强的模块独立分开视为解耦,异步就是非必要逻辑异步方式处理,加快响应速度,削峰是避免短期高并发导致系统问题进行缓冲队列处理。消息队列的缺点在于:加强系统复杂性、系统可用性降低,使
用了消息队列系统出现问题排查的范围就变大、需要考虑消息队列导致的问题。
本文说明主流的消息队列,针对使用过的zeroMQ和rabbitMQ、Kakfa:
zeroMQ :C语言开发,号称最快的消息队列,本着命名zero的含义,中油中间架构使用简单,表面上是基于socket的封装套接字API,在多个节点应用场景下非常灵活、架构的可扩展性很强,
实现N到M的协同处理;
zmq的socket模式: req、rep、push、pull、pub、sub、router、dealer。
(1)req和rep:请求回应模型,req和rep都可以请求和回答,不同的只是req是先send再rec,rep是先rec再send。支持N个请求端一个接收端,也支持N个接收端一个请求端。N个接收端采
用rr负载均衡。 哪个是“一”端,哪个就bind端口,“N”端就只能connect,所以,req+rep无论谁bind端口,肯定要有一个是“一”。
(2) router和dealer:随时可以发送和接收的req和rep,看起来router+dealer跟 req+rep属于同类功能。因为router和dealer可以随时发送接收,所以它们可以用来做路由。一个router用来响
应N个req,然后它在响应处理的时候,再通过另一个socket把请求扔出去,接收者是另外的M个rep,这就做到N:M。
(3)pub和sub :订阅和推送,对应发布者和订阅者。
(4)push和pull:就是管道,一个只推数据,一个只拉数据。
rabbitMQ :使用erlang语言开发,高并发特点,基于AMQP(即Advanced Message Queuing Protocol)的开源高级消费队列,AMQP的主要特征是面向消息、队列、路由(包括点对点和发布/
订阅)、可靠性、安全),企业级适应性和稳定性,并且有WEB管理界面方便用户查看和管理。以下是rabbitMQ的结构图:
(1)Producer:数据发送方,一般一个Message有两个部分:payload(有效载荷)和label(标签),payload是数据实际载体,label是exchange的名字或者一个tag,决定发给哪个Consumer;
(2)Exchange: 内部 消息交换器,exchange从生产者那收到消息后,一般会指定一个Routing Key,来指定这个消息的路由规则,当然Routing Key需要与Exchange Type及Binding key联合使用
才能最终生效,根据路由规则,匹配查询表中的routing key,分发消息到queue中;
(3)binding:即绑定,绑定(Binding)Exchange与Queue的同时,一般会指定一个Binding key,但不一定会生效,依赖于Exchange Type;
(4)Queue:即队列是rabbitmq内部对象,用于存储消息,一个message可以被同时拷贝到多个queue中,queue对load balance的处理是完美的。对于多个Consumer来说,RabbitMQ 使用循
环的方式(round-robin)的方式均衡的发送给不同的Consumer;
(5)Connection与Channel: Connection 就是一个TCP的连接,Producer和Consumer都是通过TCP连接到RabbitMQ Server, Channel 是为了节省开销建立在上述的TCP连接中的接口,大部
分的业务 *** 作是在Channel这个接口中完成的,包括定义Queue、定义Exchange、绑定Queue与Exchange、发布消息等;
(6)Consumer:即数据的接收方,如果有多个消费者同时订阅同一个Queue中的消息,Queue中的消息会被平摊给多个消费者;
(7)Broker: 即RabbitMQ Server,其作用是维护一条从Producer到Consumer的路线,保证数据能够按照指定的方式进行传输;
(8)Virtual host:即虚拟主机,当多个不同的用户使用同一个RabbitMQ server提供的服务时,可以划分出多个vhost,每个用户在自己的vhost创建exchange/queue;
rabbitMQ消息转发中的路由转发是重点,生产者Producer在发送消息时,都需要指定一个RoutingKey和Exchange,Exchange收到消息后可以看到消息中指定的RoutingKey,再根据当前
Exchange的ExchangeType,按一定的规则将消息转发到相应的queue中去。三种Exchage type:
(1)Direct exchange :直接转发路由,原理是通过消息中的routing key,与binding 中的binding-key 进行比对,若二者匹配,则将消息发送到这个消息队列;
比如:消息生成者生成一个message(payload是1,routing key为苹果),两个binding(binding key分别为苹果、香蕉);exchange比对消息的routing key和binding key后,将消息发给了queue1,消息消费者1获得queue1的消息;
(2)Topic exchange: 通配路由,是direct exchange的通配符模式,
比如:消息生成者生成一个message(payload是1,routing key为quickorangerabbit),两个binding(binding key分别为orange 、 rabbit);exchange比对消息的routing key和binding key
后,exchange将消息分发给两个queue,两个消费者获得queue的消息;
(3)Fanout exchange: 复制分发路由,原理是不需要routkey,当exchange收到消息后,将消息复制多份转发给与自己绑定的消息队列,
比如:消息生成者生成一个message(payload是1,routing key为苹果),两个binding(binding key分别为苹果、香蕉);exchange将消息分发给两个queue,两个消费者获得queue的消息;
rabbiMQ如何保证消息的可靠性?
(1)Message durability:消息持久化,非持久化消息保存在内存中,持久化消息写入内存同时也写入磁盘;
(2)Message acknowledgment:消息确认机制,可以要求消费者在消费完消息后发送一个回执给RabbitMQ,RabbitMQ收到消息回执(Message acknowledgment)后才将该消息从Queue中移
除。通过ACK。每个Message都要被acknowledged(确认,ACK)。
(3)生产者消息确认机制:AMQP事务机制、生产者消息确认机制(publisher confirm)。
最后, 对比一下zeroMQ、rabbitMQ、kafka主流的消息队列的性能情况:
对比方向 概要
吞吐量 万级 RabbitMQ 的吞吐量要比 十万级甚至是百万级Kafka 低一个数量级。ZeroMQ号称最快的消息队列系统,尤其针对大吞吐量的需求场景。
可用性 都可以实现高可用。RabbitMQ 都是基于主从架构实现高可用性。 kafka 也是分布式的,一个数据多个副本,少数机器宕机,不会丢失数据,不会导致不可用
时效性 RabbitMQ 基于erlang开发,所以并发能力很强,性能极其好,延时很低,达到微秒级。其他两个个都是 ms 级。
功能支持 Kafka 功能较为简单,主要支持简单的MQ功能,在大数据领域实时计算以及日志采集被大规模使用;ZeroMQ能够 实现RabbitMQ不擅长的高级/复杂 的队列
消息丢失 RabbitMQ有ack模型,也有事务模型,保证至少不会丢数据, Kafka 理论上不会丢失,但不排除批量情况下。
开发环境 RabbitMQ需要erlang支持、kafka基于zookeeper管理部署、zeroMQ程序编译调用即可
封装库 基于c++开发,使用RabbitMQ-C,cppKafka,而zeroMQ基于C语言开发,无需封装您好,大数据学习一般分为6个阶段
第一阶段
JavaSE基础核心
第二阶段
数据库关键技术
第三阶段
大数据基础核心
第四阶段
Spark生态体系框架&大数据精选项目
第五阶段
Spark生态体系框架&企业无缝对接项目
第六阶段
Flink流式数据处理框架
大数据是最近几年新兴的专业,发展的前景是非常好的,选择大数据是没有错的!
在考虑Hadoop生态系统中的各种引擎时,重要的是要了解每个引擎在某些用例下效果最佳,并且企业可能需要使用多种工具组合才能满足每个所需的用例。话虽如此,这里是对Apache Spark的一些顶级用例的回顾。
一、流数据
Apache Spark的关键用例是其处理流数据的能力。由于每天要处理大量数据,因此对于公司而言,实时流传输和分析数据变得至关重要。Spark Streaming具有处理这种额外工作负载的能力。一些专家甚至认为,无论哪种类型,Spark都可以成为流计算应用程序的首选平台。提出此要求的原因是,Spark Streaming统一了不同的数据处理功能,从而使开发人员可以使用单个框架来满足其所有处理需求。
当今企业使用Spark Streaming的一般方式包括:
1、流式ETL –在数据仓库环境中用于批处理的传统ETL(提取,转换,加载)工具必须读取数据,将其转换为数据库兼容格式,然后再将其写入目标数据库。使用Streaming ETL,在将数据推送到数据存储之前,将对其进行连续的清理和聚合。
2、数据充实 –这种Spark Streaming功能通过将实时数据与静态数据相结合来充实实时数据,从而使组织能够进行更完整的实时数据分析。在线广告商使用数据充实功能将历史客户数据与实时客户行为数据结合起来,并根据客户的行为实时提供更多个性化和针对性的广告。
3、触发事件检测 – Spark Streaming使组织可以检测到可能对系统内部潜在严重问题的罕见或异常行为(“触发事件”)并做出快速响应。金融机构使用触发器来检测欺诈性交易并阻止其欺诈行为。医院还使用触发器来检测潜在的危险健康变化,同时监视患者的生命体征-向正确的护理人员发送自动警报,然后他们可以立即采取适当的措施。
4、复杂的会话分析 –使用Spark Streaming,与实时会话有关的事件(例如登录网站或应用程序后的用户活动)可以组合在一起并进行快速分析。会话信息还可以用于不断更新机器学习模型。诸如Netflix之类的公司使用此功能可立即了解用户在其网站上的参与方式,并提供更多实时**推荐。
二、机器学习
许多Apache Spark用例中的另一个是它的机器学习功能。
Spark带有用于执行高级分析的集成框架,该框架可帮助用户对数据集进行重复查询,这从本质上讲就是处理机器学习算法。在此框架中找到的组件包括Spark的可扩展机器学习库(MLlib)。MLlib可以在诸如聚类,分类和降维等领域中工作。所有这些使Spark可以用于一些非常常见的大数据功能,例如预测智能,用于营销目的的客户细分以及情感分析。使用推荐引擎的公司将发现Spark可以快速完成工作。
网络安全是Spark 机器学习功能的一个很好的商业案例。通过使用Spark堆栈的各种组件,安全提供程序可以对数据包进行实时检查,以发现恶意活动的痕迹。在前端,Spark Streaming允许安全分析人员在将数据包传递到存储平台之前检查已知威胁。到达存储区后,数据包将通过其他堆栈组件(例如MLlib)进行进一步分析。因此,安全提供商可以在不断发展的过程中了解新的威胁-始终领先于黑客,同时实时保护其客户。
三、互动分析
Spark最显着的功能之一就是其交互式分析功能。MapReduce是为处理批处理而构建的,而Hive或Pig等SQL-on-Hadoop引擎通常太慢,无法进行交互式分析。但是,Apache Spark足够快,可以执行探索性查询而无需采样。Spark还与包括SQL,R和Python在内的多种开发语言接口。通过将Spark与可视化工具结合使用,可以交互地处理和可视化复杂的数据集。
下一版本的Apache Spark(Spark 20)将于今年的4月或5月首次亮相,它将具有一项新功能- 结构化流 -使用户能够对实时数据执行交互式查询。通过将实时流与其他类型的数据分析相结合,预计结构化流将通过允许用户针对Web访问者当前会话运行交互式查询来促进Web分析。它也可以用于将机器学习算法应用于实时数据。在这种情况下,将对旧数据进行算法训练,然后将其重定向以合并新的数据,并在其进入内存时从中学习。
四、雾计算
尽管大数据分析可能会引起广泛关注,但真正激发技术界想象力的概念是物联网(IoT)。物联网通过微型传感器将对象和设备嵌入在一起,这些微型传感器彼此之间以及与用户进行通信,从而创建了一个完全互连的世界。这个世界收集了大量数据,对其进行处理,并提供革命性的新功能和应用程序供人们在日常生活中使用。但是,随着物联网的扩展,对大量,种类繁多的机器和传感器数据进行大规模并行处理的需求也随之增加。但是,利用云中的当前分析功能很难管理所有这些处理。
那就是雾计算和Apache Spark出现的地方。
雾计算将数据处理和存储分散化,而不是在网络边缘执行这些功能。但是,雾计算为处理分散数据带来了新的复杂性,因为它越来越需要低延迟,机器学习的大规模并行处理以及极其复杂的图形分析算法。幸运的是,有了Spark Streaming等关键堆栈组件,交互式实时查询工具(Shark),机器学习库(MLib)和图形分析引擎(GraphX),Spark不仅具有雾计算解决方案的资格。实际上,随着物联网行业逐渐不可避免地融合,许多行业专家预测,与其他开源平台相比,Spark有可能成为事实上的雾基础设施。
现实世界中的火花
如前所述,在线广告商和诸如Netflix之类的公司正在利用Spark获得见识和竞争优势。其他也从Spark受益的著名企业是:
Uber –这家跨国在线出租车调度公司每天都从其移动用户那里收集TB级的事件数据。通过使用Kafka,Spark Streaming和HDFS构建连续的ETL管道,Uber可以在收集原始非结构化事件数据时将其转换为结构化数据,然后将其用于进一步和更复杂的分析。
Pinterest –通过类似的ETL管道,Pinterest可以利用Spark Streaming即时了解世界各地的用户如何与Pins互动。因此,当人们浏览站点并查看相关的图钉时,Pinterest可以提出更相关的建议,以帮助他们选择食谱,确定要购买的产品或计划前往各个目的地的行程。
Conviva –这家流媒体视频公司每月平均约有400万个视频供稿,仅次于YouTube。Conviva使用Spark通过优化视频流和管理实时视频流量来减少客户流失,从而保持一致的流畅,高质量的观看体验。
何时不使用Spark
尽管它具有通用性,但这并不一定意味着Apache Spark的内存中功能最适合所有用例。更具体地说,大数据分析Apache Spark的应用实例Spark并非设计为多用户环境。Spark用户需要知道他们有权访问的内存对于数据集是否足够。添加更多的用户使此 *** 作变得更加复杂,因为用户必须协调内存使用量才能同时运行项目。由于无法处理这种类型的并发,用户将需要为大型批处理项目考虑使用备用引擎,例如Apache Hive。
随着时间的流逝,Apache Spark将继续发展自己的生态系统,变得比以前更加通用。在大数据已成为规范的世界中,组织将需要找到最佳方式来利用它。从这些Apache Spark用例可以看出,未来几年将有很多机会来了解Spark的真正功能。
随着越来越多的组织认识到从批处理过渡到实时数据分析的好处,Apache Spark的定位是可以在众多行业中获得广泛而快速的采用。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)