物联网就是物物相连的互联网。
这有两层意思:
其一,物联网的核心和基础仍然是互联网,是在互联网基础上的延伸和扩展的网络;
其二,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通信,也就是物物相息。
物联网通过智能感知、识别技术与普适计算等通信感知技术,广泛应用于网络的融合中,也因此被称为继计算机、互联网之后世界信息产业发展的第三次浪潮。
物联网的应用:
1、智能交通。物联网技术在道路交通方面的应用比较成熟。随着社会车辆越来越普及,交通拥堵甚至瘫痪已成为城市的一大问题。对道路交通状况实时监控并将信息及时传递给驾驶人,让驾驶人及时作出出行调整,有效缓解了交通压力。
2、智能家居。智能家居就是物联网在家庭中的基础应用,随着宽带业务的普及,智能家居产品涉及到方方面面。 家中无人,可利用手机等产品客户端远程 *** 作智能空调,调节室温。
3、公共安全。近年来全球气候异常情况频发,灾害的突发性和危害性进一步加大,网可以实时监测环境的不安全性,情况提前预防、实时预警、及时采取应对措施,降低灾害对人类生命财产的威胁。
我们在讲泛在电力物联网,人工智能的时候,常常会跟大数据,云计算相关联,但我们却忽略了边缘计算。什么是边缘计算呢?边缘计算是指在靠近物或数据源头的一侧,采用网络、计算、存储、应用核心能力为一体的开放平台,就近提供最近端服务。其应用程序在边缘侧发起,产生更快的网络服务响应,满足行业在实时业务、应用智能、安全与隐私保护等方面的基本需求。边缘计算处于物理实体和工业连接之间,或处于物理实体的顶端。
那么边缘计算有什么好处呢?对于物联网而言,边缘计算技术的应用意味着许多控制将通过本地设备实现而无需交由云端,处理过程将在本地边缘计算层完成。可以大大提升处理效率,减轻云端的负荷。由于更加靠近用户,还可为用户提供更快的响应,将需求在边缘端解决。
边缘计算还可以根据现场进行个性化定制,针对不同的用户需求进行功能设计,针对用户的 *** 作习惯制定流程。可以让每一个物联网应用更加切合实际!边缘计算的数据还可以上传到云端,进行大数据整合,更好的分析决策!
在泛在电力物联网领域,边缘计算的应用,可以针对不同场所进行个性化定制功能。在遇到一些情况需要处理的时候可以快速的在现场进行处理,而不是先上传到云端,云端再返回处理,这样可以大大减少反应时间。在一些重大故障需要紧急处理的时候,反应快慢变得尤为重要!物联网,Internet of Things,简称“IoT”,即通过传感器或物理识别装置等感知技术,对物理世界进行感知,通过ICT通信传输技术将数据传输至物联网云处理平台进行计算和处理,实现人与人、人与物、物与物的链接,进而对物理世界进行管理和控制。一句话解释:互联网的升级迭代版,互联网实现人与人的链接,物联网增加人与物理世界的链接;感知物理世界的变化,并对物理世界进一步的管理和控制
萌芽期:(1991年-2004年):1994年美国麻省理工学院Kevin教授提出物联网概念,1995年,比尔盖茨在《未来之路》中构想物物互联,并未引起广泛关注。1999年,麻省理工学院首先提出物联网的定义。2003年,美国《技术评论》将传感网络技术列为未来生活的十大技术之首。
初步发展期:(2005年-2008年):2005年,国际电信联盟(ITU)发布《ITU互联网报告2005:物联网》,2008年第一届国际物联网大会在瑞士苏黎世举行。
高速发展期(2009年-至今):2009年美国政府将新能源和物联网确定为美国国家战略。2009年温家宝总理在无锡视察时提出“感知中国”,无锡率先建立“感知中国”研究中心,中科院、运营商和多所大学建立物联网研究院。中国正式开始物联网行业战略部署。2010年中国政府将物联网列为关键技术,并宣布物联网是长期发展计划的一部分。2015年,欧盟成立物联网创新联盟。2016年,NB-IoT技术即将进入规模商用阶段。2018年6月,5G通信技术成熟化,第一阶段全功能标准化工作完成,进入产业全面冲刺阶段。
总结中国物联网产业发展,大致经历:
第一阶段:智能消费产品的涌现
2012-2015年期间,消费类物联网产品一夜爆发,过后却慢慢消退。包括智能灯泡、智能插座、智能水壶、智能电饭煲等等智能产品出现在市场上。大致思路是将传统硬件产品,添加上Wi-Fi、蓝牙、ZiBbee等无线技术,再结合APP进行控制。这股热潮来的快、去的也快,因为害怕的稳定性和用户体验存在问题,再加上价格比较高,对于消费者而言性价比不高,市场认可度比较低。
第二阶段:底层技术完善
第二阶段相对于上个阶段,技术有更深层次的突破。这个时候涌现了各种各样的针对物联网的技术,比如NB-IoT、LoRa等新型的传输技术、AI算法、智能语音技术等等,边缘计算、智能计算等计算存储技术走上台,传感器产品也更加的智能化,具有更多的功能。
第三阶段:行业级应用兴起
完成技术突破之后,物联网的应用逐渐从早期的消费类应用往企业级应用发展。更多的应用于城市建设、政府政务、各行各业产业当中。
物联网IoT产业架构分四层:感知层、网络层、平台层、应用层;物联网IoT产业链:端——管——边——云——用
随着云端数据处理能力开始下沉,更加贴近数据源头,使得边缘计算成为物联网产业的重要关口;将来将有75%的数据需要在网络的边缘侧分析、处理和存储。因而物联网产业链由之前的“端——管——云——用”发展为现在的“端——管——边——云——用”;
“端”:物联网终端,主要是完成数据采集以及向网络端发送的作用;包含芯片、感知技术(传感器+识别技术)、 *** 作系统;
“管”:管道层,保证通信的作用,无线连接、卫星和量子通信等方式;
“边”:边缘计算,将集中式架构分解成边缘位置的点;
“云”:云平台,主要进行数据的计算和存储;包含云计算平台和AI技术;按厂商类型分:运营商、ICT、互联网和工业制造厂商以及第三方物联网平台;按商业模式分PaaS和本地部署;按照平台功能可以划分:设备管理平台、连接管理平台、应用开发平台和业务分析平台;
“用”:物联网IoT应用层,落地到不同行业应用场景中;三大业务主线:消费性物联网、政策驱动物联网和生产性物联网;(政策驱动物联网和生产性物联网并称产业物联网)
从产业集聚发展情况来看,我国已初步形成以北京—天津、上海—无锡、深圳—广州、重庆—成都为核心的 环渤海、长三角、珠三角、中西部 地区四大物联网产业集聚区的空间布局。
其中, 环渤海地区 凭借丰富的产学研资源和总部优势,成为我国物联网产业重要的研发、设计和生产制造基地; 长三角地区 以上海、无锡双核发展为带动,整体发展比较均衡,在技术研发与产业化、应用推广方面发挥了引领示范作用; 珠三角地区 是国内物联网市场化最成熟、体系最完备的地区,目前已形成了一批自主的、竞争力强的物联网应用技术成果和信息增值服务模式,产业规模领先其他地区; 中西部地区 软件、信息服务、传感器等领域发展迅猛,成为第四大产业基地,且在自然资源和人力资源方面均存在优势,对物联网产业链底端感知层具有一定的促进作用。
产业集聚区的形成有利于产业规模效应凸显,形成产业链;有助于改善协作条件,节约生产成本;而且能更好的发挥核心城市的辐射带动作用,促进区域一体化发展。目前,四大产业集聚区相互独立、各有特色,汇聚了一批具有全国影响力的龙头企业,产业链逐渐完善,研发机构和公共服务等配套体系基本完备。作者:黄还青;华为高级产业发展经理,ECC需求与总体组副主席。
首先我们认为边缘计算的兴起应该是在过去三四年,之所以兴起大背景是因为实体经济的数字化转型。这波实体经济数字化以万物感知、万物互联、万物智能为特征,这三方面的特征仅仅依靠云计算是没办法特别好的解决,比如实时性、带宽、安全、隐私等等一些问题,在这样背景下,边缘计算逐渐兴起。
我们分享几个行业对于边缘计算的需求特征和大背景下浮现出来关于边缘计算的机会。先看一下工业,1工业40以及智能制造大背景下,推动了工业界原来传统的架构重构:云+边缘+设备三层扁平互联架构。在这个过程中,边缘计算为什么有价值?边缘计算核心是解决了传统五层架构里面网络孤岛、数据孤岛与业务孤岛的问题,同时更好的支撑柔性制造,并且带来从技术到商业各个方面价值创新的能力。
2OPC-UA overTSN向下渗透,边缘计算碎片化的问题在工业界尤其明显。比如工业界目前一个比较好的解决方案,能解决边缘计算碎片化的方案。OPC-UA over TSN 原来更多是在PLC之间及以上的层次。去年11月份在 OPC基金会下面成立FLC工作组,工作组目的是 PLC以下的层次如何利用OPC UA over TSN 技术需求,研究明白,协议规范,定义清楚。
其实,工业界大背景下,施耐德这样的巨头已经围绕大的趋势,展开一些 探索 ,我们看到施耐德已经明确了要基于 云+边缘控制+产品 三个层次去重构原有的架构,特意强调边缘控制层的智能化是非常核心的点,提到了边缘计算的主要形态,包括本地设备和边缘云;同时和华为开展持续深入的合作。
智慧城市,从08年IBM提出了智慧地球概念后,智慧城市的建设在全球成为了个热点;17年中国发布了数字中国战略,引爆了新一轮智慧城市的建设,边缘侧拥有最全的诉求,所以新一轮智慧城市的建设需要边缘智能、边缘协同、边缘能力的支撑;同时,5G的发展会极大推动城市的万物互联,这也将极大促进边缘计算产业发展。例如河长巡河场景下,利用边缘计算实时采集河湖动态信息,通过AI辅助进行监测数据处理,污染预警溯源;智慧路灯场景下,借助边缘计算实时监控路灯运行状态,辅助路灯开、关、亮度管理,本地化运营团队进行针对性维护,精准高效;雪亮工程场景下,边缘计算不仅能够进行边缘预处理,剔除“垃圾”信息,减少上传的视频数据,还能够使边缘设备更加“聪明”。
全球主流运营商看重边缘计算产业机会点,都在拓耕边缘计算领域,从管道经营到算力经营,完善2C业务体验,强化2B市场能力。
中国联通致力于构建一个开放的,开源的Edge-Cloud服务PaaS平台,以灵活分配计算,存储,网络和加速资源,旨在加速边缘服务的孵化和推广。
1、发布CUBE-Edge20白皮书;
2、中国联通将大力发展边缘DC,启动全国范围内15个省市的规模试点;
3、主导的《IoT requirements for Edge computing》国际标准项目立项
中国移动将边缘计算上升为公司战略与5G并列。中移动将边缘计算上升为公司战略与5G并列,推动中国移动未来从管道经营(流量变现)扩展到算力经营(服务变现)”
1、成立中国移动边缘计算开放实验室;
2、发布中国移动边缘计算技术白皮书;
3、宣布Pioneer300计划。
美国电信公司AT&T将边缘计算定位其5G战略三大支柱之一,AT&T已经为移动和固定无线应用接入边缘计算,可以使用LTE或5G连接进行部署。主导发起了Akraino开源,通过开源加快边缘计算生态建设和商用部署。
全球移动通信系统协会,简称GSMA,全球移动通信系统协会(GSMA)成立于1987年,是全球移动通信领域的行业组织,目前其成员已包括220个国家的近800家移动运营商以及230多家更为广泛的移动生态系统中的企业,其中包括手机制造商、软件公司、设备供应商、互联网公司以及金融服务、医疗、媒体、交通和公共事业等领域的企业。GSMA认为边缘计算是运营商未来重要发展方向:
1、Edge Cloud如何帮助运营商Cloud VR/AR等新型业务降低部署成本,加快部署速度;
2、边缘计算如何推动当前智慧城市,智能制造中图像处理能力,
GSMA动态:
1、GSMA在MWC2019发布了边缘计算白皮书:Distributed Edge Cloud: Definitions,
Dynamics AndDrivers,
2、GSMA计划通过推动边缘计算典型PoC来加速边缘计算在运营商的应用。
GSMA定义的2大边缘计算形态
运营商边缘计算核心技术:
1、多形态I硬件(边缘云,一体机形态,异构数据处理云化网关等);
2、轻量级云原生PaaS(微服务,Serveless等);
3、安全(物理安全,平台安全,应用安全等)。
边缘计算技术方向往那些方向走?
边缘计算需要与云计算协同,才能最大化增强实现彼此的应用价值,这个得到产业界的广泛认同,但是边云协同的价值和内涵到底是什么,涉及到那些方面的协同?这些问题在产业界一直缺乏共识。去年,ECC产业联盟试图从主要场景出发,初步梳理了边云协同的全视图,我们认为边云协同大体上会涉及三层六类协同,也就是从IaaS 到 PaaS 到SaaS三个层次,边缘侧三个层次和云侧三个层次一定有相互协同工作,落实到具体场景中,不见得所有业务场景都会包括,我们这个六类应该是目前阶段理解边云协同的全视图。
边缘计算正从10走向20,如果说10更偏向概念定义,主要目的是推动产业共识;20则更加关心技术和能力构建,从而促进边缘计算的实践落地。边缘计算20核心观点包括落地形态,我们认为主要是边缘云和云化网关两种形态,当然细分来说还有很多。
边缘云主要提供近现场的综合计算能力,支撑智慧园区、平安城市、智能制造等场景,将中心云的能力拉近到边缘,是下一步云计算创新突破的增长点。
云化网关是企业/行业数据的汇聚节点,是网关设备基于云计算技术的演进,主要通过多样连接、实时处理、云化管理和人工智能等关键能力,边云协同使能行业数字化。
软件平台,一定是引入云架构、云技术,实现端到端实时、协同式智能、可信赖、可动态重置的能力。
硬件平台:以异构计算为主,需要考虑ARM+X86+GPU+NPU+FPGA异构计算能力的支持。
核心特征:边云协同和边缘智能。
从趋势看,边缘计算发展分为三阶段。
第一阶段,这个阶段时期大致是2015年-2017年,概念孵化,产业共识
产业共识:边缘计算及其价值成为产业共识
概念泛化:雾计算、边缘计算、节点计算、移动边缘计算、开放边缘计算
边界不清:OT认为20年前的工业现场PLC即是、海康威视认为智能摄像头即是、思科认为云之下终端之上。
第二阶段,当前就是在第二阶段,2018年到2020年,主要是进一步聚焦及落地 探索
价值落地场景:从泛化概念,逐步聚焦到云边缘、物联网边缘价值场景。
业务本质:云计算在数据中心之外汇聚节点的延伸和演进。“边云协同、边缘智能”为核心能力。
第三阶段是2020年以后,开始规模发展
带来更丰富的应用场景:增值业务(如预测性维护)到控制系统(如vPLC)
以及更广泛的行业覆盖:从制造/运营商/能源到泛工业(如交通、企业、智慧家居等)
边缘计算已经形成产业共识,正从泛化概念走向进一步聚焦及落地 探索 ,未来3~5年是产业发展关键期。“边缘计算”的概念本身并不是一个“新鲜词”。早在2003年,CDN服务商Akamai就与IBM合作推出了最早的“边缘计算”。如果以时间维度看,从亚马逊在2006年推出AWS看作是云计算的起点开始,那么它要比云计算被提出的时间更更加的早。
不过,过去很多年的时间由于技术和应用场景等各种原因,边缘计算一直没有获得太多的关注,直到5G时代的到来,才让一直处在“很边缘”的边缘计算得到了全新的发展良机。
云计算是通过使计算分布在大量的分布式计算机上,而非本地计算机或远程服务器中,企业数据中心的运行将与互联网更相似。这使得企业能够将资源切换到需要的应用上,根据需求访问计算机和存储系统。
云计算vs边缘计算
云计算的不足
随着边缘计算的兴起,在太多场景中需要计算庞大的数据并且得到即时反馈。这些场景开始暴露出云计算的不足,主要有以下几点:大数据的传输问题:据估计,到2020 年,每人每天平均将产生 15GB 的数据。随着越来越多的设备连接到互联网并生成数据,以中心服务器为节点的云计算可能会遇到带宽瓶颈。数据处理的即时性:据统计,无人驾驶汽车每秒产生约 1GB 数据,波音 787 每秒产生的数据超过 5GB;2020 年我国数据储存量达到约 39ZB,其中约 30% 的数据来自于物联网设备的接入。海量数据的即时处理可能会使云计算力不从心。隐私及能耗的问题:云计算将身体可穿戴、医疗、工业制造等设备采集的隐私数据传输到数据中心的路径比较长,容易导致数据丢失或者信息泄露等风险;数据中心的高负载导致的高能耗也是数据中心管理规划的核心问题。
边缘计算的优势和发展
边缘计算的发展前景广阔,被称为“人工智能的最后一公里”,但它还在发展初期,有许多问题需要解决,如:框架的选用,通讯设备和协议的规范,终端设备的标识,更低延迟的需求等。随着 IPv6 及 5G 技术的普及,其中的一些问题将被解决,虽然这是一段不小的历程。相较于云计算,边缘计算有以下这些优势。
优势一:更多的节点来负载流量,使得数据传输速度更快。
优势二:更靠近终端设备,传输更安全,数据处理更即时。
优势三:更分散的节点相比云计算故障所产生的影响更小,还解决了设备散热问题。
两者既有区别,又互相配合上文讲了云计算的缺点以及边缘计算的优点,那么是不是意味着在未来,边缘计算更胜云计算一筹呢?其实不然!云计算是人和计算设备的互动,而边缘计算则属于设备与设备之间的互动,最后再间接服务于人。边缘计算可以处理大量的即时数据,而云计算最后可以访问这些即时数据的历史或者处理结果并做汇总分析。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)