哪家大数据软件公司在数据可视化大屏展示这块做得比较好?

哪家大数据软件公司在数据可视化大屏展示这块做得比较好?,第1张

思迈特软件Smartbi具有仪表盘、灵活查询、电子表格(中国式报表)、OLAP多维分析、移动BI应用、Office分析报告、自助BI分析、数据采集填报、数据挖掘等功能模块,适用于领导驾驶舱、KPI监控看板、财务分析、销售分析、市场分析、生产分析、供应链分析、风险分析、质量分析、客户细分、精准营销等管理领域。

思迈特软件Smartbi作为企业级商业智能应用平台,可广泛应用于金融、大型制造业、政府、电信等多个行业,它整合了各行业的数据分析和决策支持的需求,可以给企业中各级人员带来不同的体验和价值


数据可视化大屏展示有没有用,来试试Smartbi就知道了,Smartbi产品功能设计全面,涵盖数据提取、数据管理、数据分析、数据共享四个环节,帮助客户从数据的角度描述业务现状,分析业务原因,预测业务趋势,推动业务变革。

思迈特软件Smartbi个人用户全功能模块长期免费试用
马上免费体验:Smartbi一站式大数据分析平台

世界包含的多得难以想象的数字化信息变得更多更快……从商业到科学,从政府到艺术,这种影响无处不在。科学家和计算机工程师们给这种现象创造了一个新名词:“大数据”。

所谓大数据,那到底什么是大数据,他的来源在哪里,定义究竟是什么呢

一:大数据的定义。

1、大数据,又称巨量资料,指的是所涉及的数据资料量规模巨大到无法通过人脑甚至主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。

2、大数据技术,是指从各种各样类型的大数据中,快速获得有价值信息的技术的能力,包括数据采集、存储、管理、分析挖掘、可视化等技术及其集成。适用于大数据的技术,包括大规模并行处理(MPP)数据库,数据挖掘电网,分布式文件系统,分布式数据库,云计算平台,互联网,和可扩展的存储系统。

互联网是个神奇的大网,大数据开发也是一种模式,你如果真想了解大数据,可以来这里,这个手机的开始数字是一八七中间的是三儿零最后的是一四二五零,按照顺序组合起来就可以找到,我想说的是,除非你想做或者了解这方面的内容,如果只是凑热闹的话,就不要来了。

3、大数据应用,是
指对特定的大数据集合,集成应用大数据技术,获得有价值信息的行为。对于不同领域、不同企业的不同业务,甚至同一领域不同企业的相同业务来说,由于其业务
需求、数据集合和分析挖掘目标存在差异,所运用的大数据技术和大数据信息系统也可能有着相当大的不同。惟有坚持“对象、技术、应用”三位一体同步发展,才
能充分实现大数据的价值。

当你的技术达到极限时,也就是数据的极限”。大数据不是关于如何定义,最重要的是如何使用。最大的挑战在于哪些技术能更好的使用数据以及大数据的应用情况如何。这与传统的数据库相比,开源的大数据分析工具的如Hadoop的崛起,这些非结构化的数据服务的价值在哪里。

二:大数据的类型和价值挖掘方法

1、大数据的类型大致可分为三类:

1)传统企业数据(Traditionalenterprisedata):包括 CRM
systems的消费者数据,传统的ERP数据,库存数据以及账目数据等。

2)机器和传感器数据(Machine-generated/sensor data):包括呼叫记录(CallDetail
Records),智能仪表,工业设备传感器,设备日志(通常是Digital exhaust),交易数据等。

3)社交数据(Socialdata):包括用户行为记录,反馈数据等。如Twitter,Facebook这样的社交媒体平台。

2、大数据挖掘商业价值的方法主要分为四种:

1)客户群体细分,然后为每个群体量定制特别的服务。

2)模拟现实环境,发掘新的需求同时提高投资的回报率。

3)加强部门联系,提高整条管理链条和产业链条的效率。

4)降低服务成本,发现隐藏线索进行产品和服务的创新。

三:大数据的特点

业界通常用4个V(即Volume、Variety、Value、Velocity)来概括大数据的特征。具体来说,大数据具有4个基本特征:

1、是数据体量巨大

数 据体量(volumes)大,指代大型数据集,一般在10TB规模左右,但在实际应用中,很多企业用户把多个数据集放在一起,已经形成了PB级的数据量;
百度资料表明,其新首页导航每天需要提供的数据超过15PB(1PB=1024TB),这些数据如果打印出来将超过5千亿张A4纸。有资料证实,到目前
为止,人类生产的所有印刷材料的数据量仅为200PB。

2、是数据类别大和类型多样

数据类别(variety)大,数据来自多种数据源,数据种类和格式日渐丰富,已冲破了以前所限定的结构化
数据范畴,囊括了半结构化和非结构化数据。现在的数据类型不仅是文本形式,更多的是、视频、音频、地理位置信息等多类型的数据,个性化数据占绝对多数。

3、是处理速度快

在数据量非常庞大的情况下,也能够做到数据的实时处理。数据处理遵循“1秒定律”,可从各种类型的数据中快速获得高价值的信息。

4、是价值真实性高和密度低

数据真实性(Veracity)高,随着社交数据、企业内容、交易与应用数据等新数据源的兴趣,传统数据源的局限被打破,企业愈发需要有效的信息之力以确保其真实性及安全性。以视频为例,一小时的视频,在不间断的监控过程中,可能有用的数据仅仅只有一两秒。

四:大数据的作用

1、对大数据的处理分析正成为新一代信息技术融合应用的结点

移动互联网、物联网、社交网络、数字家庭、电子商务等是新一代信息技术的应用形态,这些应用不断产生大数据。云计算为这些海量、多样化的大数据提供存储和运算平台。通过对不同来源数据的管理、处理、分析与优化,将结果反馈到上述应用中,将创造出巨大的经济和社会价值。

大数据具有催生社会变革的能量。但释放这种能量,需要严谨的数据治理、富有洞见的数据分析和激发管理创新的环境(Ramayya
Krishnan,卡内基·梅隆大学海因兹学院院长)。

2、大数据是信息产业持续高速增长的新引擎

面向大数据市场的新技术、新产品、新服务、新业态会不断涌现。在硬件与集成设备领域,大数据将对芯片、存储产业产生重要影响,还将催生一体化数据存储处理服务器、内存计算等市场。在软件与服务领域,大数据将引发数据快速处理分析、数据挖掘技术和软件产品的发展。

3、大数据利用将成为提高核心竞争力的关键因素

各 行各业的决策正在从“业务驱动”
转变“数据驱动”。对大数据的分析可以使零售商实时掌握市场动态并迅速做出应对;可以为商家制定更加精准有效的营销策略提供决策支持;可以帮助企业为消费
者提供更加及时和个性化的服务;在医疗领域,可提高诊断准确性和药物有效性;在公共事业领域,大数据也开始发挥促进经济发展、维护社会稳定等方面的重要作 用。

4、大数据时代科学研究的方法手段将发生重大改变

例如,抽样调查是社会科学的基本研究方法。在大数据时代,可通过实时监测、跟踪研究对象在互联网上产生的海量行为数据,进行挖掘分析,揭示出规律性的东西,提出研究结论和对策。

五:大数据的商业价值

1、对顾客群体细分

“大数据”可以对顾客群体细分,然后对每个群体量体裁衣般的采取独特的行动。瞄准特定的顾客群体来进行营销和服务是商家一直以来的追求。云存储的海量数据和“大数据”的分析技术使得对消费者的实时和极端的细分有了成本效率极高的可能。

2、模拟实境

运用“大数据”模拟实境,发掘新的需求和提高投入的回报率。现在越来越多的产品中都装有传感器,汽车和智能手机的普及使得可收集数据呈现爆炸性增长。Blog、Twitter、Facebook和微博等社交网络也在产生着海量的数据。

云 计算和“大数据”分析技术使得商家可以在成本效率较高的情况下,实时地把这些数据连同交易行为的数据进行储存和分析。交易过程、产品使用和人类行为都可以
数据化。“大数据”技术可以把这些数据整合起来进行数据挖掘,从而在某些情况下通过模型模拟来判断不同变量(比如不同地区不同促销方案)的情况下何种方案
投入回报最高。

3、提高投入回报率

提高“大数据”成果在各相关部门的分享程度,提高整个管理链条和产业链条的投入回报率。“大数据”能力强的部门可以通过云计算、互联网和内部搜索引擎把”大数据”成果和“大数据”能力比较薄弱的部门分享,帮助他们利用“大数据”创造商业价值。

4、数据存储空间出租

企 业和个人有着海量信息存储的需求,只有将数据妥善存储,才有可能进一步挖掘其潜在价值。具体而言,这块业务模式又可以细分为针对个人文件存储和针对企业用
户两大类。主要是通过易于使用的API,用户可以方便地将各种数据对象放在云端,然后再像使用水、电一样按用量收费。目前已有多个公司推出相应服务,如亚
马逊、网易、诺基亚等。运营商也推出了相应的服务,如中国移动的彩云业务。

5、管理客户关系

客 户管理应用的目的是根据客户的属性(包括自然属性和行为属性),从不同角度深层次分析客户、了解客户,以此增加新的客户、提高客户的忠诚度、降低客户流失
率、提高客户消费等。对中小客户来说,专门的CRM显然大而贵。不少中小商家将飞信作为初级CRM来使用。比如把老客户加到飞信群里,在群朋友圈里发布新
产品预告、特价销售通知,完成售前售后服务等。

6、个性化精准推荐

在 运营商内部,根据用户喜好推荐各类业务或应用是常见的,比如应用商店软件推荐、IPTV视频节目推荐等,而通过关联算法、文本摘要抽取、情感分析等智能分
析算法后,可以将之延伸到商用化服务,利用数据挖掘技术帮助客户进行精准营销,今后盈利可以来自于客户增值部分的分成。

以日常的“垃圾短信”为例,信息并不都是“垃圾”,因为收到的人并不需要而被视为垃圾。通过用户行为数据进行分析后,可以给需要的人发送需要的信息,这样“垃圾短信”就成了有价值的信息。在日本的麦当劳,用户在手机上下载优惠券,再去餐厅用运营商DoCoMo的手机钱包优惠支付。运营商和麦当劳搜集相关消费信息,例如经常买什么汉堡,去哪个店消费,消费频次多少,然后精准推送优惠券给用户。

7、数据搜索

数据搜索是一个并不新鲜的应用,随着“大数据”时代的到来,实时性、全范围搜索的需求也就变得越来越强烈。我们需要能搜索各种社交网络、用户行为等数据。其商业应用价值是将实时的数据处理与分析和广告联系起来,即实时广告业务和应用内移动广告的社交服务。

运营商掌握的用户网上行为信息,使得所获取的数据“具备更全面维度”,更具商业价值。典型应用如中国移动的“盘古搜索”。

六:大数据对经济社会的重要影响

1、能够推动实现巨大经济效益

比如对中国零售业净利润增长的贡献,降低制造业产品开发、组装成本等。预计2013年全球大数据直接和间接拉动信息技术支出将达1200亿美元。

2、能够推动增强社会管理水平

大数据在公共服务领域的应用,可有效推动相关工作开展,提高相关部门的决策水平、服务效率和社会管理水平,产生巨大社会价值。欧洲多个城市通过分析实时采集的交通流量数据,指导驾车出行者选择最佳路径,从而改善城市交通状况。

3、如果没有高性能的分析工具,大数据的价值就得不到释放

对大数据应用必须保持清醒认识,既不能迷信其分析结果,也不能因为其不完全准确而否定其重要作用。

1) 由于各种原因,所分析处理的数据对象中不可避免地会包括各种错误数据、无用数据,加之作为大数据技术核心的数据分析、人工智能等技术尚未完全成熟,所以对
计算机完成的大数据分析处理的结果,无法要求其完全准确。例如,谷歌通过分析亿万用户搜索内容能够比专业机构更快地预测流感暴发,但由于微博上无用信息的
干扰,这种预测也曾多次出现不准确的情况。

2)必须清楚定位的是,大数据作用与价值的重点在于能够引导和启发大数据应用者的创新思维,辅助决策。简单而言,若是处理一个问题,通常人能够想到一种方法,而大数据能够提供十种参考方法,哪怕其中只有三种可行,也将解决问题的思路拓展了三倍。

所以,客观认识和发挥大数据的作用,不夸大、不缩小,是准确认知和应用大数据的前提。

七:最后北京开运联合给您总结一下

不管大数据的核心价值是不是预测,但是基于大数据形成决策的模式已经为不少的企业带来了盈利和声誉。

1、从大数据的价值链条来分析,存在三种模式:

1)手握大数据,但是没有利用好;比较典型的是金融机构,电信行业,政府机构等。

2)没有数据,但是知道如何帮助有数据的人利用它;比较典型的是IT咨询和服务企业,比如,埃森哲,IBM,Oracle等。

3)既有数据,又有大数据思维;比较典型的是Google,Amazon,Mastercard等。

2、未来在大数据领域最具有价值的是两种事物:

1)拥有大数据思维的人,这种人可以将大数据的潜在价值转化为实际利益;

2)还未有被大数据触及过的业务领域。这些是还未被挖掘的油井,金矿,是所谓的蓝海。

大 数据是信息技术与专业技术、信息技术产业与各行业领域紧密融合的典型领域,有着旺盛的应用需求、广阔的应用前景。为把握这一新兴领域带来的新机遇,需要不
断跟踪研究大数据,不断提升对大数据的认知和理解,坚持技术创新与应用创新的协同共进,加快经济社会各领域的大数据开发与利用,推动国家、行业、企业对于
数据的应用需求和应用水平进入新的阶段。

1 深圳市儿童医院成功部署IBM集成平台与商业智能分析系统
IBM利用其行业领先的大数据与分析技术,支持深圳市儿童医院搭建信息集成平台,整合原有分散在多系统中的海量数据,实现各部门的信息共享;同时通过商业智能分析对集成数据进行深入挖掘,为医院各部门人员的科学决策提供全面的辅助,提升医院的服务水平和管理能力。
2 Informatica帮助紫金农商银行深挖数据价值
紫金农商银行ODS数据仓库项目建设使用Informatica产品完成数据的加载、清洗、转换工作显得尤为简单,图形化、流程化设计使维护人员能够快速、顺畅的 *** 作,即使数据源结构发生变化,也不会像以前必须修改大量的程序代码,只需要在PowerCenter中配置一下即可。
3 华为大数据一体机服务于北大重点实验室
经过大量的前期调查,比较和分析准备工作,北大重点实验室选择了华为基于高性能服务器RH5885 V2的HANA数据处理平台。HANA提供的对大量实时业务数据进行快速查询和分析以及实时数据计算等功能,在很大程度上得益于华为RH5885 V2服务器的高可靠、高性能和高可用性的支撑。
4 IBM携手汉端科技为飞鹤乳业打造全产业链可追溯体系
IBM、汉端科技与中国飞鹤乳业联合宣布,通过利用IBM业界领先的全面大数据与分析能力,和汉端科技在商业智能领域丰富的行业经验,飞鹤乳业实现了产品的可追溯与食品安全的数字化管理,完成了系统数字化、透明化、服务化的升级。
5 浪潮大数据平台大大提升了济南的警务工作能力
浪潮在帮助济南公安局在搭建云数据中心的基础上构建了大数据平台,以开展行为轨迹分析、社会关系分析、生物特征识别、音视频识别、银行电信诈骗行为分析、舆情分析等多种大数据研判手段的应用,为指挥决策、各警种情报分析、研判提供支持,做到围绕治安焦点能够快速精确定位、及时全面掌握信息、科学指挥调度警力和社会安保力量迅速解决问题。
6 英特尔携杭州诚道科技构建智能交通
面对大数据挑战,杭州市和杭州诚道科技有限公司紧密合作,部署了基于英特尔大数据解决方案的诚道重点车辆动态监管系统,通过集中的数据中心将全市卡口、电子警察、视频监控、流量检测设备、信号机、诱导设备等有效地连接起来,从交通案件侦破能力、交通警察对机动车辆的监管能力到利用关联车辆的数据分析能力,都得到了极大提升。
7 步步高集团借Oracle Exadata 大大提高了IT投资回报率
步步高集团采用 Oracle Exadata数据库云服务器搭建信息化平台,凭借Oracle Exadata数据库云服务器的高扩展性、安全性和冗余性,步步高集团得以在该基础架构上运行一系列Oracle零售行业以及Oracle的应用软件。此外,基于Oracle Exadata的步步高IT新架构比传统架构拥有更好的性价比,最大限度地增加了IT的投资回报率。
8 华为Anti-DDoS助阿里巴巴检测DDoS变革
阿里巴巴现网多个数据中心出口都部署了华为的Anti-DDoS解决方案,平均每天防护的DDoS攻击次数超过100次,每年达数万次,峰值防护的DDoS攻击流量超过100Gbps。如今,DDoS攻击在阿里巴巴安全工程师眼里已经习以为常,由华为Anti-DDoS方案自动调度进行清洗防护即可。“双11”期间,华为Anti-DDoS方案一如既往地成功防护了多轮DDoS攻击事件,有力保障了阿里巴巴网络交易的顺畅平稳。
9 华为大数据方案在福建移动的应用
为进一步提升外呼成功率,从2014年初开始,福建移动联合华为公司开展基于大数据的精准营销工作,采用大数据分析的方法选择外呼目标价值用户。基于大数据分析方法和传统外呼方法分别提供20万目标客户清单,在前台无感知下进行对比验证,确保对比效果不受人为因素影响,经过外呼验证,基于大数据分析方法较传统方法外呼成功率提升50%以上,有效支撑了福建移动4G用户发展战略。
10 北京市人民政府“12345”便民电话中心选择Oracle Exadata 实现便携服务
为了进一步提升部门的调度能力、办理水平和群众满意度,北京市人民政府“12345”便民电话中心选择Oracle Exadata数据库云服务器,升级成为北京市非紧急救助服务综合受理调度平台,通过Oracle Exadata Database Machine支撑起新平台的数据库访问需求。升级后的平台能够整合全市的便民呼叫服务,支撑来自群众的各类诉求、求助、批评和建议,并可为公众提供方便、快捷的公共信息服务,真正成为全市的舆情中心、信息汇集中心和城市名片。
11 民生银行借IBM BigInsights应对金融业的大数据挑战
IBM BigInsights大数据解决方案和企业级NoSQL数据库SequoiaDB合作,为民生银行搭建低成本、高性能、高可靠且水平扩张的数据平台,帮助民生银行通过大数据分析应对金融业的大数据挑战,完善交易流水查询分析系统,产业链金融管理系统,以及私人银行产品货架管理系统。
12 中信银行xyk实施EMC Greenplum 数据仓库解决方案
中信银行xyk中心选择实施EMC Greenplum 数据仓库解决方案。Greenplum 数据仓库解决方案为中信银行xyk中心提供了统一的客户视图,借助客户统一视图,中信银行xyk中心可以更清楚地了解其客户价值体系,从而能够为客户提供更有针对性和相关性的营销活动。基于数据仓库,中信银行xyk中心现在可以从交易、服务、风险、权益等多个层面分析数据。通过提供全面的客户数据,营销团队可以对客户按照低、中、高价值来进行分类,根据银行整体经营策略积极地提供相应的个性化服务。
13 惠普助力雅昌集团掘金大数据
成立于1993年的雅昌集团首创“传统印刷+IT技术+文化艺术”的商业模式,形成环环相扣的文化产业链,为艺术市场提供全面、综合的一站式服务。基于企业内容数据管理体系,惠普为雅昌搭建了从数据采集、处理、管理到应用的全过程处理流程,使雅昌可以快速利用所需数据,缩短新品上线时间,快速响应市场变化。
14 德国足球队采用SAP大数据方案迎战世界杯
德国足协和SAP公司通过联合创新引入SAP Match Insights解决方案,该方案基于SAP HANA平台运行处理海量数据,可以为球员和教练提供一个简明的用户界面,帮助双方开展互动性更强的对话,分析球队训练、备战和比赛情况,从而提升球员和球队的成绩。
15 1号店借Oracle Exadata改善终端客户体验
1号店采用Oracle Exadata数据库云服务器成功优化统一整合的数据平台,满足了不断增长的业务处理需求,并进一步改善了终端客户体验。经过Oracle Exadata整合后的新平台采用混合负载互备架构,将平均处理性能提升7倍,既可以支持目前规划业务量的业务处理,还能够随着业务量的增长进行在线升级、扩容,满足处理能力和数据量的增长需求。软、硬件集成设计的Oracle Exadata 协助解决了1号店的I/O瓶颈问题,实现了比传统架构更高的性能和可扩展性。同时,基于Exadata的1号店IT新架构比传统架构拥有更好的性价比,最大限度地发挥了IT投资回报率。
16 大数据在青岛银行:提升银行交易性能、简化运营和管理
利用IBM大数据专家PureData,青岛银行能够高效集成业务数据,简化运维。PureData for Transactions作为青岛银行重要业务处理系统,能够在一个系统中整合超过几十个数据库,同时提供良好的性能、可用性和可扩展性支持实现广泛的业务目标,例如地域扩张,突发的业务交易高峰,新柜面、流程银行等大规模的业务上线等。
17 Informatica方案帮助南京儿童医院实现信息互通共享
南京市儿童医院目前已建成包括HIS、LIS、PACS、电子病历EMR、医生工作站、移动护理、病案、财务管理、库房管理和手术麻醉等几十个应用系统,这些异构系统间数据调用分散,不能集中统一标准化管理。通过采用Informatica ETL工具构建数据仓库系统,并基于数据仓库建设医院数据调用公共资源中心库,南京市儿童医院实现了实时的数据交互和信息共享,干净、标准的数据为跨应用系统数据关联分析打下扎实基础。
18 东吴大学采用达索系统EXALEAD启动大数据应用暨产学合作
台湾东吴大学采用达索系统EXALEAD大数据智能应用开发解决方案,全方位地整合校务信息,积极开发校务经营发展的各项应用。此外还将启动三方产学合作计划,协助建立校内大数据相关课程、人才培训和实习机制,使学生自入学就开始不断提升其未来职场所需的关键竞争力,学用合一,实现学校、学生、企业三赢。
19 百度大脑PK人脑 大数据押高考作文题
为了帮助考生更好地备考,百度高考作文预测通过对过去八年高考作文题及作文范文、海量年度搜索风云热词、历年新闻热点等原始数据与实时更新的“活数据”进行深度挖掘分析,以“概率主题模型”模拟人脑思考,反向推导出作文主题及关联词汇,为考生预测出2014年高考作文的六大命题方向。
20 IBM助力同仁医院构筑强大的分析体系
同仁医院通过与IBM合作,同仁医院建立起了强大的分析能力和体系,包括对临床、运营、科研、考核等信息的分析,实现智慧的医院管理与考核;同时也能看到医疗设备的平均故障间隔周期,从而降低了设备的故障率、平均维修时间。这一切都让工作效率稳步提升,也缓解了病人看病难的问题,提高了患者就医满意度。
21 微软助上海市浦东新区卫生局更加智能化
作为上海市公共卫生的主导部门,浦东新区卫生局在微软SQL Server 2012的帮助之下,积极利用大数据,推动卫生医疗信息化走上新的高度:公共卫生部门可通过覆盖区域的居民健康档案和电子病历数据库,快速检测传染病,进行全面的疫情监测,并通过集成疾病监测和响应程序,快速进行响应。与此同时,得益于非结构化数据的分析能力的日益加强,大数据分析技术也使得临床决策支持系统更智能。
22 湖南电信通过分析掌握电信市场动向、针对性定制营销计划
利用IBM大数据专家PureData,湖南电信实现了通过分析掌握市场整体经营情况、快速制定市场策略以及加强客户经理营销维系的高效执行。PureData for Analytics作为湖南电信本地数据集市建设工程重要组成部分,高效整合了湖南电信旗下各本地网数据,为进一步分析创造先机。
23 携程借SQL Server增强了数据采集和掌控
作为国内领先的综合性旅行服务公司,携程计算机技术有限公司曾面临分支机构、服务城市和员工数量的增长所带来的运营数据分散和数据集成难的 IT 问题。借助微软SQL Server 2012 商业智能解决方案,携程增强了其对所有下属分支机构的数据采集和掌控,大大减少了计划性停机时间以及非计划性停机的时间,灵活的部署选项也可以根据携程的需要实现从服务器到云的扩展。
24 上海公共研发平台部署Oracle Exadata应对扩展需求
上海公共研发平台部署Oracle Exadata数据库云服务器,以应对其系统和应用的扩展需求。Oracle Exadata融合了一系列同类最佳的预配置的服务器、网络、存储和软件,能为数据仓库和在线事务处理应用程序提供超强性能。上海公共研发平台运行Oracle Exadata期间相对稳定,CPU占用率控制在5%以内,极大改善了用户应用体验。同时,Exadata平台的可扩展性极好的满足了上海公共研发平台的系统需求,目前整个公共研发平台的20多个应用系统已经全部迁移到Exadata上,应用部署量增长1倍,且运行十分稳定。
25 360手机卫士10KB解决iPhone骚扰
360手机卫士通过对海量数据的运算和精准匹配下发,将一组大小仅为10KB的数据即1000个骚扰号码同步到用户手机上,打造个性化的骚扰号码数据库,此外,每天更新的骚扰号码库数据,会依据标记趋势调整骚扰号码库中各类数据比例,即每一位360手机卫士用户手机中的1000个骚扰号码都是动态的,随地域、身份以及骚扰趋势的变化而变化。
26 神州数码助张家港市更“智慧”
在张家港实践的城市案例中,市民登录这款“神州数码”研发的市民公共信息服务平台后,市民只要凭借自己的身份z和密码,即可通过该系统平台进行240余项“在线预审”服务、130余项“网上办事”服务等,还可通过手机及时查看办事状态。相比于以前来说,市民办事的时间最少可以节省一半以上。
27 IBM助中网组委会构建安全和敏捷的内联网
IBM专门为中网设计了具有实时大数据分析功能的MatchTracker(赛事追踪系统),可以为球迷提供数据呈现、计分等功能。 MatchTracker基于IBM SlamTracker分析技术,使球迷能够利用历史和实时性数据,洞悉比分之后的态势和策略。此外,IBM还为中网组委会构建了安全和敏捷的内联网。
28 Cortana基于微软Bing大数据预测世界杯
微软为Cortana增加了世界杯预测的功能,基于微软Bing大数据,并综合考虑世界杯各支球队的过往比赛结果、比赛时间、天气情况、主场优势以及其他因素,使用大量的博彩市场公开数据、民意调查、社交媒体以及其它在线数据,利用大数据分析来判断每场比赛的结果。
29 中科曙光助同济大学科研领域再创新高
为了满足爆炸式增长的用户和数据量,同济大学携手中科曙光,在全面整合云计算平台和现有资产的基础上,采用 DS800-F20存储系统、Gridview集群管理系统,以及Hadoop分布式计算平台构建出了业内领先的大数据柔性处理平台,使得同济大学在信息学科及其交叉学科研究领域迈上一个新台阶。
30 华为助农行完成海量数据分布式处理的需求
华为向农行提供了良好的计算平台,基于华为RH2288 V2服务器的分布式并行计算集群进行测试,以及还提供了快速响应客户需求的研发能力,以及业界最快捷的售后服务。农行的测试结果表明,华为解决方案完全满足农行对海量数据进行分布式处理的要求。

大数据本身是一个抽象的概念。从一般意义上讲,大数据是指无法在有限时间内用常规软件工具对其进行获取、存储、管理和处理的数据集合。
目前,业界对大数据还没有一个统一的定义,但是大家普遍认为,大数据具备 Volume、Velocity、Variety 和 Value 四个特征,简称“4V”,即数据体量巨大、数据速度快、数据类型繁多和数据价值密度低,如图 1 所示。下面分别对每个特征作简要描述。
1)Volume:表示大数据的数据体量巨大。
数据集合的规模不断扩大,已经从 GB 级增加到 TB 级再增加到 PB 级,近年来,数据量甚至开始以 EB 和 ZB 来计数。
例如,一个中型城市的视频监控信息一天就能达到几十 TB 的数据量。百度首页导航每天需要提供的数据超过 1-5PB,如果将这些数据打印出来,会超过 5000 亿张 A4 纸。图 2 展示了每分钟互联网产生的各类数据的量。
2)Velocity:表示大数据的数据产生、处理和分析的速度在持续加快。
加速的原因是数据创建的实时性特点,以及将流数据结合到业务流程和决策过程中的需求。数据处理速度快,处理模式已经开始从批处理转向流处理。
业界对大数据的处理能力有一个称谓——“ 1 秒定律”,也就是说,可以从各种类型的数据中快速获得高价值的信息。大数据的快速处理能力充分体现出它与传统的数据处理技术的本质区别。
3)Variety:表示大数据的数据类型繁多。
传统 IT 产业产生和处理的数据类型较为单一,大部分是结构化数据。随着传感器、智能设备、社交网络、物联网、移动计算、在线广告等新的渠道和技术不断涌现,产生的数据类型无以计数。
现在的数据类型不再只是格式化数据,更多的是半结构化或者非结构化数据,如 XML、邮件、博客、即时消息、视频、照片、点击流、 日志文件等。企业需要整合、存储和分析来自复杂的传统和非传统信息源的数据,包括企业内部和外部的数据。
4)Value:表示大数据的数据价值密度低。
大数据由于体量不断加大,单位数据的价值密 度在不断降低,然而数据的整体价值在提高。以监控视频为例,在一小时的视频中,有用的数据可能仅仅只有一两秒,但是却会非常重要。现在许多专家已经将大数据等同于黄金和石油,这表示大数据当中蕴含了无限的商业价值。
通过对大数据进行处理,找出其中潜在的商业价值,将会产生巨大的商业利润

大数据专业属于交叉学科:以统计学、数学、计算机为三大支撑性学科;生物、医学、环境科学、经济学、社会学、管理学为应用拓展性学科。所以大数据在众多行业都有应用,下面说说其在医疗领域的应用。
随着互联网规模不断的扩大,大数据正在改变着这个时代的绝大一部分的行业或者企业,医疗行业也不例外,医疗健康正在成为人们关注的重点问题,以智能化、数字化为特征的医疗信息化正在蓬勃兴起,医疗行业的数据类型也在向海量、复杂、多样的类型方式转变。
1就医数据进行电子化管理
对电子医疗记录的收集,包括个人病史、家族病史、过敏症以及所有医疗检测结果等。在信息系统中进行分享,每一个医生都能够在系统中添加或变更记录,而无需再通过耗时的纸质工作来完成。这些记录同时也能帮助病人掌握自己的用药情况,同时也是医学研究的重要数据参考。
2健康预测
通过智能手表等可穿戴设备的数据,建立健康预测模型,通过这些可穿戴设备持续不断地收集健康数据并存储在云端,实时汇报病人的健康状况。应用于数百万人及其各种疾病的预测和分析,并且在未来的临床试验将不再局限于小样本,而是包括所有人。
3医学影像以及临床诊断
通过让大数据机器人来识别记住各类海量的医学影像,例如X射线、核磁共振成像、超声波……等各种的图像。对大量病历进行深度挖掘与学习,训练其对影片的诊断,最终实现辅助医生进行临床决策,规范诊疗路径,提高医生的工作效率。
4药品研发
利用大数据进行数据建模并进行分析,预测药物的临床结果,可以为临床阶段的实验结果提供参考,节省临床阶段的时间并优化临床实验结果。制药公司也可以通过数据建模进行分析,从而生产出治疗成功率更高的药品并极大地缩短药品从研发到投入市场的时间。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13121376.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-06-04
下一篇 2023-06-04

发表评论

登录后才能评论

评论列表(0条)

保存