各种云平台的出现是该转变的最重要环节之一。顾名思义,这种平台允许开发者们或是将写好的程序放在“云”里运行,或是使用“云”里提供的服务,或二者皆是。至于这种平台的名称,现在我们可以听到不止一种称呼,比如按需平台、平台即服务等等。但无论称呼它什么,这种新的支持应用的方式有着巨大的潜力。
物联网( IoT ,Internet of things )即“万物相连的互联网”,是互联网基础上的延伸和扩展的网络,将各种信息传感设备与互联网结合起来而形成的一个巨大网络,实现在任何时间、任何地点,人、机、物的互联互通。
1、射频识别技术
射频识别技术(Radio Frequency Identification,简称RFID)。RFID是一种简单的无线系统,由一个询问器(或阅读器)和很多应答器(或标签)组成。标签由耦合元件及芯片组成,每个标签具有唯扩展词条一的电子编码。
标签附着在物体上标识目标对象,它通过天线将射频信息传递给阅读器,阅读器就是读取信息的设备。RFID技术让物品能够“开口说话”。这就赋予了物联网一个特性即可跟踪性。就是说人们可以随时掌握物品的准确位置及其周边环境。
2、传感网
MEMS是微机电系统( Micro - Electro - Mechanical Systems)的英文缩写。它是由微传感器、微执行器、信号处理和控制电路、通讯接口和电源等部件组成的一体化的微型器件系统。
其目标是把信息的获取、处理和执行集成在一起,组成具有多功能的微型系统,集成于大尺寸系统中,从而大幅度地提高系统的自动化、智能化和可靠性水平。
3、M2M系统框架
M2M是Machine-to-Machine/Man的简称,是一种以机器终端智能交互为核心的、网络化的应用与服务。它将使对象实现智能化的控制。M2M技术涉及5个重要的技术部分:机器、M2M硬件、通信网络、中间件、应用。
基于云计算平台和智能网络,可以依据传感器网络获取的数据进行决策,改变对象的行为进行控制和反馈。
4、云计算
云计算旨在通过网络把多个成本相对较低的计算实体整 合成一个具有强大计算能力的完美系统,并借助先进的商业 模式让终端用户可以得到这些强大计算能力的服务。
如果将计算能力比作发电能力,那么从古老的单机发电模式转向现 代电厂集中供电的模式,就好比现在大家习惯的单机计算模 式转向云计算模式,而“云”就好比发电厂,具有单机所不能比拟的强大计算能力。
扩展资料:
物联网功能
1、获取信息的功能
主要是信息的感知、识别,信息的感知是指对事物属性状态及其变化方式的知觉和敏感;信息的识别指能把所感受到的事物状态用一定方式表示出来。
2、传送信息的功能
主要是信息发送、传输、接收等环节,最后把获取的事物状态信息及其变化的方式从时间(或空间)上的一点传送到另一点的任务,这就是常说的通信过程。
3、处理信息的功能
是指信息的加工过程,利用已有的信息或感知的信息产生新的信息,实际是制定决策的过程。
4、施效信息的功能
指信息最终发挥效用的过程,有很多的表现形式,比较重要的是通过调节对象事物的状态及其变换方式,始终使对象处于预先设计的状态
参考资料来源:百度百科-物联网
天玑系列,骁龙865,麒麟9000,990。NSA模式是在原有2G/3G/4G网络下融合升级5G网络,SA模式是撇开原来网络重新再建一个5G网络。2017年中国半导体封装测试技术与市场年会已经过去一个月了,但半导体这个需要厚积薄发的行业不需要蹭热点,一个月之后,年会上专家们的精彩发言依然余音绕梁。除了“封装测试”这个关键词,嘉宾们提的最多的一个关键词是“物联网”。因此,将年会上的嘉宾观点稍作整理,让我们再一起思考一下物联网时代的先进封装。
智能手机增速放缓
半导体下游市场的驱动力经历了几个阶段,首先是出货量为亿台量级的个人电脑,后来变成十亿台量级的手机终端和通讯产品,而从2010年开始,以智能手机为代表的智能移动终端掀起了移动互联网的高潮,成为最新的杀手级应用。回顾之前的二三十年,下游电子行业杀手级应用极大的拉动了半导体产业发展,不断激励半导体厂商扩充产能,提升性能,而随着半导体产量提升,半导体价格也很快下降,更便宜更高性能的半导体器件又反过来推动了电子产业加速发展,半导体行业和电子行业相互激励,形成了良好的正反馈。但在目前, 智能手机的渗透率已经很高,市场增长率开始减缓,下一个杀手级应用将会是什么?
物联网可能成为下一个杀手级应用
根据IHS的预测,物联网节点连接数在2025年将会达到700亿。
从数量上来看,物联网将十亿量级的手机终端产品远远抛在后面,很可能会成为下一波的杀手级应用。但物联网的问题是产品多样化,应用非常分散。我们面对的市场正从单一同质化大规模市场向小规模异质化市场发生变化。对于半导体这种依靠量的行业来说,芯片设计和流片前期投入巨大,没有量就不能产生规模效应,摊销到每块芯片的成本非常高。
除了应对小规模异质化的挑战, 物联网需要具备的关键要素还包括 :多样的传感器(各类传感器和Sensor Hub),分布式计算能力(云端计算和边缘计算),灵活的连接能力(5G,WIFI,NB-IOT,Lora, Bluetooth, NFC,M2M…),存储能力(存储器和数据中心)和网络安全。这些关键要素会刺激CPU/AP/GPU,SSD/Memory,生物识别芯片,无线通讯器件,传感器,存储器件和功率器件的发展。
物联网多样化的下游产品对封装提出更多要求
物联网产品的多样性意味着芯片制造将从单纯追求制程工艺的先进性,向既追求制程先进性,也最求产品线的宽度发展。物联网时代的芯片可能的趋势是:小封装,高性能,低功耗,低成本,异质整合(Stacking,Double Side, EMI Shielding, Antenna…)。
汽车电子的封装需求: 汽车电子目前的热点在于ADAS系统和无人驾驶AI深度学习。全球汽车2016年产销量约为8000万台,其中中国市场产销量2800万台,为汽车电子提供了足够大的舞台。ADAS汽车系统发展前景广阔,出于安全考虑,美国NHTSA要求从2018年5月起生产的汽车需要强制安装倒车影像显示系统。此外,车道偏离警示系统(LDW),前方碰撞预警系统(FCW),自动紧急刹车系统(AEBS),车距控制系统(ACC),夜视系统(NV)市场也在快速成长。中国一二线城市交规越来越严格也使得人们对ADAS等汽车电子系统的需求提升。ADAS,无人驾驶,人工智能,深度学习对数据处理实时性要求高,所以要求芯片能实现超高的计算性能,另外对芯片和模块小型化设计和散热也有要求,未来的汽车电子芯片可能需要用25D技术进行异构性的集成,比如将CPU,GPU,FPGA,DRAM集成封装在一起。
个人移动终端的封装需求: 个人消费电子市场也将继续稳定增长,个人消费电子设备主要的诉求是小型化,省电,高集成度,低成本和模块化。比如个人移动终端要求能实现多种功能的模块化,将应用处理器模块,基带模块,射频模块,指纹识别模块,通讯模块,电源管理模块等集成在一起。这些产品对芯片封装形式的要求同样是小型化,省电,高集成度,模块化,芯片封装形式主要是“Stack Die on Passive”,“Antenna in SiP”,“Double Side SiP等。比如苹果的3D SiP集成封装技术,从过去的ePOP & BD PoP,发展到目前的是HBW-PoP和FO-PoP,下一代的移动终端封装形式可能是FO-PoP加上FO-MCM,这种封装形式能够提供更加超薄的设计。
5G 网络芯片的封装需求: 5G网络和基于物联网的NB-IOT网络建设意味着网络芯片市场将会有不错的表现。与网络密切祥光的大数据,云计算和数据中心,对存储器芯片和FPGA GPU/CPU的需求量非常大。通信网络芯片的特点是大规模,高性能和低功耗,此外,知识产权(IP)核复杂、良率等都是厂商面临的重要问题。这些需求和问题也促使网络芯片封装从Bumping & FC发展到25D,FO-MCM和3D。而TSV技术的成功商用,使芯片的堆叠封装技术取得了实质性进展,海力士和三星已成功研发出3D堆叠封装的高带宽内存(HBM),Micron和Intel等也正在联合推动堆叠封装混合存储立方体(HMC)的研发。在芯片设计领域,BROADCOM、GLOBAL FOUNDRIES等公司也成功引入了TSV技术,目前已能为通信网络芯片提供25D堆叠后端设计服务。
上游晶圆代工厂供应端对封装的影响
一方面,下游市场需求非常旺盛,另外一方面,大基金带领下的资本对晶圆代工制造业持续大力投资,使得上游的制造一直在扩充产能据SEMI估计,全球将于2017年到2020年间投产62座半导体晶圆厂,其中26座在中国大陆,占全球总数的42%。目前晶圆厂依然以40
nm以上的成熟制程为主,占整体晶圆代工产值的60%。未来,汽车电子,消费电子和网络通信行业对芯片集成度、功能和性能的要求越来越高,主流的晶圆厂中芯和联电都在发展28nm制程,其中台积电28nm制程量产已经进入第五年,甚至已经跨入10Xnm制程。
随着晶圆技术节点不断逼近原子级别,摩尔定律可能将会失效。如何延续摩尔定律?可能不能仅仅从晶圆制造来考虑,还应该从芯片制造全流程的整个产业链出发考虑问题,需要 对芯片设计,晶片制造到封装测试都进行系统级的优化。 因此, 晶圆制造,芯片封测和系统集成三者之间的界限将会越来越模糊。 首先是芯片封测和系统集成之间出现越来越多的子系统,各种各样的系统级封装SiP需要将不同工艺和功能的芯片,利用3D等方式全部封装在一起,既缩小体积,又提高系统整合能力。Panel板级封装也将大规模降低封装成本,提高劳动生产效率。其次,芯片制造和芯片封测之间出现了扇入和扇出型晶圆级封装,FO-WLP封装具有超薄,高I/O脚数的特性,是继打线,倒装之后的第三代封装技术之一,最终芯片产品具有体积小,成本低,散热佳,电性能优良,可靠性高等优势。
先进封装的发展现状
先进封装形式在国内应用的越来越多,传统的TO和DIP封装类型市场份额已经低于20%,
最近几年,业界的先进封装技术包括以晶圆级封装(WLCSP)和载板级封装(PLP)为代表的21D,3D封装,Fan Out WLP,WLCSP,SIP以及TSV,
2013年以前,25D TSV封装技术主要应用于逻辑模块间集成,FPGA芯片等产品的封装,集成度较低。2014年,业界的3D TSV封装技术己有部分应用于内存芯片和高性能芯片封装中,比如大容量内存芯片堆叠。2015年,25D TSV技术开始应用于一些高端GPU/CPU,网络芯片,以及处理器(AP)+内存的集成芯片中。3D封装在集成度、性能、功耗,更小尺寸,设计自由度,开发时间等方面更具优势,同时设计自由度更高,开发时间更短,是各封装技术中最具发展前景的一种。在高端手机芯片,大规I/O芯片和高性能芯片中应用广泛,比如一个MCU加上一个SiP,将原来的尺寸缩小了80%。
目前国内领先封装测试企业的先进封装能力已经初步形成
长电科技王新潮董事长在2017半导体封装测试年会上,对于中国封测厂商目前的先进封装技术水平还提到三点:
SiP 系统级封装: 目前集成度和精度等级最高的SiP模组在长电科技已经实现大规模量产;华天科技的TSV+SiP指纹识别封装产品已经成功应用于华为系列手机。
WLP 晶圆级封装 :长电科技的Fan Out扇出型晶圆级封装累计发货超过15亿颗,其全资子公司长电先进已经成为全球最大的集成电路Fan-In WLCSP封装基地之一;晶方科技已经成为全球最大的影像传感器WLP晶圆级封装基地之一。
FC 倒装封装: 通过跨国并购,国内领先企业获得了国际先进的FC倒装封装技术,比如长电科技的用于智能手机处理器的FC-POP封装技术;通富微电的高脚数FC-BGA封装技术;国内三大封测厂也都基本掌握了16/14nm的FC倒装封装技术。课程名称
使用教材
备注
物联网产业与技术导论
《物联网:技术、应用、标准与商业模式》,电子工业出版社,等教材。
在学完高等数学,物理,化学,通信原理,数字电路,计算机原理,程序设计原理等课程后开设本课程,全面了解物联网之RFID、M2M、传感网、两化融合等技术与应用。
C语言程序设计
《C语言程序设计》,清华大学出版社,等教材。
物联网涉及底层编程,C语言为必修课,同时需要了解OSGi,OPC,Silverlight等技术标准
Java程序设计
《Java语言程序设计教程》,机械工业出版社,等教材。
物联网应用层,服务器端集成技术,开放Java技术也是必修课,同时需要了解Eclipse,SWT, Flash, HTML5,SaaS等技术
无线传感网络概论
《无线传感器网络理论、技术与实现》,国防工业出版社,《短距离无线通讯入门与实战》北京航空航天大学出版社,等教材。
学习各种无线RF通讯技术与标准,Zigbee, 蓝牙,WiFi,GPRS,CDMA,3G, 4G, 5G,Mote等等
TCP/IP网络与协议
《TCP/IP网络与协议》,清华大学出版社,等教材。
TCP/IP以及OSI网络分层协议标准是所有有线和无线网络协议的基础,Socket编程技术也是基础技能,为必修课
嵌入式系统
《嵌入式系统技术教程》,人民邮电出版社等教材。
嵌入式系统是物联网感知层和通讯层重要技术,了解TinyOS等,为必修课
传感器技术概论
《传感器技术》,中国计量出版社,等教材。
物联网专业学生需要对传感器技术与发展,尤其是在应用中如何选用有所了解,但不一定需要了解传感器的设计与生产,对相关的材料科学,生物技术等有深入了解
RFID技术概论
《射频识别(RFID)技术原理与应用》,机械工业出版社,等教材。
RFID作为物联网主要技术之一,需要了解,它本身(与智能卡技术融合)可以是一个细分专业或行业,也可以是研究生专业选题方向。
工业信息化及现场总线技术
《现场总线技术及应用教程》,机械工业出版社,等教材。
工业信息化也是物联网主要应用领域,需要了解,它本身也可以是一个细分专业或行业,也可作为研究生专业选题方向。
M2M技术概论
《M2M: The Wireless Revolution》,TSTC Publishing,等教材。
本书是美国“Texas State Techinical College”推出的M2M专业教材,在美国首次提出了M2M专业教学大纲,M2M也是物联网主要领域,需要了解,建议直接用英文授课。
物联网软件、标准、与中间件技术
《中间件技术原理与应用》,清华大学出版社,《物联网:技术、应用、标准与商业模式》,电子工业出版社,等教材。
物联网产业发展的关键在于应用,软件是灵魂,中间件是产业化的基石,需要学习和了解,尤其是对毕业后有志于走向工业和企业界的学生。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)