信息安全的重要性是什么智能制造技术?

信息安全的重要性是什么智能制造技术?,第1张

随着人工智能技术的进步,智能化(intelligentization)已经成为21世纪最重要的科技主轴。而智能制造主要的核心技术便是物联网技术与虚实整合系统(Cyber-Physical System,CPS),再结合大数据分析、人工智能及云计算等技术,将生产过程的每一个环节智能化,借此达到定制化的业务目标,以适应外部市场少量多样的需求。
过去的制造概念是追求生产自动化,并以SOP(Standard Operation Procedure)标准作业流程大量生产公版化的产品。而智能制造概念则不然,为因应消费族群的购物观念变动,可快速地定制化生产的制造方式逐渐受到拥戴,这是工业40当中相当重要的核心概念。未来的智能工厂将并不单指工业技术的提升,而是整合了技术、销售以及产品体验等,使得制造、贩售、物流、售后服务等商业概念连为一体,最终建构出一个具有感知意识的智能世界,而「需求定制化」将是智能制造所追求的主要目标之一。
快速、定制化的生产方式是工业40的核心概念
除了需求定制化外,结合大数据分析的智能制造甚至可以通过巨量数据来分析出市场的走向、天气预测、原物料的数量与库存、运输的进程及瑕疵改善等,借此精准拿捏生产量或调度现有资源、减少多余成本与浪费,以此达到生产最佳化。 [1]
工业40的来临,使得世界各国纷纷祭出政策。工业革命的发源地英国早在2008年便提出「高价值制造战略」,鼓励英国本土企业制造更多世界级的高附加价值产品。 2013年更提出「英国工业2050年战略」,为英国在2050年以前的制造业打造一份方针,其中的核心概念便以高度定制化、快速响应消费者需求为主。
同样曾是工业大国的美国也不落人后,2011年联邦政府开始启动「先进制造伙伴联盟」(AMP,Advanced Manufacturing Partnership)政策,同样也是因应旧有制造业概念的不适用所提出的计划,更于2014年提出AMP 20,强调具体实施对策。其中先进制造的核心重点在于,希望藉由智能制造带来的新商业模式,使得设立于国外的厂商可以开始回流。同样的概念也在法国绽开,就在德国正式发表工业40报告后,法国政府也发表了「工业新法国」的计划,主要目的与美国相似。
除了上述老牌工业强国外,日本也提出了诸如「产业重振计划」、「日本工业41J」、「社会50」等政策。而中国身为21世纪的制造大国,在2015年则提出了为期十年的「中国制造2025」计划。金砖四国之一的印度同样跟上工业40的潮流,祭出「印度制造计划」以重整印度的经商环境以及制造产业的问题。 [2]
智能制造伴随而来的安全问题
然而在研拟与建构的过程中,随着系统结构的复杂度提升,网络信息安全风险也伴随而来。在融合物联网、大数据、云计算及人工智能等技术后的场域,将会扩增出大量的资料流空间,而智能制造的主要实行方式,便是以物联网作为架构基础,将之应用于制造产业,形成「工业物联网」(Industrial Internet of Things)体系。经布建后,网络信息安全漏洞的分布率自然会开始上升,潜在威胁便更容易通过缺口影响到工业物联网系统,使得整套系统即便仅有一小部分受到损毁,也会影响整体系统的运作;若遭受到黑客入侵,甚至可以瘫痪整套生产系统,造成庞大的金额损失及商誉的损害。
目前与智能制造相关的国际标准规范有国际自动化学会(International Society of Automation,ISA)与国际电工委员会(International Electrotechnical Commission,IEC)颁布的ISA/IEC 62443系列标准,针对工业化自动控制系统(Industrial Automation Control System,IACS)的政策与流程面、系统安全面、元件开发面制定相关规范与指南。美国国家标准暨技术研究院(National Institute of Standards and Technology,NIST)也颁布了NISTSP800-82,为SCADA(Supervisory Control And Data Acquisition)、DCS(Distributed Control System)、PLC(Programmable Logic Controller )等工业控制系统揭橥了相关的安全指南,除了这项指导手册外,还有诸如NISTIR8200、NISTIR8228等规范都已发布。而欧盟网络信息安全局(European Union Agency for Cybersecurity,ENISA)也针对物联网与网络安全出版许多相关指导建议以及标准。
工业物联网面临的网络信息安全问题与挑战
工业物联网主要专注于M2M(Machine to Machine)、CPS、大数据以及机器学习等技术,也是IT(Information Technology)与OT(Operational Technology)两大技术领域整合的开端。然而IT与OT本身各自早已具有数百种不同的协定与标准,加上物联网本身的复杂特性,将会造成网络安全的责任分配问题。且由于使用生命周期中涉及大量利益相关者,诸如元件供应商可能就有数十间不等,元件分别适用不同的规范或标准,设备又可能因分布在不同的地理位置而适用不同的法律约束,导致工业物联网产生在标准规范上难以统一,造成「技术碎片化」之问题,而这些标准该如何进行整合或协作,将会是首要面临的挑战。 [4]
再者,工业物联网是一项新颖技术,目前仍然在研发及测试阶段,针对过去已在OT场域工作数十年的技术人员该如何建立足够的工业物联网相关网络信息安全意识,挹注合适的人员培训将会是另一项值得研究的课题。
伴随人员安全意识不足的问题,同样也涉及到公司制度层面。目前仍有许多企业对于信息安全的议题不够重视,未来智能制造建构后伴随而来的风险将有别以往,然而企业的高阶管理层对于网络信息安全的认识不足,会是未来对工业物联网的一大挑战。因为进行网络信息安全防护工作较难以察觉甚至量化其效益值,且还需投入相当成本,故管理层容易忽视信息安全这项要素,并不将网络信息安全的重要性与具业务价值的建设并列。这样的弊端并不是因工业40的发展而出现的,而是一个陈旧问题。
对网络信息安全的认识不足会是未来工业物联网的一大挑战
对网络信息安全的认识不足会是未来工业物联网的一大挑战
以上问题属建构阶段所面临的困难,建构的过程中如果没有针对这些问题做出适当的措施,将可能使系统未来承受巨大的网络信息安全风险。而建置成熟的工业物联网即便事先排除了上述困难,也不代表风险就此消失。在大量且丰富的资料流不断相互传输运作之下,一旦发生资料外泄,抑或资料遭到恶意窜改,便会对工业物联网系统造成不良的连锁反应。且智能制造将会使虚拟与实体两个世界做出更紧密的连结,如物联网系统发生网络信息安全事件,对于实体世界的破坏也会相当显著。
由于智能制造的环境会变得更为复杂多端,加上物联网系统本身的互联性,使得攻击面也将扩大许多,除了一些非人为的风险外,还须特别注意人为造成的威胁,其中黑客入侵便是一种典型的状况。不安全的连接端口、久未更新的元件、不完整的更新机制等,都会是黑客可能下手的缺口。尤其传统的工业场域对于更新的接受度相当低落,因为一次更新所引起的停摆将会造成企业亏损,是故对于工业物联网来说,安全的更新会是一项重要的议题。
此外,网络通讯管道如果疏忽了网络信息安全防护,诸如分布式阻断服务攻击(Distributed Denial-of-Service attack,DDoS)、讯息窜改、窃听、植入恶意程式等网络攻击也会是黑客很可能使用的手法,这些攻击都会造成资产的严重破坏或是资料外泄。
场域在转型的过程当中,一些老旧的设备、传统的工业系统也会是一项需要关注的网络信息安全漏洞,在旧有系统的基础上构建新系统后,可能导致过时的保护措施仍然被使用,以及旧有系统中出现多年未被发现的未知漏洞,这可能使攻击者找到一种新的方式来危害系统。 [5]
最后,应用程序在开发和设计上如果没挹注安全开发的观念,软件上的漏洞也将是黑客入侵系统的大门。而硬件设备在设计中若没有将网络信息安全元素纳入,也会是攻击者入侵的缺口。从以上种种示例可以得知,工业物联网可能遭受的攻击面十分广泛,且无论在工业物联网的哪一端进行破坏皆可能瘫痪整体系统,最后造成的损害甚至伤亡将难以估计。 [6]
工业物联网信息安全解决方案
针对智能制造未来将会面临的种种网络信息安全问题,仲至信息具有深度的网络信息安全问题解决能力,具备工业控制系统、连网设备及物联网渗透测试与网络信息安全研究能力的团队。已赢得许多国际奖项,包括2020 Cybersecurity Excellence Awards(网络安全卓越奖)中的6项金奖与1项银奖、亚洲最佳网络信息安全公司金奖等,开发的网络信息安全产品也获多国专利及国际认可。
仲至信息科技取得7个网络信息安全检测项目的ISO 17025认可实验室、亚洲第一个美国CTIA授权的网络信息安全实验室,也是Amazon Alexa授权的网络信息安全检测实验室;目前已发现超过40个全球首发的安全漏洞(CVE),且具备物联网设备、智慧电网、车联网、嵌入式系统、行动App、ICS和SCADA设备的网络信息安全检测技术。
对于工业物联网硬件设备可能会出现的网络信息安全漏洞,仲至信息科技所提供的解决方案包括:
工控产品或系统的软、硬件网络信息安全检测服务,同时提供软件安全开发咨询服务,协助厂商具备软件安全开发能量,满足业界与客户对于软硬件之网络信息安全要求,诸如网通产品、移动装置、安控、智能家电、智能汽车及物联网等连网产品皆适用。
自主研发的产品网络信息安全管理系统、漏洞检测自动化工具,则是提供连网产品于设计、开发、测试及部署阶段的合规自动化安全评估工具,符合IEC 62443、OWASP TOP 10 与CWE/SANS TOP 25 等安全要求,并适用于PLC、ICS、SCADA等智能制造相关之工控元件。
寻求IEC 62443、ISO 27001等顾问咨询服务一站式的网络信息安全解决方案,及合规相关服务,协助厂商快速取得国际标准之证书,以增加客户的信赖度及企业商誉。另提供专业的网络信息安全培训,帮助技术人员建立与工业物联网相关的网络信息安全意识,以因应未来智能制造的建置以及工业40时代的来临。
2020年将会是物联网技术全面布建的阶段。随着科技日新月异,人们的生活也变得越来越便利。也因科技所带来的效益,过去数十年间各企业戮力追赶地将资讯技术深入全球各大领域,却忽略长期稳定运作所须达成的安全要求,一次次重大网络信息安全事故的爆发已经证明,仅靠安装防护软件无法保证组织的安全以及生产系统的营运安全。
未来智能制造的建置架构将比现在大多数的生产架构都要来得更为错综复杂,然而水能载舟、亦能覆舟,一昧地追求创新科技所带来的营利和效果,却忽略背后隐藏的巨大风险,那么网络信息安全威胁终会重蹈覆辙,成为一颗不定时炸d,一但触发,损害势必更胜以往,智能制造所带来的裨益也将化为乌有。
若在危害发生以前便做好完善的网络信息安全管理措施及方案,且人员具备足够的网络信息安全意识,软硬件设备皆在开发时便将资安要素纳入考量,那么智能制造将会是一纸美好的蓝图,也会是值得你我共同努力的未来。
参考资料
[1] >

数字化工厂,智能工厂和智能制造的区别

数字化工厂是在计算机虚拟环境中,对整个生产过程进行仿真、评估和优化,并进一步扩展到整个产品生命周期的新型生产组织方式。是现代数字制造技术与计算机仿真技术相结合的产物,主要作为沟通产品设计和产品制造之间的桥梁。

智能工厂是在数字化工厂的基础上,利用物联网技术和监控技术加强信息管理、服务;提高生产过程可控性、减少生产线人工干预,以及合理计划排程。同时集初步智能手段和智能系统等新兴技术于一体,构建高效、节能、绿色、环保、舒适的人性化工厂。例如在富士通自身的一家工厂当中,量子计算系统让零件分拣作业的行程缩短了45%!例如在和生英钛集团的智能工厂解决方案中的工厂管理软件中,通过制造执行系统、质量管理系统和仓库管理系统等,达到科学管理,提高工作效率!

智能工厂是在数字化工厂基础上的升级版,但是与智能制造还有很大差距。

智能制造系统在制造过程中能进行智能活动,诸如分析、推理、判断、构思和决策等。通过人与智能机器的合作,去扩大、延伸和部分地取代技术专家在制造过程中的脑力劳动。它把制造自动化扩展到柔性化、智能化和高度集成化。

工厂安装室内定位系统有以下好处:

提高安全性:工厂内部存在一些危险区域和危险设备,安装室内定位系统可以实时监控员工位置和活动,及时发现和处理安全问题,从而提高工厂安全性。

提高生产效率:室内定位系统可以实时监控生产设备的运行状态和位置,及时发现和解决生产过程中的问题,提高生产效率和产品质量。

降低管理成本:室内定位系统可以实时监控员工、设备和物料的位置和运动轨迹,从而提高管理效率和减少管理成本。

优化工艺流程:通过对工厂内部物流和设备运动的监控和分析,可以优化工艺流程,提高生产效率和产品质量。

提高员工管理:室内定位系统可以实时监控员工的位置和活动,可以更好地管理员工的出勤情况和工作状态,提高员工管理效率和精准度。

促进智能化管理:室内定位系统可以与其他智能设备和系统进行集成,实现智能化管理和自动化控制,促进工厂的智能化发展。

综上所述,工厂安装室内定位系统可以提高工厂安全性、生产效率、管理效率和精准度,优化工艺流程,降低管理成本,促进工厂智能化发展。

随着当前全球范围内以5G、AI、物联网、云计算和大数据等新一代信息技术为核心的新一轮科技革命和工业改革正在加速推进,作为工业大国的中国也已进入了高速发展中。
制造企业向数字化转型不仅可以助力我国新一代信息技术产业的发展,为工厂提升生产效率,还能实现经济高质量的发展。
因此,在工业40的今天,转型数字化是必然,也是必须的。
然而,在工厂准备转型数字化时,也面临着一系列的问题,执行过程并不是那么顺畅。
数字化愿景不仅只是考虑各项技术,而且还定义了这些技术如何在整个产品生命周期和企业生态圈中相互配合。
阻碍企业制定数字化工厂计划的其他因素还包括机会不定、经济效益不明、投资代价不菲。综合考虑这些因素,企业所需要的不仅仅是一套清晰的愿景,更需要一张“接地气”的数字化攻略。
定制数字化转型目标
很多人会有这样一个问题,都说数字化转型,那转型到什么程度算是成功呢换句话说,数字化转型的目标该如何制定
因为不同行业、不同企业的特点不一样,选择目标也就各有不同。如果一定要说什么地方相同,那就是“企业沉静在数字之中,让数字如血液般在企业内部流动。”
完成数字化转型的企业最理想情况应该是这样的:企业内/外部的所有交互均是基于数据,对于外部任何细微的数据变动,企业能够迅速感知并作出反应。所有企业的决策/考核都是基于客观的数据,所有人的主观猜测和推断均不会影响企业的正常运转。
若是一定要进行客观细分,应当要从这几方面入手:
1领导力转型
如果一把手、总经理、CEO不转型,下边再怎么推都很困难,所以一定要有领导力转型,认识到数字化转型对于整个业务的价值所在。
2信息和数据转型
很重要的一点就是信息和数据产生的收入占总收入的百分比会成为未来企业转型的一个目标,将可能作为考核各部门的一个很重要的目标。
3数字技术的保证
企业数字化转型绝不仅是IT系统的建设和升级,但却离不开IT系统的支撑。除了企业使用的管理和生产软件外,我们还需要一个自动化、实时的大数据分析引擎帮助我们处理大量的数据。同时,集合业务需要远程协助、虚拟现实等技术也都可以逐步引入。这个是我们日常的工作和交流全部数字化,做好转型的技术基础。
4构建新的业务框架
这里的业务框架主要聚焦于企业内部,对于企业内的不同团队、部门乃至子公司,打通期间的数字藩篱,让数据在企业内部以同样的标准流动起来。
5构建新的生态体系
如果说第二点是练好内功,构建生态体系就是打造外部全新的数字化环境。对于一个企业而言,要想影响企业上下游的生态环境是非常大的挑战,但是,一方面数字化环境搭建好之后,上下游的效率会有较大的提升;另一方面,这也是一家企业在行业中的壁垒。
设立试点项目
数字化的经济效益有时并不容易量化,而且在初始阶段,团队只能提供非常有限的技术概念和演示,因此可能导致难以争取到资金和利益相关方的认可。
解决这些问题的手段就是试点,通过它,企业能发现最适合自身的方式,将速赢的成效展现给整个组织并获得它们的认可,进而争取到资金用于大规模的推广。由于数字化工厂可能会给整个劳动力带来深远的变革,所以需要让工人加入到试点工作中。
在一两处生产基地纵向整合从数字化工程设计到以实时数据为支撑的生产规划,是一种可行的试点方案。在主要的生产设备上安装传感器和执行装置,或者使用数据分析来探索预测性维护方案,也能取得初步的成效。
还可以在特定的工厂中实现特定产品线的数字化,将其作为不断学习和优化的契机。当然,企业还可以考虑与初创企业、高校或行业组织等外部的数字化领先者合作,加快数字化创新的步伐。
推动工厂向数字化转型
通向数字化工厂之路是一条转型之路。如同其他转型一样,管理变革及其对员工的影响,是成功的关键。
及早与员工携手合作,对培训和继续教育开展投资,而这些投入会因为数字化工厂所带来的效率提升而被抵消。
数字化环境的培育必须要有领导层的全力支持,高层必须将数字化工厂战略视为工作的重点,摒弃保守主义的姿态,加快项目的审批流程,从而让数字化团队加快推进转型进程。同时,还需要设计简练的汇报渠道,确保数字化团队侧重于各类增值活动而不是疲于应付各类行政要求。
在数字化工厂的深远影响下,企业能够拓展甚至是彻底改变目前的业务模式,不再只是注重生产环节,还能有机会在利润丰厚的售后市场中扩大份额,提升利润率,并进军全新的业务领域。

物联网主要技术。在物联网应用中有三项关键技术为物联网开辟出极为广阔的应用前景:

1、传感器技术:这也是计算机应用中的关键技术。大家都知道,到目前为止绝大部分计算机处理的都是数字信号。自从有计算机以来就需要传感器把模拟信号转换成数字信号计算机才能处理。

2、RFID标签:也是一种传感器技术,RFID技术是融合了无线射频技术和嵌入式技术为一体的综合技术,RFID在自动识别、物品物流管理有着广阔的应用前景,这也是为什么“物流”这个词总是与“物联网”同时出现。

3、嵌入式系统技术:是综合了计算机软硬件、传感器技术、集成电路技术、电子应用技术为一体的复杂技术。经过几十年的演变,以嵌入式系统为特征的智能终端产品随处可见;小到人们身边的MP3,大到航天航空的卫星系统。嵌入式系统正在改变着人们的生活,推动着工业生产以及国防工业的发展。如果把物联网用人体做一个简单比喻,传感器相当于人的眼睛、鼻子、皮肤等感官,网络就是神经系统用来传递信息,嵌入式系统则是人的大脑,在接收到信息后要进行分类处理。这个例子很形象的描述了传感器、嵌入式系统在物联网中的位置与作用。

物联网应用领域。物联网用途广泛,遍及智能交通、环境保护、政府工作、公共安全、平安家居、智能消防、工业监测、环境监测、路灯照明管控、景观照明管控、楼宇照明管控、广场照明管控、老人护理、个人健康、花卉栽培、水系监测、食品溯源、敌情侦查和情报搜集等多个领域。

可以简单地理解为物联网是把我们生活中的物品,比如汽车(车联网)、手环(智能穿戴)、家电(智能家居)、电表水表(智慧能源)等联系起来,让我们可以及时了解物品状态和信息,方便进行管理和控制。万物互联即为物联网。
事实证明,2019 年是物联网技术取得更大进展的一年,尤其是在商业和工业物联网领域。2020年为了展望未来发展、推动工业物联网进步,必然要了解推动这一领域进步的七大趋势。从计算规模到真正边缘计算的价值,从闭环边缘到云计算机器学习等等。正如 Geoffrey Moore 所指出的那样,商业领袖们今天投入重金来开发数据驱动的互联产品系统是有原因的。
物联网正迅速成为企业基础设施的一个必要组成部分,是企业的一项重要资产。传统制造业正在经历着前所未有的转型,物联网、云计算、大数据分析,作为工业物联网和智能制造的核心技术,正在从各个方面改变着工业行业,包括产品的设计、运营、维护,以及供应链管理。通常,即使工厂里采用了以太网联网设备、MES 和 SCADA 系统,大部分硬件设备还是没有接入网络,或仅单向输出信息。随着工业物联网的推进,传统制造企业更需要主动地去尝试和采用新的自动化技术来迎合多变的市场环境和客户需求。
有 86% 的企业目前已经不同程度地应用了工业物联网,其中应用范围最广的行业为交通运输业(93%),其次是石油天然气(89%)和制造业(77%)。约 84% 的企业认同物联网项目具有实际成效,95% 的企业表明工业物联网项目对公司业务影响重大。
对此,图扑物联(IoTopo)应运而生。图扑物联(IoTopo)是基于 B / S 架构的物联组态软件;软件前端界面采用标准 HTML5 开发,支持 2D / 3D 图形组态,支持 MQTT 协议接入,支持 Modbus、OPC UA 等工业通讯协议解析。组态画面可单独发布,支持数据门户定制,可与企业自有平台无缝整合,与用户自有系统整合为一个功能全面的应用平台。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13226212.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-06-23
下一篇 2023-06-23

发表评论

登录后才能评论

评论列表(0条)

保存