛,鼻子、嘴巴、耳朵等信息后,它可以综合去得出一些有用的结论,例如判断现在是否有危险,能够读书看等,这就相当于它应用了来自感知层的信息并产生了价值。
像工业网关在物联网中就是负责传输数据的,爱陆通的工业物联网网关是基于5G/4G、WIFI、虚拟专网等技术开发的。以嵌入式 *** 作系统为软件支撑平台,同时支持1个千兆以太网WAN、4个千兆以太网LAN、1个RS232/RS485(可选)接口和24G/58G WIFI接口,可同时连接串口设备、以太网设备和 WIFI 设备。
前3GPP所提出之NB-IoT也包含各项不同的技术,目前主要可分为两个方向,一为由诺基亚(Nokia)、爱利信(Ericsson)和英特尔(Intel)等阵营支持的NB -LTE(Narrowband-LTE)以及华为和Vodafone支持的NB-CIoT(Narrowband-Cellular IoT),两种技术对于营运商最大的差别在于其可以在现有的LTE环境中,有多少可以重新使用于物联网的应用中。现今无线通讯发展飞快,全球无线通讯,发展得如火如荼,人们对于行动通讯、影音传输或终端应用的需求日与俱增,所到之处网路无所不在,因此即便4G还再持续扩展布建时, 5G的世代也宣告即将到来,当中所含的商机更是无限。
为了迎接这庞大的通讯蓝海,各国无不积极地要抢先一步占得先机,纷纷投入许多资源及研究,对于下一代5G通讯进行规划和开发,想掌握其中的关键技术及专利,以提高被第三代合作伙伴计划(3rd Generation Partnership Project, 3GPP)标准采纳的机会,俾助国内通讯相关产业未来的发展。
5G通讯性能大耀进
在产业发展迅速的情况下,用户端的各样应用也随之增加,在面对全球用户对于数据传输与网路容量需求越来越高的状况下,5G网路便因应而生,3GPP的5G相关的标准技术预计将在2016定案,在2020年预估相关产品将可步入商用阶段。在其未来发展,不仅需要大的传输速率,并且还要比现今大以数倍的连结数,全球将走入万物皆联网的时代(图1)。
图1 5G发展趋势
知名咨询机构麦肯锡指出,2025年物联网(IoT)的应用产值将达到111兆美元,5G提出低延迟、高传输、低耗能、大连结等特性,5G行动通讯预计在2020年全球将有500亿个终端产品具备上网功能,整体系统容量(Capacity)需求也较4G增加1000倍以上,并且其传输延迟必须小于1毫秒(ms),因此下一代5G通讯的效能提升及技术挑战势必比先前更加严峻。
随着智慧电表、智慧家电、智慧工厂、可穿载设备这些应用型终端的大量出现,越来越多的工作和生活都须要透过智慧终端来解决,对此,高密度的连结及降低终端成本需求变得越来越大,必要有新的技术来因应这样的需求。
5G关键技术剖析
在5G未来发展,不仅需要大的传输速率,并且还要比现今大以数倍的连结数,全球将走入万物皆联网的时代,在3GPP首先提出机器对机器(M2M)/机器类型通讯( Machine Type Communication, MTC),其设计的目标主要有更低的设备成本、更低的功耗、更大的覆盖率和支援大量的设备连线,但外界多数认为这只是一个过渡阶段的版本,因为其功耗和建置成本还是过高,对于需要更低功耗及更大量的连结数的应用来说,其还是不够为一可使用的技术,因此3GPP在R13提出一种更低传输资料量,更低的设备成本、更广覆盖率的技术,称做NB-IoT(Narrowband-Internet of Thing),其最大的传输资料量为200kbit/s,频宽也降至200kHz,并且其覆盖率可在提升数倍,因此各主流电信营运商无不极力支持此技术(表1)。
NB-IoT抢进物联网蓝海
物联网已发展多年,各式的应用及技术都相继被提出,如LoRa和SIGFOX,也都强调低功耗以及广大覆盖率的需求,但由于LoRa及SIGFOX使用非授权频谱,因此代表不管任何人皆可使用此频段,也形成许多不可控制的干扰问题,这变成在使用上非常不可靠,因此全球各大电信营运商倾向支持3GPP所提出之NB-IoT的技术,由于其使用授权频段,并且可以在原本的蜂巢式网路设备上快速部署NB-IoT的建置,对营运商而言便可以节省布建成本及快速整合原有长程演进计画(LTE)网路,因此可以预见未来NB -IoT将为全球主流电信商所推行的方向。
NB-IoT为一低功耗广域网路(Low Power Wide Area,LPWA)的技术,其特点便是极低的功耗和广大的覆盖率及庞大的连结数,其装置覆盖范围可以提升20dB,并且电池寿命可以超过10年以上,每个NB-IoT载波最多可支援二十万个连结,而且根据容量需求,可以透过增加更多载波来扩大规模,使单一基地台便能支援数百万个物联网连结。
在NB-IoT的设计上有几项目标,一为提升涵盖率,可以藉由降低编码率(Coding Rate)来提升讯号的可靠性,进而使讯号强度微弱时,依旧能够正确解调,达到提高覆盖率的目的,另外为要大幅提升电池使用周期,其发送的能量最大为23dBm,约为200毫瓦(mW),还有为降低终端的复杂度,因此其调变上使用恒定包络(Constant Envelope)的方式,可以使功率放大器(Power Amplifier, PA)运作于饱和区间,让传送端有更好的使用效率,在实体层设计上,也可以简化部分元件,使复杂度降低,还有为减少系统频宽,其频宽设计在200kHz,因为在物联网上不需要这么高的传输速率,所以便不需要这么大的频谱,在使用上也能够更d性地分配,而还有一个重要设计目标就是要大幅的提升系统容量,使得大量的终端能够同时连结,其中一种方法为可以使子载波区间更小,使得在频谱资源分配上能够更加的d性,切出更多子载波分配给更多的终端。
NB-IoT在频谱上有三种布建方式,第一种为单独布建(Standalone),此种布建方式为使用独立或全球行动通讯系统(GSM)的频谱,彼此不会互相干扰,是最单纯的布建方式,但需要一段自己的频谱。第二种是使用保护频段(Guard Band)来布建,利用LTE频谱边缘保护频段,讯号强度较弱的部分布建,优点是不需要一段自己的频谱,缺点是可能发生与LTE系统干扰问题。而第三种是在现行运作频段内布建(In Band),部署情境如图2所示,在使用的频谱则选择在低频段上,像是700MHz、800MHz、900MHz等,因为在低频段能有更广的覆盖率,并且有较好的传波特性,对于室内环境可以有更深的渗透率。
图2 NB-IoT三种部署情境来源:NB-IoT enabling new business opportunities, 华为
然而,目前3GPP所提出之NB-IoT也包含各项不同的技术,目前主要可分为两个方向,一为由诺基亚(Nokia)、爱利信(Ericsson)和英特尔(Intel)等阵营支持的NB -LTE(Narrowband-LTE)以及华为和Vodafone支持的NB-CIoT(Narrowband-Cellular IoT),两种技术对于营运商最大的差别在于其可以在现有的LTE环境中,有多少可以重新使用于物联网的应用中。
在NB-LTE几乎可与目前现行的LTE设备相容,但NB-CIoT可说是一个重新设计的技术,须要建构新的晶片,但在其涵盖率可望更加地提升,设备成本也更为降低,因此两个技术可说各有千秋,下面将对两个技术做一概述。
NB-LTE向后兼容降成本
在NB-LTE使用的频宽为200KHz,在下行使用的是正交分频多工存取(Orthogonal Frequency Division Multiple Access,OFDMA)的技术,子载波频宽为15kHz,而在正交频分多工(OFDM)符元(Symbol)以及时隙(Time Slot)和子讯框(Subframe)的区间,与原有的LTE规范相同。
NB-IoT上行使用的是单载波分频多重存取(Single-carrier Frequency-Division Multiple Access, SC-FDMA),子载波频宽为25kHz,是原本LTE子载波频宽的六分之一,而在符元以及时隙和子封包的区间为原有LTE的六倍。NB-LTE最主要希望能够使用旧有的LTE实体层部分,并且有相当大的程度能够使用上层的LTE网路,使得营运商在布建时能够减少设备升级的成本,在建置上也能够沿用原有的蜂巢网路架构,达到快速布建的目的。
以下行部分来看,在同步讯号(PSS/SSS)、实体广播通道(PBCH)及实体下行控制通道(PDCCH)等须要去做调整或重新设计,并且在原来一些控制通道,如实体控制格式指示通道(PCFICH)和实体混合自动重传请求指示通道(PHICH),则省略去给资料做传送。而在NB-LTE中,为了将频宽缩减至200kHz,为原本LTE最小频宽14MHz的六分之一,因此将传送的时间周期拉长,所以在NB-LTE定义一种新的时间单位,称作M-subframe,其为原有LTE系统连续六个Subframe所构成,因此其时间长度为6毫秒,而六个M-subframe构成一个M-frame(图3),在一个M-subframe,最小的调度单位为一个实体层无线资源区块(Physical Resource Block,PRB),代表一个M-subframe中最多能够支援六个终端。
图3 NB-LTE下行封包设计来源:3GPP TR 45820
在上行部分,使用的是SC-FDMA,终端能够d性的使用各个单载波资源,在NB-IoT的应用上,接收端必须要能够容忍非常弱的讯号,而且时间延迟可能会很大,由于每个终端要与基地台做时间的对齐,其时间的误差要小于循环字首(Cyclic Prefix,CP),所以在CP的设计上必须要更加地拉长,因此在子载波频宽的设计上为原来的六分之一,到25kHz,这么做也可以使终端设备在频谱上做更d性的配置。
NB-CIoT新设计大应用
在NB-CIoT中,下行使用的是OFDMA,与以往的LTE系统不同,NB-CIoT使用四十八个频宽为375 kHz的子载波,并使用六十四点的快速傅立叶转换(FFT),其取样频率240kHz,也与旧有的LTE系统不同。在时间单位上,NB-CIoT一个封包由八个子封包组成,而在每个子封包可在分为三十二个时隙,每个时隙又分为十七个符元(图4)。
图4 NB-CIoT下行封包设计来源:3GPP TR 45820
其在各个讯号通道也重新设计,如同步讯号(PSS/SSS),虽也像LTE系统使用固定振幅(Constant Amplitude)的ZC序列(Zadoff-Chu Sequence),但其会复制两次传送,为的是增加侦测的可靠度,而在实体下行分享通道(PDSCH)原本使用涡轮码(Turbo Coding)的编码,也改为适合小资料传输的卷积编码(Convolution Coding),可更加简化系统架构及复杂度,提高系统应对物联网需求的能力。
在上行部分,采用的是分频多重存取(Frequency Division Multiple Access,FDMA)系统,与OFDM系统相比,每个子载波间不需要正交,因此并不需要精确的时间及频率校准,而在频率使用上,NB-CIoT使用三十六个5kHz频宽的子载波,而其支援GMSK(Gaussian-shaped Minimum Shift Keying)的调变,GMSK为恒定包络的调变并且有PSK(Phase Shift Keying)的特性,可提供较高的频谱效益,并且可以使PA运作在饱和区间,得到更有效率的表现。
可以发现在NB-CIoT在整体设计上和以往LTE系统有非常大的不同,不仅在封包时间的架构上,在各个使用的通道也重新设计,因此对于营运商来说,必须要重新设计晶片模组,对于成本及建置的速度上便是一大需要顾及的地方。
NB-LTE与NB-CIoT各有千秋
NB-LTE与NB-CIoT各项技术的比较如表2所示,在NB-LTE中,大部分与原有LTE系统相同,如使用的接取技术和FFT与取样频率的大小等,但NB -CIoT,却是截然不同的设计规格。
对于营运商来说,NB-LTE能够与旧有的系统直接套用,无须耗费太大的成本,并且能够快速度布建在原有的蜂巢式网路基站中,而NB-CIoT中,不论在封包设计、取样频率或子载波频宽大小上,都与原本LTE不同,但正由于其是专为物联网所重新设计的规格,因此它在各样应用于物联网的特性上,会比NB- LTE更加地适合,如在取样频率上,NB-LTE依旧是192MHz,这在设备的成本上依旧会是一大考量,而NB-CIoT的取样频率就降至240kHz,便可以大幅降低设备成本以及耗电量。
NB-CIoT的CP也较NB-LTE更加地长,便更能够抵抗时间的延迟,使传输距离可以更远,所以NB-LTE与NB-CIoT都各有不同的优势与劣势,因此最后定案的技术与运作模式可能要等到3GPP所订出之标准规范后才能明朗化。
最终的NB-IoT的版本可能是这两个版本中选择一个,或是两个技术尽量融合成一个版本,但有几项技术原则必须要存在,包括:NB-IoT要同时支援Standalone、Guard Band及In Band的三种布建方式;使用180kHz的频宽;在下行链路使用OFDMA的系统;在上链使用GMSK或SC-FDMA系统;在L2以上的技术与通信规范,要尽量与原有LTE系统重用。
NB-IoT势在必行
在未来进入万物联网的时代,各种后端应用相继产生,因此要如何使这些应用彻底地实现,以及营运商要如何在这当中分得其中一块大饼,NB-IoT无疑是一个必要推行的技术,由于如SIGFOX或LoRa,其使用免授权频段,对于资料可靠性和安全性是一大考量,重要的是营运商如何在其中获取利益也是须要考量的部分,而NB-IoT由既有的LTE网路架构,再更新其部分设备元件,便能够快速地打入物联网市场,对于未来一日千里的通讯发展及需求,建置及部署的速度无疑是非常关键的考量,并且其使用的是授权频段,对于资料的安全性及可靠度便大大的提升,且可以减少许多不必要的干扰问题,在今年(2016)的年中预计会定出一版NB-IoT的标准规范,届时便能够看见将来的窄频物联网的发展。
正确的是:必须适应强电磁干扰环境,采用自适应跳频、确定性通信资源调度,无线路由,采用低开销高精度时间同步,网络分层数据加密,异常监视与报警以及设备入网鉴权。
就国内目前的主要市场环境来看,其主要用的是wifi mesh(例如strix的mesh设备)和cofdm mesh(例如winet无线智能宽带网络),前者利用的是wifi技术速率可达几百兆,频率主要用24G和58G,使用全向天线距离大概3-5公里。
物联网
是新一代信息技术的重要组成部分,IT行业又叫:泛互联,意指物物相连,万物万联。由此,“物联网就是物物相连的互联网”。这有两层意思:第一,物联网的核心和基础仍然是互联网,是在互联网基础上的延伸和扩展的网络;第二,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通信。
正确的是:必须适应强电磁干扰环境,采用自适应跳频、确定性通信资源调度,无线路由,采用低开销高精度时间同步,网络分层数据加密,异常监视与报警以及设备入网鉴权。
就国内目前的主要市场环境来看,其主要用的是wifi mesh(例如strix的mesh设备)和cofdm mesh(例如winet无线智能宽带网络),前者利用的是wifi技术速率可达几百兆,频率主要用24G和58G,使用全向天线距离大概3-5公里。
物联网
是新一代信息技术的重要组成部分,IT行业又叫:泛互联,意指物物相连,万物万联。由此,“物联网就是物物相连的互联网”。这有两层意思:第一,物联网的核心和基础仍然是互联网,是在互联网基础上的延伸和扩展的网络;第二,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通信。
5G意味着什么
5G意味着什么,5G,令我们充满期待,大量的科技企业正在不断探索5G的应用模式,很多人说5G是中国发展最积极也是最成功的一代移动通讯技术。以下分享5G意味着什么?
5G意味着什么11、极限数据容量
2、数千兆速度
3、超低延迟
4、超高可靠性
简而言之,5G 让物联网设备能够更快地工作和传输数据。
5G 支持的远程访问技术可以显着提升业务绩效并确保在任何领域实现更自动化的工作流程。让我们在本文中讨论 5G 如何改变当前的商业格局,特别是它如何提高物联网技术的能力。
什么是 5G 物联网?
5G网络物联网代表物联网设备的第五代无线移动通信系统。与其前身 4G 不同,5G 提供了迄今为止最快的无线互联网连接。 5G的核心特征如下:
约 5 毫秒的低延迟(4G 的延迟在 60-98 毫秒范围内)
下载速度为 10 Gbps(每秒数十亿比特),而 4G 的下载速度为 1 Gbps
高频信号需要小型蜂窝技术,低频信号需要蜂窝塔(而 4G 只能使用蜂窝塔传输信号)
因此,我们可以说 5G 几乎比 4G 快十倍,并且更加灵活和可靠。物联网对 5G 的影响是巨大的,因为物联网是 5G 技术最常见的用例之一,有助于 5G 扩大其在数字世界中的影响力。
5G 网络如何影响物联网?
尽管 4G 在未来几年仍然具有重要意义,但采用 5G 会产生很多好处。首先,5G 允许支持大量静态和移动物联网设备。因此,例如,它为企业提供了增强的运营能力。
随着物联网设备的发展和普及,5G 在其速度和服务质量方面是一个可行的解决方案。与使用未经许可频谱的物联网设备的通信协议(如蓝牙、ZigBee 和 Z-Wave)相比,使用许可频谱的蜂窝技术或 5G 可提供更高水平的可靠性、安全性和系统性能。
可以说,5G 开启了物联网技术的新纪元,它的力量将会传播开来,逐渐击败物联网应用之间的其他通信方式。
5G 技术中物联网的用例
在本节中,我们将了解行业中可能从这些技术中受益最多的常见 5G 物联网用例。然而,5G物联网的应用并不局限于以下业务领域,几乎可以在任何使用物联网设备的领域中得到很好的应用。
制造业
在 5G 的帮助下,制造工厂可以通过例如增加管理的自动化车辆和机器人的数量来提高其绩效。此外,5G 允许从制造过程中涉及的大量物联网应用中实现最大效率。
5G 提高的性能潜力还可以对制造机器进行高级预测性维护。由于 5G 允许物联网设备通过实时交换数据来有效地相互通信,因此可以更早地定义和解决某些机器的性能问题,从而提高制造工厂的性能能力。
医疗保健行业
医疗保健从业者也可以从实施 5G 物联网设备中受益。在医疗保健中使用 5G 的可能方式如下:
借助适用于高速 5G 的 AR/VR 技术进行外科培训
通过 5G 提供的高质量视频通信增强远程医疗服务
通过安全可靠的 5G 技术帮助机器人进行医疗保健实践
从 5G 管理的各种物联网设备收集的海量数据集的数据分析
高速服务交付对于医疗保健行业至关重要,因为即使是几秒钟也可以挽救一个人的生命。 5G可以保证这个速度,让它达到更早的未知高度。
自动驾驶汽车和智慧城市
如果我们考虑智慧城市,5G 可以通过在包括监控摄像头和交通信号灯传感器在内的'各种交通物联网设备之间实现高效连接来增强交通管理。 5G 还可以通过有效监控能源消耗和确定资源节约方式来提高城市的节能能力。
在不久的将来,蜂窝技术 5G 也将有助于将无人驾驶汽车连接到所有交通物联网设备,创造一个智能交通环境。在城市实施 5G 的另一种可能方式是空气监测系统,当空气污染超过安全限值时会通知人们。
您可以看到芝加哥市如何借助大数据技术和物联网走向智慧城市。
智能家居
除了企业使用外,5G 物联网也越来越普遍地满足消费者的需求,例如连接智能家居设备。结合机器学习、人工智能和大数据技术,5G 可以高效地收集和处理从家庭物联网设备收集的所有数据,从而深入洞察高效的家庭管理。例如,Viomi 5G 物联网解决方案允许相互连接超过 256 台物联网家庭设备。
5G 还负责提供高清视频,实现身临其境的电视和游戏体验以及高质量的视频会议。借助物联网家庭设备的 5G 技术,消费者可以测试他们家的最大潜力,并使其成为他们坚不可摧的堡垒。
虽然 5G 技术尚未普及,但它正在稳步发展并赢得越来越多客户的信任。它承诺比挑战更多的好处,并将成为当前数字世界和物联网应用程序的真正游戏规则改变者。即使在 5G 物联网成为主流之前,探索该领域并考虑实施该技术以提高您在市场中的竞争优势。
5G意味着什么2优点一:速度快
3G将互联网发展到世界各地,4G LTE网络速度更快,5G则大大提高了网络容量和速度,带来更为畅快地体验,之所以带来畅快的体验,主要是利用了无线电频谱
顶部未被使用的频段,这些高频带被称为毫米波,与低频段相比它们还没有被大量使用,所以拥挤度要低得多,因此可以实现超高速通信,这意味着你可以用每秒14千兆的速度,比家庭宽带连接的平均值高20倍。5G将实现随时、随地、万物互联,让人类敢于期待与地球上的万物通过直播的方式无时差同步参与其中。
优点二:新职业的创造
每一次技术的变革都会创造出新的行业。5G的使用,对于自动驾驶、智能城市、物联网等领域的未来发展至关重要。无人驾驶汽车从业者便是其中之一,5G更快的速度以为着能够更好的自动驾驭轿车。正如诺基亚公司立异市场部主管Volker Held曾说:“你能够幻想一下没有红绿灯的大街—尽管轿车要通过十字路口,但它们却不会撞上互相”。
再比如物联网的相关从业者,5G技能是为物联网而生,传输速度可达 10Gbps,低功耗、大衔接、低时延、高牢靠场景首要面向物联网业务,也是5G新拓宽的场景。
优点三:VR相关产业的进一步成熟
VR产业在4G速度局限下,发展迟缓。5G速度优势使无论是VR直播还是VR电商以及VR游戏从业者,都会带来新的变革。更好的直播体验,全方位立体感受商品质量,交互的虚拟现场场景都是不远的将来5G所带来的。
当然,5G使用这是中国实力的一个表现。目前全球5G领先的国家和地区包括中、韩、日、美和欧洲,韩国拔得头筹。
5G意味着什么3从字面上看,5G就是“第五代移动通信技术”的意思。
移动通信每一代的发展,在技术上都会有很大的飞跃。上世纪八九十年代,像砖头一样的“大哥大”使用的就是第一代移动通信技术,它只能传输语音,也就是说,只能打电话,不能上网和发短信,而且语音品质低、信号不稳定、覆盖不够广,还容易被串号和盗号。
从第二代,也就是2G开始,移动通信开始进入了数字化时代,通信质量、安全性和速度都有了大幅度的提升,手机能够以比较低的速度上网。
3G到来以后,由于上网速度的大幅提升,移动通信进入了多媒体时代,我们可以用手机收发图像、音乐、较小的视频等,还可以浏览网页、召开电话会议。而4G,则让我们随时看**、发视频、玩游戏不再是件奢侈的事。在4G时代,我们经常使用抖音、快手、西瓜视频这些软件,用手机联网打游戏的人数也首次超过了电脑,移动支付开始取代现金,让我们享受到了极大的便利。
如果说前四代移动通信技术是依靠手机应用在推动,那么第五代则是结合当下的万物互联趋势,满足物联网、车联网、智慧医疗、虚拟现实、工业40等多种应用的需求。所以,5G与4G相比,不是单纯提升上网速度,而是综合考虑多个技术指标:网络速度、移动性、时延、连接密度等。
这是什么意思呢?网络速度大家都很容易理解,那么我们就来讲讲另外几个指标的含义。
移动性:是指在快速运动的时候仍能保持传输质量。例如,高铁现在最高运行时速可达350公里,以后还会继续提升。5G移动性既要解决在高铁上看高清**时不能断网,还要考虑支持每小时500公司的移动速度。
时延:是指传输数据时,从一端到另一端的时间差。5G可以提供低至1毫秒的时延,也就是千分之一秒,是4G的1/10,完全能满足车联网、工业控制、远程医疗等行业的需求。
连接密度:是指相同一区域可以连接的各种终端设备的数量,同时还要满足低成本和低功耗要求,这主要是面向物联网和智慧城市类应用。所以,5G不仅要关注人们对网络互联的需求,还需要推动各种感知设备以及车辆的万物互联。
5G的普及和不断升级,将会大大扩展移动通信的应用范围,让我们的生产和生活更加美好便捷。
5G下载一部高清**有多快
我们知道,目前普通的家庭宽带网络下载一部高清**,如《哈利波特与魔法石》,通常需要十多分钟。即使按电信公司宣称的最快速度,也需要2分钟才能下载成功。如果使用4G网络呢?最快的下载速度也需要4分钟。但在5G时代,下载同样一部**,仅需要2秒的时间,真的可以说是“一眨眼的功夫”就下载成功了。
5G之所以能这么快,是因为它使用了更高频率的无线电波,频率越高,可使用的带宽越大,传输的数据量也越大。打个比方,如果4G是一条四车道的普通公路的话,5G就是四十车道的立体高速公路,它的传输速度可以达到前者的几十倍。
如果细心的话,我们会发现一个有趣的现象:以前的“大哥大”会有很长的天线,即使早期的手机也有凸出来的小天线,为什么现在的手机没有天线了?其实,手机并不是没有天线,而是它被塞进手机里了。
5G之所以速度快,它的另一大“杀手锏”也和这个问题有关:无线电波频率越高,需要发送和接收电波的天线就越短。5G网络的天线,短到可以用“毫米”来计量,因此一个设备能放进很多根天线,可以形成定向波束,也就能同时发出和接收很多组信号,速度当然就快得多了。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)