国家在科技创新,人工智能最有前景公司有哪些?

国家在科技创新,人工智能最有前景公司有哪些?,第1张

最有前景的公司有百度网、腾讯、阿里巴巴和搜狗四家公司。

1、百度网

人工智能是百度网的主导策略,诸多工艺已超过国际水准。百度网创立Apollo资金和DuerOS资金,推进我国AI的进步。而且,获得人工智能就能获得将来业界的认可,因AI可能像水电一样变成基础建设,无所不在。

2、腾讯

腾讯应对人工智能,加快其自主创新步伐。构建了人工智能试验室AILab,该试验室具有50多名AI专家及200多名AI应用工程师队伍,致力于人工智能的基础研究,所开发的AI“绝艺”在2022年围棋比赛中取得了第一名,让AILab备受关注。

3、阿里巴巴

阿里所创立的人工智能试验室,关键面对消费级的AI产品开发,包含最近备受关注的一款智能音响商品便是源于该试验室,欲争夺家庭 *** 控通道。此外,阿里旗下蚂蚁金融是金融科技标杆,将人工智能加入至金融生活,包含最近朋友圈疯传的阿里无人超市,便是蚂蚁金融所开发的。

4、搜狗

搜狗在IPO的版图重点已不再是查找、输入法和网页,反而是借助人工智能。而且向清华大学捐助19亿元,一同创立了天工智能计算研究所。

伴随着中国科技的兴起,物联网、云技术、互联网大数据和人工智能等工艺与国外赛跑,我国更加是处于高速成长环节,特别是人工智能研究实力在全球前端,国内以BAT之首的科技企业正走在AI的最前端的,与谷歌、微软等为核心的国外互联网巨头竞技,促使中国与美国科技企业在这个没硝烟的战场中迅猛发展。

作者 | 维克多

编辑 | 琰琰

7月9日,在2021年世界人工智能大会的可信AI论坛上,艾耕 科技 CEO韦啸进行了题为 《可信AI助力内容创作实现智能化》 的报告。他在报告中指出了AI内容生产在“可信”方面遇到的挑战,并给出了三条提高AI内容生产可信性的技术建议:

1知识图谱沉淀行业专家经验提升可控性;

2专家系统与局部模型提升可解释性和可调性;

3强调人+机器协同的工作模式。

此外,在报告结束,AI 科技 评论和韦啸进行了一场关于“AI发展路径”的交流,他认为当前人工智能想要取得突破性进展,必须等待其他领域,例如生物学领域,有突破性的发现。

今天的演讲题目是《可信AI助力内容创作实现智能化》,分享一下AI在内容生产方面遇到的可信挑战。回顾互联网的前世今生,从门户网站到搜索引擎、到社交网络、再到超级APP,互联网发挥的核心作用是:分发内容。而内容生产属于互联网的上游,每年制作物联网流通的内容成本超过千亿。

人工智能(AI)作为技术发展的桥头堡,未来十年的技术热点,其一定会在行业里发挥巨大的作用。

目前,AI已经能够生产各种各样的内容,例如强大的GPT-3模型,其内容生成能力一度让人类惊呼。但实际上,GPT-3生成的大量内容都是胡说八道的,没有办法直接使用。这对应的是AI稳定性问题,即生成算法不可控。

可解释性,可调性,是AI生产内容过程中碰到的另一个问题。举个例子,当我们用AI进行视频生产时,无论是半自动还是全自动的方式,采用同一模板生成的视频,在社交平台上获得的点赞数和流量却不一样。至于为什么?用户希望能够有一个解释,即是算法出了问题还是其他方面的问题?这就是内容生产遇到的AI可解释性挑战。

其实,内容生产和内容生成不同,今天AI技术大多仅支持内容生成,内容生产意味着要为产业赋能。内容生成里的专家主要有主编、编辑和运营。而内容生产需要将AI技术有机整合成一个专家系统,包含上述一系列的角色,对于不同角色进行不同程度的赋能,从而提高内容生产的能力。这也是我们一直打造的品牌“AIZAO, AI造”。

它的逻辑是先依靠电商或者品牌的营销专家,然后基于他们对行业的理解,用知识图谱支撑智能素材库,生产出合适的图、文内容,最后加上运营数据的回流,就可以构成生产力的大幅度提升。

为了让这一AI系统生成的内容更为可信,我们做了如下的尝试:1知识图谱承载专家经验提升可控性;2专家系统与局部模型提升可解释性和可调性;3强调人+机器协同的工作模式。AI一定会犯错,人机协同是提高AI可信性的举措之一。

总结一下,如果想搭建一个更为可信的内容生产平台,需要遵守三条原则,第一,坚守向善价值观,不做恶;第二,建立评估体系,保证系统生产的内容可信;第三,明确算法系统的责任。我们可以感受到,互联网充满了不可信的内容,已经对 社会 产生极大负面的价值,我们希望算法设计出之后,其所承担的责任能有清晰的界定和边界。

AI 科技 评论:请问您如何看待可信AI?

韦啸:可信AI 包括几个方面:稳定性、可解释性、可调性、公平性等等。这意味着可信AI不是一个概念,更多的衡量如何把一个技术更好的赋能各个场景。

关于构建可信AI需要四方面的发力:

1技术和学术上的突破。机器学习模型中的黑盒性是AI可信问题的源头之一,很多AI技术如自动驾驶,AI医疗影像的应用,背后其实有可解释性,可控制性的缺陷,邢波老师的Petuum,就考虑了如何提升黑盒模型的debuggability。杨强老师主推的联邦学习,又在一定程度上能解决数据隐私问题,所以技术的发展,肯定能够带来更多可信的解决方案。

2政策、法律衡量责任。一个算法存在开发者和使用者,但算法出错,如何衡量双方的责任,是需要政策制定者考虑的事情。

3遵守商业道德准则。算法即技术,技术中立,向善的人使用,会产生好的结果,心怀不轨的人使用,会产生恶果。

4明确可信的目标。所有的算法都针对一个目标进行优化,我们在设立这个目标的时候,能否将可信作为一个目标衡量?

AI 科技 评论:相比深度学习,传统AI模型的可解释性比较好,您如何看待两者的关系?

韦啸:我举个例子,美国人工特别昂贵,很多车主自己动手修车。衡量一个修车匠是否能“打”的一个标准是:修车工具箱里工具种类是否丰富。这个工具箱可能有一些17世纪就有的改锥,也可能有新开发的智能电钻。其实,老改锥还是新电钻都存在于工具箱里,使用哪种锯子修车取决于具体的场景。

类比到AI内容生产领域,GPT-3这一模型确定能够提高基底模型表现,在从语料库提取特征方面,非常高效。但是,有些场景要求生成的内容丝毫不能出错,例如宝马X5的排量是24,如果AI生成的是25,显然就不符合要求。因此,这时候如果采用经典的PCFG,效果反而会更好。

因此,深度学习也好,传统模型也好,它们都在工具箱里,如何使用,关键要看具体的场景。所以,我们创业者也要摒弃一个观点:新工具不一定比传统工具产生更大的商业价值,毕竟一些比较老的模型研发成本比较低,新模型(深度学习)研发成本比较高。

AI 科技 评论:AI内容生成领域,遇到哪些可信方面的挑战?

韦啸:正如我演讲中提到的,第一是稳定性,我们在用工具创造标题的时候,有些生成的内容质量高,有些却不通顺;第二是可解释性,同一组算法生成的视频,却获得了不同的流量反馈,人工干预也无法总结优化的路径;第三是AI系统一定会犯错,不管什么模型,只要场景足够复杂系统就一定会犯错。这时候需要人机配合,往往可以大幅提高工具使用的可信度。

AI 科技 评论:在实际 *** 作过程中,AI还无法取代人类?

韦啸:在某些特定领域,AI可以取代人工,但也不能取代人。工具取代人工一直在发生,例如超市售货,很多时候顾客选品扫码支付不需要和售货员互动,即便如此,无人超市也没有普及,这就侧面说明了售货员还有他存在的价值。但也不得不承认,超市管理中,现在所用到的人力成本比原来要少很多。

AI内容生产也是如此,某些情况下,AI剪辑视频的质量和 *** 作精度已经超过人类了,但是仍然需要人类进行审核、把关。

AI 科技 评论:目前人工智能的发展,呈现出“大”的特点,例如大数据集、大模型,您如何看待?

韦啸:技术发展的路径非常复杂,存在很多不同的道路,大模型只是一条 探索 路径,但肯定不是唯一的路径。之前在和学者进行交流的时候,他们表达的一个观点是:其实人工智能领域也在期待其他学科,例如脑科学的突破,例如直到今天,我们清楚的知道人脑对于一些观察和决策的工作机理,例如颜色是如何被探测和判断的,但是高级的认知例如红色这个概念,大脑如何存储和计算,却没有很好解释。而这些解释上的突破,很有可能为算法的设计提供全新的思路,在大模型之外,为AI的应用打开新的场景。

由于微信公众号试行乱序推送,您可能不再能准时收到AI 科技 评论的推送。为了第一时间收到AI 科技 评论的报道, 请将“AI 科技 评论”设为星标账号在看”。

AI引领商业智能化时代

有人说:世界经济过去二十年主要靠IT,但未来五十年靠的是AI(人工智能);也有人说:AI将会给人类带来的威胁,将从实业衰败开始,并以人机战争结束。尽管,我们一边 *** 心着美国越来越多的大商场都用自动结款机后零售业的1600万员工是不是快失业了;但仍一边期待新的变革到底如何颠覆。

AI技术引爆工业40时代商业迈进智能化决策时代

眼下,各大科技巨头纷纷布局人工智能。就在国务院规划出台的同一天,2017联想全球创新科技大会上“让世界充满AI”的主题也刷爆了朋友圈。联想集团高级副总裁贺志强表示,智能互联网在未来十年是最好的投资机会,同时列举未来人工智能的发展及投资将重点布局六大方向:普适计算、AR/VR、AI核心驱动力改造所有传统行业、数据中心重塑、公有云服务及IT转型。

有媒体评论称,AI正在引发的第四次工业革命,让联想的企业转型之路充满了动力,也让刘强东和李斌等人借这“AI”风口,怒刷了一回存在感。

实际上,从18世纪至今,在这200多年的时间里,世界通过三次工业革命完成了机械化、电气化、信息化的变革,而每一次的工业革命都给我们的经济、社会、人文等各个方面带来翻天覆地的变化。如果说,前三次工业革命重点解决的是生产效率和产能问题,更多的是释放人类肌肉的力量的话,那么第四次工业革命的主要使命,就是解放人类脑力劳动,帮助人类进入智能化决策时代。

早在2016商业评论大会上,阿里巴巴集团首席战略官曾鸣曾表示,在未来智能无所不在。现今社会云计算、大数据、人工智能等领域的变化带来了社会各个方面的进步,比如基因工程、新材料、人工智能物联网等方面。而在这样巨大的变革背景下,最重要的变化则是一切商业的未来都必须智能化。

商业智能化是未来最重要的发展趋势。智能物联时代和智能商业化时代的到来,既意味着传统行业面临被倒逼升级的挑战,但更多带来的是创新发展的机遇。如何通过智能化和数据化提升企业的运营水平,并通过智能应用以及大数据挖掘洞察不断满足消费者的需求,成为各行业领头羊的共同探索方向。

智能物联风口爆发在即资本争相布局商业智能化

何为智能化?其核心是未来商业的决策会越来越多地依赖于机器学习、人工智能,机器在很多商业决策上将扮演非常重要的角色,它能取得的效果超过今天人工运作带来的效果。

简单来说,商业智能化即是要做数据化、算法化和产品化这三件事情。当今人工智能的技术核心既是数据化,归根结底是通过机器对大数据不断计算反馈的优化结果。有了数据化基础,随之而来的则是基于数据挖掘价值,即为通过写代码回归程序的路径实现算法化,进而实现价值转化。所以算法化绝对是在互联网时代能够创造巨大价值的新概念。在此基础上,通过数据提取、计算、修正调整、反馈等一系列过程,加上对垂直领域的理解,利用技术形成解决方案的产品化环节则是至关重要的一环。

智能化所带来的价值将或将达到空前的高度,它是基于大数据技术创新上搭建的全新智能运营模式。从商业智能化的趋势来看,未来数据处理也将作为公共基础设施服务存在于新智能时代。而中国这一全球最大市场,仍被视为实现商业智能化的最佳市场。上海市中国特色社会主义理论体系研究中心研究员、华东政法大学教授高奇琦等多位专家表示,中国地大物博人口众多,在人工智能替代领域具有诸多优势。

事实上,我国已经在人工智能领域全面发力,7月20日国务院发布《新一代人工智能发展规划》称,到2030年人工智能理论、技术与应用总体达到世界领先水平,核心产业规模预计超过1万亿元。同时支持国内人工智能企业开展海外并购、股权投资、创业投资和建立海外研发中心等发展模式。

随着计算机成本的下降以及搜集和处理数据能力的快速提升,大数据应用基础已日渐成熟。可以预测,下一阶段将成为人工智能和物联网应用的爆发阶段,市场潜力得以释放。与此同时,国内针对人工智能领域的初创企业投资也正经历着爆发式的增长,使得2017年有望成为全球人工智能商业化运用的元年。

资本的动向正是判断人工智能前景最灵敏的风向标。根据KPMG的研究数据表明,2016年风险投资已经从大数据转向到AI人工智能;乌镇智库数据显示,去年中国AI企业总投资达到26亿美元,美国同期最高预计投资179亿美元;据网易报道,2016年202个中国AI初创公司募集了近10亿美元。

据统计显示,就在刚刚过去的一个月内,包括中国创业公司商汤科技、机器人公司Geek、云脑科技等国内多家与人工智能相关的企业均获得了最新的融资进展。其中,卡位智能物联网的生态平台特斯联科技,更创下国内移动物联网行业的最大融资额,被视为商业智能化时代的下一代“独角兽”。据悉,特斯联(北京)科技有限公司,已于2016年底完成共计5亿人民币A1A2轮融资;据公布资料显示,本轮融资由中国光大旗下基金与IDG资本、中信系产业资本以及其它战略投资人共同完成。

开辟物联网创新商业模式特斯联欲撬动“后地产时代”千亿级市场

Google移动平台副总裁安迪·鲁宾曾说过,下一个计算大浪潮将出现在人工智能领域,机器人和自动化技术将进入人们的生活。

想象一下,在未来社会的各行各业中,流水线工人、企业客服、司机等单纯机械重复和缺乏创造力的职业将首先被人工智能代替,随后是具有较高附加价值、相对机械重复、可替代度高的网络编辑、语言翻译及医疗行业等职业。人工智能将充分发挥其社会价值,智能化技术让交通变成了智能交通,医疗变成了智能医疗,同时也推动智能农业、智能城市等等出现。

未来城市将会是万物互联的智慧体,通过智能化、数据化手段升级工业、农业、房地产产业,盘活海量的存量市场。在城市中,产业智能化将成为“后地产时代”最大的挑战,同时,这也是未来物联网创新商业模式的机会所在。

正如城市演化过程中,建筑扮演了城市的重要组成部分一样,建筑也承载了城市基本的服务功能。然而在物联网、人工智能等技术日新月异的今天,建筑和城市的设备设施、运营管理等却停留在昨天,从经济成长、世界潮流及人类需求的角度而言,城市智能化发展已是刻不容缓的议题。

如今,站在能够预见到未来的科技大门之前,我们能够看到,在智能商业化的时代中,无人驾驶会取代司机,语音识别软件会取代翻译、人工智能会取代医生进行精密手术 *** 作,一系列现存的职业及行业将会随着科技时代的进步慢慢消失,但有的行业却将迎来千载难逢的机会;如同特斯联科技般的智能物联网领军企业,运用数据处理、自动化管理,将钢筋水泥的传统建筑升级为智慧生命体,完成建筑乃至是城市的智能化升级,必将带来焕然一新的未来城市新生活。

1 无处不在的数据分析
越来越多的企业在利用从他们客户那里收集到的大数据更好地了解客户需求,并且优化产品使其能更好地服务客户。这就是无处不在的数据分析,它更看重数据的质量,而非数量。将数据最大化地转变为有价值的创新,利用数据洞悉市场,以此为基础做出明智的商业判断。
如果关注数据质量,将收集到的所有信息进行筛选就变得至关重要。例如人工智能,其需要迅速地完成一系列动作:数据收集、分析,并且瞬间作出判断采取行动。严格来讲,对数据质量的关注需要嵌入到数据采集的过程中。在这样的数据分析背后也要关注消费者信息的私密性。GfK2015年进行的针对全球20个地区的消费者研究结果表明,全世界消费者都在担心他们的数据是怎样被收集、售卖和利用的。
2 虚拟现实(VR)
2016年,从行业到消费者,从硬件到软件,关于虚拟现实,一切都处在被普及教育的阶段。随着三大巨头接连推出消费级产品,且“售罄”之讯频传,虚拟现实作为最受关注的新智能领域迅速席卷全球。全球VR头显市场规模预计在2020年会达到28亿美元,其中供游戏者使用的VR头显设备占据多数份额。中国市场2016年全年零售量会达到300万台左右,从GfK监测的VR头显在线市场来看,从2016年1月到4月,VR头显零售量几乎翻了20倍,虚拟现实硬件产品正在经历一场初期爆发式的增长。但目前依然是以VR盒子为主。整体来看,中国的VR市场现在还处于野蛮生长的阶段。相信在未来VR应用会逐步向直播、旅游培训、医疗、装修、房地产、教育等领域渗透。
3 人工智能(AI)
人工智能最终是重现一遍人类思考的过程。作为一个人工制造的机器,终极形态的AI将拥有与我们相同的智力水平:学习、推理、使用语言、构想原始创意。然而只拥有学习能力的AI已经快速地渗透到我们的生活中了。语音识别是目前人工智能中落地较早、目前投入及研发的核心领域之一。基于人工智能,各个厂商可发挥的空间很大,不一样的应用及方向才是真正有趣的地方。2016年,AI助理的发展或许会超越智能手机的发展。人工智能是一块有待探索与开发的市场,这块市场拥有多种可能性。
4 可穿戴产品
智能手表、健康监测手环、相机、GPS定位设备及心率监测设备进入主流市场还需多久尽管万众瞩目的Google Glass及Apple
Watch的发布已经俘获了消费者的想象力,但只有少数消费者接纳了这些设备。中国可穿戴市场2016年销量预计达3160万台,环比2015年上涨32%,但其中以价格较低的手环产品占据市场的大多数,整体市场销量持续上升的同时增速减缓,市场经过了2015年跳跃式发展后开始进入一个更趋理性的阶段。如果可穿戴产品想要吸引更多的消费者,有以下四点需要注意:一是与物联网的融合,把可穿戴设备和现有的个人科技生态相融合将会成为扩大市场的基础性举措。二是设计和材质,外形设计已经成为可穿戴产品跟上时代潮流的一大绊脚石。三是精准有效的信息收集,提高数据的准确性和解读能力是可穿戴厂商正在解决的另一大问题。四是引人注目的新案例,特色鲜明的产品会逐渐与消费者建立特有联系。
5 视频消费
视频消费的发展速度比之前任何人预期的还要快,并且线上已经成了人们观看视频的主要渠道。从社交媒体上的短片到视频网站的服务和套餐服务,甚至到最近大火的视频直播,消费者似乎可以在任何时间、任何平台看到想看的视频内容。事实上,有人预言到2019年,80%的互联网流量消费将来自于视频观看。而随着投入到这个领域的玩家越来越多,从内容的生产者和发布者到各大品牌、厂商,互相合作会成为一种需求,只有通过这样多方之间的信息互换才能够释放更大的能量。
6 无人机
据GfK中国估算,2014年中国航拍消费级无人机市场为近6亿元,到2018年将激增到60亿元。而民用无人机市场更是有望在未来10年形成千亿元级规模,未来发展空间广阔。
无人机并不算是新产品。无人机在航拍、地形测绘、商业运输以及救援部署,甚至在自动机械化生产上,都可以起到作用,无人机技术在诸多领域所能发挥的用途正在被进一步挖掘出来并且会在降低商业成本、提高商业效率方面起到很好的催化作用。但是在实现这样的美好愿景之前依然有很长的路要走。目前无人机依然面对诸多阻碍,如缺乏“感知-避障”技术、载物重量上的限制、没有夜视功能以及电池续航时间有限等。
7 移动支付
全球移动支付市场比较复杂。目前传统的支付方式在许多成熟市场中都有着强大的根基,无法轻易撼动。相反,一些非洲市场和亚洲发展中国家市场则直接迈入了移动支付时代。在这样一个碎片化的环境中,对于品牌、制造商和零售商来说,理解移动支付当下的全球格局以及它的演变趋势至关重要。在中国,阿里巴巴、腾讯等第三方玩家已经率先鼓励联网用户通过手机在实体店或网店进行支付。小米、OPPO、魅族旗下具备支付功能的手机的使用也意味着在这一市场中,移动支付不仅存在,而且触手可及。而那些被认为将第一时间接受新兴技术的市场则呈现出与上述地区的截然不同的局面。当前,一些市场仍需提高消费者对于移动支付的认知度,而对于另一些市场而言,要做的则是减少移动支付的使用壁垒。
8 智能汽车
随着物联网技术的越发成熟,智能汽车也将应运而生。许多豪华轿车已经配备了大显示屏,并且车载大屏也会继续成为趋势,在2016年底或2017年初,为前排乘客设计的额外显示器也将出现在高档汽车中。为了让乘客更好地体验“增强现实(AR)”技术,一些OEMs甚至想要把显示屏幕延伸到整个挡风玻璃或者侧窗。屏显技术的进步为那些企图走到传统汽车供应商前头去的电子消费厂商和初创企业们打开了大门。过去,受到物联技术的限制,OEMs很难找到一个正确的商业模式,但是现在,机会来了。通过了解细分市场消费者的需求和喜好,量身开发车载APP和配套服务从而获取相应的报酬成为可能。
9 3D打印
3D打印机的销量目前还比较小。但是,随着更多的厂商加入到该领域以及消费者的认知度逐渐提高,这种情况在明年应该可以得到改变。拿德国为例,3D打印机的销量在去年增长了71%,而且需求还在进一步扩大。消费者认为3D打印技术极具吸引力,3D打印在最有可能影响他们生活的科技中排名第三。这比智能汽车、云计算、可穿戴设备还有物联网的排名都要靠前。这表明这项新技术的知识普及在全球已经非常高了。价格一直是新兴科技难以普及的主要障碍。但是随着成本的下降,价格也将不再是阻碍,3D打印技术的优势会变得越加明显和突出:更低的装配成本,减少浪费,极低的运输和配送费用和更快的新产品上市速度。
10 智能家居
一股智能家居的“淘金热”正在各领域中展开,传统厂家、互联网公司、国际技术提供商及零售商等各种组织都在寻求最大限度地参与到未来家居领域中来。根据GfK针对全球7国消费者所作的研究表明:绝大多数消费者(90%)知道智能家居,50%的消费者认为智能家居能改变他们的生活,78%的消费者同意这是一个具有吸引力的理念。目前智能家居想要获得成功的关键是让消费者能明白智能家居技术是如何提升他们的生活品质,并且提供参与度高且有效的用户体验。现在需要行业协作和消费者教育来驱动需求,并推动智能家居从厂商领导发展向消费者需求主导发展的创新转变。行业相关参与者需要合作并组建不同以往的合作关系。这会确保不同的设备和服务能在后台彼此连接来满足对便捷的需求。只有满足了这一点,智能家居的真正价值才能得以体现。根据GfK中国对家电智能化研究,中国家电产品智能化应用发展速度位于世界前列,但目前也处于厂商、零售商等供给方主导的阶段,还处于智能连接、手机远程控制等初级智能向更高级智能功能探索和尝试的阶段。中国庞大的用户基础和互联网业态演变将为智能家居的发展和创新提供良好的土壤,预计智能家居未来将会催生类似BAT级别的新企业。
参考:十大技术全面开启物联网时代>云从 科技 7月20日成功过会,在与旷世 科技 、商汤 科技 和依图 科技 "AI四小龙"的上市比拼中率先上岸,公司也因此成为科创AI第一股。2018-2020年云从 科技 累计亏损2684亿元,此次在科创板公司募集资金375亿元,科创板的上市也意味着公司可以缓解常年亏损带来的资金压力。

AI公司赚钱太难了。相关报告显示,全球近90%的AI公司处于亏损状态,10%的赚钱企业基本是技术提供商,中国AI产业链中90%以上的企业也同样处于亏损阶段。AI四小龙无一例外全部亏损,而且一个比一个能亏,比如依图 科技 2017-2020H1累计亏损7268亿元;旷世 科技 2017-2020Q3期间累计亏损1306亿元。商汤 科技 IPO不太顺利,有消息称公司将于8月份向港交所提交申请。虽然目前不清楚商汤 科技 亏损多少,但公司与云从 科技 一样,也是亏损的状态。

为什么AI公司赚钱这么难?

云从 科技 主营业务是为客户提供高效人机协同 *** 作系统和行业解决方案,前者是凭借自主研发的人工智能核心技术打造了人机协同 *** 作系统,通过对业务数据、硬件设备和软件应用的全面连接,把握人工智能生态核心入口,为客户提供信息化、数字化、智能化的人工智能服务;后者是基于人机协同 *** 作系统,赋能智慧金融、智慧出行等应用场景,为更广泛的客户群体提供以人工智能技术为核心的行业解决方案:

报告期内公司向客户提供基础 *** 作系统、基于人机协同 *** 作系统的应用产品和核心组件以及技术服务,其中基础 *** 作系统是可以直接销售给客户的,一般交付给具有研发能力的企业和第三方软件厂商,由客户二次开发后投入使用。公司提供的 *** 作系统有智能云平台、视图汇聚分析平台、融智云平台和集成生物识别系统,基于不同的功能,面向物联网、政府、公安等城市治理和金融、商业等不同应用场景:

值得注意的是如果客户前期没有购买云从 科技 *** 作系统,则公司向客户销售 *** 作系统和应用产品,保证相关应用产品有效运行。核心组件是基础 *** 作系统内可以独立交付的功能模块,通常是封装了核心AI能力的软件包,主要交付给研发实力强、对软件管控要求较高的客户,由客户集成到其自由系统中使用,基本不涉及进行定制化开发。技术服务主要是人机协同 *** 作系统在软件产品销售以外的服务,包括公有云服务、风控服务和智能化运维服务。

成立至今云从 科技 人机协同 *** 作系统及应用产品相继经历了初步推进人机协同 *** 作系统内核沉淀的V10、综合多类业务场景的基础 *** 作系统V20和升级人机协同 *** 作系统V30三个阶段,实现了智慧金融、智慧治理、智慧出行和智慧商业四个重点领域的基础 *** 作系统的整合。公司的V40版本则是升级了智慧治理领域的融智云平台和智慧金融领域的集成生物识别系统,通过AI技术优化系统的运行效率和用户体验:

在系统层上云从 科技 开发了面向不同领域的基础 *** 作系统,通过系统和组件的方式将AI技术赋能应用场景。2014年以来旷视 科技 便开始了Brain++这一AI生产力平台的研发,覆盖从数据生成、清洗、预处理、标注和存储到算法架构设计、实验环节设计、训练环境搭建,再到训练、加速、模型评估和产生模型以及模型分发、部署应用全流程。Brain++集成了包括深度学习框架MegEngine(天元)、深度学习云计算平台MegCompute和数据管理平台MegData,将算力、算法和数据能力融为一体,作为AI基础设施,实现从算法生产到应用的全流程化和规模化供给:

旷视 科技 的Brain++平台相比云从 科技 的 *** 作系统+组件的模式,不同之处在于将算力、算法和数据进行融合,实现了AI的全流程。比如公司的Brain++商业版覆盖了数据管理、模型开发和算力调度等算法生产全流程,还可为客户提供集群搭建和部署在内的硬件交付,让客户不必为寻找AI硬件供应商和软硬件适配等问题烦恼,提升了AI的效率。Brain++平台和算法构成了旷视 科技 的核心AI能力:

业务模式上,云从 科技 的基础 *** 作系统、组件和应用产品可以单独销售,但旷视 科技 的Brain++平台是以解决方案的形式对外销售的,这构成了俩公司业务上的差异。

2018-2020年云从 科技 实现营收484亿元、807亿元和755亿元,这其中主营业务收入为483亿元、780亿元和751亿元,2020年主营业务下降主要系疫情影响,这与其商业模式有关。报告期内公司其他业务主要为向少量客户提供外购硬件和技术开发服务,2019年其他业务收入一度达到027亿元,但占比仍较小。

主营业务中人机协同 *** 作系统营收为031亿元、183亿元和237亿元,营收占比为62%、227%、313%;人工智能解决方案营收为452亿元、597亿元和515亿元,营收占比为936%、740%和682%:

旷视 科技 是一家聚焦物联网场景,以物联网为AI技术落地载体,通过构建完整AIoT产品体系,面向消费物联网、城市物联网、供应链物联网三大核心场景,提供经验验证的解决方案的AI公司。公司业务分为消费物联网解决方案、城市物联网解决方案和供应链物联网解决方案三大类。2017-2020Q3公司营收为304亿元、854亿元、1260亿元和716亿元,其中60%以上的营收来自城市物联网解决方案业务:

值得注意的是,云从 科技 营收中第三方软硬件和智能AIoT设备营收占比虽然从2018年的812%下降至2020年的508%,但仍占据半壁江山。号称行业领先的AI公司,营收一半竟然来自硬件产品,这就引出了一个问题:AI公司靠什么赚钱?

毛利率来看,报告期内云从 科技 主营业务毛利率虽然由215%提升至432%,但仍大幅低于依图 科技 和旷视 科技 的毛利率,依图 科技 主营业务毛利率由2017年的574%提升至2020H1的71%,是这几家公司中最高的:

细分到具体产品或服务,可以看出云从 科技 人机协同 *** 作系统的毛利率在75%以上,处于较高水平。人机协同 *** 作系统中软件授权业务的毛利率超过80%,主要是绝大部分软件授权业务涉及安装调试或定制开发,产生了相应的费用。报告期内公司技术服务毛利率由9945%下降至40%,因为金融风控业务涉及对外采购数据服务,2020年新增的数据中心智能化运维服务需要委托第三方提供服务,降低了毛利率水平。

云从 科技 营收占比最大的人工智能解决方案业务毛利率为1776%、2343%和2819%,主要是该类业务根据客户需求,需外购部分配套软硬件产品或服务,外购材料成本较高,挤压了毛利率空间。公司人工智能解决方案毛利率相比可比企业也明显偏低,比如依图 科技 软件、软硬件组合在报告期内的毛利率分别为641%、819%、875%、868%和113%、328%、543%和696%。

云天励飞和云知声解决方案业务毛利率水平相比依图 科技 和旷视 科技 偏低,与云从 科技 相当。比如云天励飞数字城市云隐管理业务和人居生活智慧化升级业务毛利率分别由4227%、6316%下降至3823%和4443%,主要系解决方案中需要采购硬件并有一定比例的安装服务成本,尤其是硬件设备比例上升会拖累相关业务的毛利率水平:

旷视 科技 业务毛利率水平来看,消费类物联网解决方案业务毛利率超过80%,但其营收占比由2017年的459%下降至2020Q3的181%,营收占比最大的城市物联网毛利率下降至30%以下,因此拖累了公司的毛利率水平:

旷视 科技 在招股书中提到,消费物联网解决方案是公司传统核心优势业务,主要利用人脸识别技术提供云端SaaS类及移动终端类解决方案,成本以软件为主,毛利率水平最高。城市物联网解决方案业务主要为智慧城市及智慧建筑管理,这一业务随着行业经验积累、项目设计与交付能力不断提升,按理公司具有提升毛利率空间的能力。但旷视 科技 提到,因为项目成本中硬件占比提升,导致毛利率有所下降:

结合云从 科技 、云天励飞和旷视 科技 等业务模式,可以看出:如果单纯靠出货 *** 作系统等业务,公司可以保持一个很高的毛利率。未来随着业务不断成熟,成本和费用的下降,公司具有盈利的可能。但目前来看,旷视 科技 、依图 科技 等为代表的AI公司还是以解决方案业务为主,这就涉及到一些硬件的采购和安装,相应的导致毛利率的下降。

AI四小龙无一例外全部亏损,而且一个比一个能亏。云从 科技 报告期内累计亏损2684亿元,看起来不少,但在旷视 科技 和依图 科技 面前还是弱爆了。

依图 科技 2017-2020H1净利润分别亏损1166亿元、1161亿元、3642亿元和1299亿元,累计亏损7268亿元。旷世 科技 2017-2020Q3期间分别亏损775亿元、280亿元、6639亿元和2846亿元,累计亏损1306亿元。商汤 科技 IPO不太顺利,有消息称公司将于8月份向港交所提交申请。虽然目前不清楚商汤 科技 亏损多少,但公司与云从 科技 一样,也是亏损的状态。

寒武纪主营业务是AI芯片的研发、设计与销售,主营业务与云从 科技 等明显不同,但2017-2020年公司仍然累计亏损超过20亿元。2020年寒武纪亏损大幅减少,但扭亏为盈还是遥遥无期:

行业龙头亏损严重,中小AI公司同样亏的不少。比如提供数字城市运营管理和人居生活智慧化升级应用场景解决方案的云天励飞2017-2020Q3期间净利润累计亏损1607亿元,2020年前三季度公司营收为267亿元,报告期内营收累计仅为68亿元,赚的还没有亏的多。

为什么AI公司赚钱这么难?

先说说这些公司亏损的直接原因。

2018-2020年云从 科技 毛利从105亿元增长至328亿元,毛利率由215%提升至432%,但期间费用由338亿元飙升至1061亿元,直接造成营业利润亏损。

报告期内公司销售费用由129亿元增长至274亿元,销售费用率由2663%提升至3628%,这属于很高的水平了。此外公司研发投入持续加大,由2018年的148亿元增长至578亿元,营收占比由3061%提升至7659%,已经足以让公司亏损了:

报告期内云从 科技 实施股权激励并产生了相应的费用,但这种费用短期对公司利润带来压力,假以时日影响会消除,但销售费用和研发费用的增加是持续性的,毕竟这与公司经营密切相关。比如云从 科技 销售费用中占比最大的是人员薪酬,主要是公司业务扩展,销售人员和平均薪酬增加。

人工智能仍然是一个技术密集型企业,各家公司为了保证持续的竞争力也在投入大量的资金用于研发。目前人工智能相关技术和应用场景的解决方案迭代速度比较快,以云为例产品迭代周期一般为2-6个月,因此人工智能行业的研发是个持续时间长且投入高的过程。比如云从 科技 2020年研发费用率超过75%,公司基于人机协同 *** 作系统在研项目有基础平台、算法工厂、AI融合数据湖、知识计算和人机自然交互等8项之多。

亏损最严重的旷视 科技 也是如此。2017-2020Q3公司期间费用由402亿元增长至1349亿元,规模上超过公司的营收,这其中销售费用率、管理费用率和研发费用率分别由2414%、3345%、6650%提升至416%、5756%和9223%:

另外为了提高研发人员、管理人员等积极性,或者出于营造缺钱的目的,AI公司还会实施股权激励,并为此产生巨大的股份支付费用,侵蚀了公司的盈利空间。比如2019年云从 科技 实施了股权激励,产生了1303亿元的股份支付费用;2019-2020Q3云天励飞为激励核心团队、保证团队稳定性,对核心成员实施股权激励,为此分别支付了208亿元和719亿元的股份支付费用。

目前抛开其他不谈,在研发上的投入和股权激励产生的巨大费用,凭借这两项,已经让大多数AI公司陷入亏损了。

客户变动大、客户集中度较高、单一客户依赖性较高等仍是AI公司面临的共同难题,而这一难题事关公司经营是否可持续,也是这类公司上市中的拦路虎之一。无论是注册制下的科创板、创业板还是审核制下的主板,从发审委到上市委,都盯着这一问题。

今年3月份上交所在云从 科技 第一轮问询中就要求公司就"不同类型产品前五大客户的销售内容、销售收入及变动原因,前五大客户变动较大是否符合行业惯例"等进行问询。

2018年云从 科技 第一大客户分别为北京物联新泊 科技 有限公司,营收占比为3011%;2019-2020年北京汇志凌云数据技术有限责任公司为公司第一大业务,营收占比为3049%和1098%,销售金额变动也非常大。另外江苏趋云信息 科技 有限公司和江西骏马 科技 有限公司成立不久后就成为公司前五大客户,上交所还就合理性、交易价格公允性和是否存在利益输送或其他特殊利益安排等进行问询。

云从 科技 这种情况在其他AI公司中也存在。比如2017-2020Q3旷视 科技 前五大客户相继经历了杭州联汇 科技 有限公司、中国移动、北京易华录信息技术股份有限公司和东华软件股份公司四家公司,销售金额也从2500多万到8500多万不等,而且多个客户经历了一轮游,在下一年度中不见踪影:

从云从 科技 的反馈来看,AI公司面临碎片化问题,不仅仅是场景的碎片化,还有订单的碎片化。以2020年度人机协同 *** 作系统客户分布情况来看,云从 科技 绝大多数客户的订单规模在100万元以下,1000万元以上的订单占比很低。应用场景上,公司产品覆盖了智慧治理、智慧金融智慧出行、智慧商业等多个领域,营收占比最大的人工智能解决方案也呈现出类似的特征:

客户集中度上,云从 科技 前五大客户销售占比从6223%下降至2792%,相反依图 科技 前五大客户销售占比从3512%提升至6202%,而旷视 科技 常年在20%-30%左右徘徊。

客户的飘忽不定说明了人工智能技术在客户端的复用性很低,订单的碎片化说明了人工智能技术商业化水平还处于较低的水平,难以实现规模化应用。AI公司要想寻求发展就要不断开发新用户、不断延伸新的应用场景,这势必增加了公司的额外开支。前文已经提到,云从 科技 、旷视 科技 等销售费用率很高,尤其是职工薪酬占主要比例,主要是为了扩大业务区域、开拓客户而招兵买马,相应的费用不断增长。

人工智能产业链分为基础层、技术层和应用层三大环节,其中目前以旷视 科技 、云天励飞等为代表的企业多为技术层公司,主要通过开发相关算法赋能智慧城市、智慧金融等应用场景。目前中国的AI产业相比美国,差距在于第一是基础层实力偏弱,尤其是具有全球竞争力的芯片、传感器等领域的公司太少,而且华为等部分企业因为实体清单影响,经营遭遇困难:

云从 科技 、旷视 科技 等相继布局计算机视觉、语音识别和自然语言处理等技术层,但更多的企业处于应用层,参照互联网公司,应用层的竞争会更加激烈,技术实力不佳、综合能力不足的公司会逐渐掉队。另外值得注意的是与美国的谷歌、亚马逊和微软等类似,华为、腾讯和阿里巴巴等巨头的加入让人工智能行业竞争更加激烈。华为、腾讯等公司拥有打通基础层、技术层和应用层的能力,而且在技术、研发、客户、市场等方面拥有云从 科技 等难以撼动的优势,因此势必给这些公司带来巨大压力。

从目前产业发展现状和人工智能技术发展曲线来看,其已到了从技术转向大规模应用的关键节点,目前如何规模化落地成为行业痛点。不过对云从 科技 、旷视 科技 等这些资本一路输血充大的公司来说,现在紧迫的事情是如何通过上市在补血的同时还让曾经的投资者退出,毕竟这么多年下来它们等不及了。

万一所投公司倒闭了,一切都打水漂了。

行业主要企业:大富科技(300134)、梦网集团(002123)、共进股份(603118)、胜宏科技(300476)、润和软件(300339)、立昂技术(300603)

定义

所谓“物联网”(Internet of
Things,IOT),又称传感网,指的是将各种信息传感设备,如射频识别(RFID)装置、红外感应器、全球定位系统、激光扫描器等种种装置与互联网连接起来并形成一个可以实现智能化识别和可管理的网络。

早期的物联网是指依托射频识别技术的物流网络,随着技术和应用的发展,物联网的内涵已经发生了较大的变化。现阶段,物联网是指在物理世界的实体中部署具有一定感知能力、计算能力和执行能力的各种信息传感设备,通过网络设施实现信息传输、协同和处理,从而实现广域或大范围的人与物、物与物之间信息交换需求的互联。物联网依托多种信息获取技术,包括传感器、射频识别(RFID)、二维码、多媒体采集技术等。物联网的几个关键环节可以归纳为“感知、传输、处理”。

物联网行业发展前景及趋势分析

1、产业物联网占比逐渐上升

根据信通院于2020年12月发布的《2020中国物联网白皮书》,2019年中国物联网连接数中产业物联网和消费者市场各占一半,预计到2025年,物联网连接数的大部分增长来自于产业市场,产业物联网的连接数将占到总体的61%。由此来看,未来产业物联网的市场发展潜力大于消费物联网。

2、市场规模不断增大

目前,物联网在全球呈现快速发展趋势,欧、美、日、韩等国均将物联网作为重要战略新兴产业推进,但在繁荣景象背后却仍存在着众多阻碍发展的因素。其中核心标准的缺失,尤其是作为顶层设计的物联网参考架构等基础标准目前仍处于空白,基于争夺物联网产业主导权,各国对国际标准方面的竞争亦日趋白热化。

新冠疫情对于物联网行业来说犹如达摩利斯之剑,一方面疫情导致全球技术供应链出现一定的停滞期,另一方面疫情助推中国物联网的渗透。2020年无人工厂、无人配送、无人零售、远程教学、远程医疗等“无接触经济”的爆发均离不开物联网技术的支撑。综合多方面的情况分析,前瞻认为未来5年中国物联网的发展将保持高速增长,到2026年市场规模超过6万亿元。

以上数据参考前瞻产业研究院《中国物联网行业细分市场需求与投资机会分析报告》。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13157145.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-06-13
下一篇 2023-06-13

发表评论

登录后才能评论

评论列表(0条)

保存