如何知道艾瑞报告的数据采集途径在哪里?

如何知道艾瑞报告的数据采集途径在哪里?,第1张

如何知道艾瑞报告的数据采集途径在哪里关于这个问题有以下解释:物联网系统
数据采集的三大渠道
要想了解大数据数据采集过程,首先要知道大数据的数据来源,目前大数据的主要数据来源有三个途径,分别是物联网系统、Web系统和传统信息系统,所以数据采集主要的渠道就是这三个。
物联网的发展是导致大数据产生的重要原因之一,物联网的数据占据了整个大数据百分之九十以上的份额,所以说没有物联网就没有大数据。物联网的数据大部分是非结构化数据和半结构化数据,采集的方式通常有两种,一种是报文,另一种是文件。在采集物联网数据的时候往往需要制定一个采集的策略,重点有两方面,一个是采集的频率(时间),另一个是采集的维度(参数)。
Web系统是另一个重要的数据采集渠道,随着Web20的发展,整个Web系统涵盖了大量的价值化数据,而且这些数据与物联网的数据不同,Web系统的数据往往是结构化数据,而且数据的价值密度比较高,所以通常科技公司都非常注重Web系统的数据采集过程。目前针对Web系统的数据采集通常通过网络爬虫来实现,可以通过Python或者Java语言来完成爬虫的编写,通过在爬虫上增加一些智能化的 *** 作,爬虫也可以模拟人工来进行一些数据爬取过程。

行业主要上市企业:目前国内物联网产业的上市公司主要有高新兴(300098)、东土科技(300353)、广和通(300638)、移远通信(603236)、日海智能(002313)、移为通信(300590
)

本文核心数据:物联网行业产业链、物联网行业产业链全景图

物联网行业产业链全景梳理:传感器芯片严重依赖进口

感知识别层可以对物理世界进行感知、识别和信息数据采集,涉及芯片、传感器、感知设备的研发及制造;网络传输层能对感知识别层的数据进行高效率、低消耗地传送,主要包括通信组模、通信网络及基础通信设施;

平台管理层是连接感知层和应用层的桥梁,其中物联网平台包括连接管理平台 CMP、设备管理平台 DMP、应用使能平台 AEP和业务分析平台
BAP,系统和软件则可以让物联网设备有效的运行;

应用服务层主要指各类智能终端硬件,以及系统集成应用服务。用户根据平台层汇集处理完的数据,对终端进行远程监控、控制和管理,实现物联网的价值。

自2018年中美贸易摩擦以来,美国加大了对中国高新技术出口的限制,不断扩大实体清单,影响了中国一些科技主导型企业的发展,这从侧面警示了中国在全球供应链中地位的脆弱性。物联网通过传感器把物理世界与数字世界联系起来,实现物与物、物与人的泛在连接,实现对物品和过程的智能化感知、识别和管理。

其中传感器作为数据采集的源头,已经成为各种应用能力所需的数据来源所在。目前中国国内也涌现出了一些传感器芯片重点生产企业,如:高德红外、西人马、士兰微、敏芯微电子、博通、全志科技、大唐微电子、复旦微电子等。

物联网行业产业链区域热力地图:北京和广东物联网企业最密集

从物联网产业链代表性企业的区域分布情况来看,中国物联网产业链重点企业集中于广东、山东、江苏、浙江等发达地区。其中,广东依托其强大的经济实力在物联网领域发展较快,物联网代表性企业最密集。

从物联网产业链代表性企业的区域分布情况来看,中国物联网产业链重点企业集中于广东、北京、上海、浙江、江苏等发达地区。其中,北京和广东依托其强大的经济实力在物联网领域发展较快,物联网代表性企业最密集。

物联网行业代表企业收入规模

从我国物联网行业代表企业2020年收入规模来看,三大运营商中国移动、中国联通和中国电信物联网业务收入规模较大,处于行业领先地位。除此之外,日海智能物联网业务收入也排名在行业前列。

物联网行业代表企业最新投资动向

2020年以来,物联网产业代表性企业的投资动向主要包括拓展业务、通过对子公司增资的方式、与其他公司签订合作协议等方式投资物联网项目。物联网产业代表性企业最新投资动向如下:

——以上数据参考前瞻产业研究院《中国物联网行业细分市场需求与投资机会分析报告》。

物联网就业前景很好,物联网产业具有产业链长、涉及多个产业群的特点,其应用范围几乎覆盖了各行各业。

物联网专业是教育部允许高校增设新专业后,高校申请最多的学校,这也说明了国家对物联网经济的重视和人才培养的迫切性。物联网的产业规模比互联网产业大20倍以上,而物联网技术领域需要的人才每年也将在百万人的量级。

物联网的基本特征从通信对象和过程来看,物与物、人与物之间的信息交互是物联网的核心。物联网的基本特征可概括为整体感知、可靠传输和智能处理。

整体感知—可以利用射频识别、二维码、智能传感器等感知设备感知获取物体的各类信息。

可靠传输—通过对互联网、无线网络的融合,将物体的信息实时、准确地传送,以便信息交流、分享。

智能处理—使用各种智能技术,对感知和传送到的数据、信息进行分析处理,实现监测与控制的智能化。

物联网、大数据及人工智能都是近年来互联网行业比较火热的话题,三者之间具有非常紧密的联系。想探讨物联网、大数据及人工智能之间如何融合,首先需要了解其基本概念。

概念

1、物联网

根据百度百科的解释,物联网(InternetofThings,IoT)是一个基于互联网、传统电信网等的信息承载体,它让所有能够被独立寻址的普通物理对象形成互联互通的网络(万物互联)。物联网网络架构设计由感知层、网络层及应用层组成,分别实现数据采集、数据传输及数据应用的功能。目前,物联网已经广泛应用于智慧医疗、智慧环保、智慧城市、智能家居及物流等领域。

2、大数据

大数据指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。大数据具有体量大(Volume)、及时性(Velocity)、多样性(Variety)、低价值密度(Value)及真实性(Veracity)的“5V”特性。

3、人工智能

人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。目前,人工智能正在改变各行各业的传统模式,作为人工智能分支的机器学习/深度学习已经广泛用于自然语言处理(NLP)、计算机视觉(CV)、机器翻译及推荐系统等领域。

深度融合

物联网、大数据、人工智能三者之间相辅相成,可以形成一个闭环通路。物联网作为智能感知层,主要负责采集现场的数据并将数据上传至分布式数据库中;大数据作为数据存储层,将经过ETL处理后的数据保存到分布式文件系统(HDFS)或数据仓库(HIVE)中;人工智能作为应用层,可利用sparkml或tensorflow实现相关的机器学习或深度学习算法,对存储在HDFS或HIVE中的数据进行数据挖掘。

应用案例

目前,物联网、大数据、人工智能已经广泛用于智慧城市、智慧环保、智慧交通等领域。以智慧环保中的空气预警为例,首先,物联网可以作为智慧感知层,安装在客户现场的空气监测设备采集的空气质量信息通过网络传输数据中心;而后,利用大数据ETL工具(spark、hive)进行数据清洗并存储至分布式数据库/文件系统/数据仓库中;最后,利用人工智能相关技术进行大数据分析(sparkml、tensorflow),预测未来若干天的空气质量,并以此辅助进行科学决策及改善环境。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13198919.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-06-19
下一篇 2023-06-19

发表评论

登录后才能评论

评论列表(0条)

保存