有谁知道5G手机上下行频率是多少?

有谁知道5G手机上下行频率是多少?,第1张

我知道啊,3G的四种标准和频段:CDMA2000、WCDMA、TD-SCDMA、WiMAX,1880MHz-1900MHz和2010MHz-2025MHz。 4G的频率和频段是:1880-1900MHz、2320-2370MHz、2575-2635MHz。 5G的频率和频段频段:3300-3400MHz(原则上限室内使用)、3400-3600MHz和4800-5000MHz。我知道啊,3G的四种标准和频段:CDMA2000、WCDMA、TD-SCDMA、WiMAX,1880MHz-1900MHz和2010MHz-2025MHz。 4G的频率和频段是:1880-1900MHz、2320-2370MHz、2575-2635MHz。 5G的频率和频段频段:3300-3400MHz(原则上限室内使用)、3400-3600MHz和4800-5000MHz。我知道啊,3G的四种标准和频段:CDMA2000、WCDMA、TD-SCDMA、WiMAX,1880MHz-1900MHz和2010MHz-2025MHz。 4G的频率和频段是:1880-1900MHz、2320-2370MHz、2575-2635MHz。 5G的频率和频段频段:3300-3400MHz(原则上限室内使用)、3400-3600MHz和4800-5000MHz。我知道啊,3G的四种标准和频段:CDMA2000、WCDMA、TD-SCDMA、WiMAX,1880MHz-1900MHz和2010MHz-2025MHz。 4G的频率和频段是:1880-1900MHz、2320-2370MHz、2575-2635MHz。 5G的频率和频段频段:3300-3400MHz(原则上限室内使用)、3400-3600MHz和4800-5000MHz。我知道啊,3G的四种标准和频段:CDMA2000、WCDMA、TD-SCDMA、WiMAX,1880MHz-1900MHz和2010MHz-2025MHz。 4G的频率和频段是:1880-1900MHz、2320-2370MHz、2575-2635MHz。 5G的频率和频段频段:3300-3400MHz(原则上限室内使用)、3400-3600MHz和4800-5000MHz。我知道啊,3G的四种标准和频段。

TD-LTE E1是一种移动通信标准中的频段,其频率范围为2520-2570 MHz(上行)和2640-2690 MHz(下行),是中国移动等运营商用于4G LTE无线通信网络的频段之一。TD-LTE是一种时间分频多址技术(TDMA),具有较高的频谱效率和数据传输速率,能够满足大规模移动数据服务的需求。E1代表的是该频段的带宽为14MHz。
TD-LTE(Time Division Long-Term Evolution)是一种4G移动通信标准,采用时间分频多址技术,是中国移动等运营商用于4G LTE无线通信网络的主要标准之一。TD-LTE具有较高的频谱效率和数据传输速率,能够满足大规模移动数据服务的需求。在TD-LTE系统中,E1代表的是该频段的带宽为14MHz,相邻的E1频段可以组合成更大的频段,例如3MHz、5MHz、10MHz等。TD-LTE E1频段在中国等国家和地区广泛应用于移动通信、互联网和物联网等领域。

LoRa和NB-IoT都是新兴的低功耗广域网(LPWAN)技术。作为中国目前的两大主流技术,都备受关注。在国家政策的大力支持下,NB-IoT技术发展如日中天。相比之下,由于频段许可问题而沉寂了很长一段时间的LoRa技术则低调得多。那么LoRa和NB-IoT有什么不同呢?它们各自的优势是什么?

不同的商业模式

首先,我们需要明确的是,LoRa和NB-IoT最基本的运营模式截然不同。

NB-IoT是运营商代理建设的网络,业主无需考虑基站部署。NB-IoT可以在通信基站本身的基础上进行改造,不需要很多的工作量就可以进行组网。那么 *** 作员就可以掌握该数据通道进行计费。那么运营商只要掌握了该数据通道就可以轻而易举的进行收费。

但同时,网络拥有者无法控制网络质量。如果存在信号盲区,也不可能对网络进行优化,为盲区信号进行补充。而且,数据的保密性对所有者来说也是无法控制的。

与NB-IoT恰恰相反,LoRa是企业自建网络。业主可以独立控制网络质量,运营数据掌握在业主手中。他们还可以根据业务需要扩展网络。

用户无需依赖运营商即可完成LoRa网络部署,不仅布局更快,成本也更低。在社区、农场、工业园区等封闭区域,特别是NB-IoT信号较弱的室内和地下环境,LORA技术优势就突显出来了。由于LoRa技术的兴起,如果民企想要涉足远距离通信,非授权频段就是一个完美的选择。

不同的工作频段

NB-loT工作在授权频段,也就是专门分配的频段。业主不能在这个频段内发送信号。国内三大运营商:电信、移动和中国联通都参与了NB-IoT,现在华为也在大力推广这一技术。

LoRa在无证频段工作,只能在某些频段工作。NB-IOT必须由运营商提供,并且必须使用运营商的网络。这就是国内运营商支持NB-IOT技术的原因。

不同的运营成本

1 NB-loT由运营商进行网络建设,用户承担NB模块硬件费用和NB-loT运营商的网络租赁费。

2LoRa为自建网络,用户只需承担LoRa模块费用+LoRa基站费用。

模块功耗不同

1、目前NB功耗高于LORA,但具体比较与终端数据接收和发送频率有较大关系;高频应用对NB功耗影响较大,与休眠/唤醒机制关系较大,而LORA受此影响较小。

2、如果是低频采集,比如一个月一次,那么NB的功耗可以保证几年的使用寿命,完全可以支撑应用;如果是高频采集,比如每小时一次,甚至半小时,预计NB的功耗至少是LoRa的3倍以上。

NB-loT的应用场景

(1)共享单车

(2)智能抄表(业主对采集频率不高,对网络可用性没有高要求的)

(3)蓄水/管网监测

(4)智能穿戴系列

(5)智能停车

(6)道路停车检测器

(7)矿区、采掘业、郊区重工业等领域和郊区

(8)区域集中式:例如,大学、普教、园区等场所

LoRa的应用场景

(1)智能抄表(对网络可用性有高要求)

(2)道路泊车检测器

(3)野外郊区作业,如矿业、采掘业、郊区重工业等;

(4)区域集中型(用户希望建设私网)

LoRa与NB-IOT的发展前景

与NB-IOT相比LoRa仍具有一定的优势。一个是自由度,因为NB-IOT依赖于运营商的基础网络建设。在许多情况下,运营商的基础设施不在覆盖范围内,而LoRa是一个自主网络。一些公司不喜欢将数据传输给其他公司,甚至运营商,因此一些公司会选择部署自己的LoRa网络,在安全性方面LoRa更胜一筹。

虽然LoRa的口碑不如NB-IOT,但就资历而言,LoRa绝对比NB-IOT强势得多。

LoRa改变了传输功耗和传输距离的平衡,改变了嵌入式通信领域的局面。给人们一种全新的技术,可以实现远距离、长续航、大系统容量和低成本的硬件。

随着LoRa联盟的推进,LoRa的产业链已经非常成熟。从基础芯片、模块到设备制造,都有相关厂商。在中国,LoRa可能没有NB-IOT那么出名,但在世界上,LoRa是非常受欢迎的。世界上有52家运营商正在部署LoRa网络,100多个国家正在进行试点。

5月8日,工信部发布的关于推进物联网发展的通知中,明确提出要构建完整的NB-IoT产业链,并且提出了NB-IoT的覆盖目标,并且大力扶持NB-IoT的发展。NB-IoT是一个风口,NB-IoT产业链也大有可为,但还想需要网络、芯片模块、平台等共同努力促进物联网发展。

5G到底是什么?

5G的全称是第五代移动通信技术(5th generation mobile networks),

1G(语音通话):第一代(1G)于20世纪70年代末推出,80年代初投入使用。1G网络是利用模拟信号使用类似AMPS和TACS等标准在分布式基站(托管在基站塔上)网络之间“传递”蜂窝用户。

2G(消息传递):在20世纪90年代,2G移动网络催生出第一批数字加密电信,提高了语音质量、数据安全性和数据容量,同时通过使用GSM标准的电路交换来提供有限的数据能力。

3G(有限数据:多媒体、文本、互联网):20世纪90年代末和21世纪初,3G网络通过完全过渡到数据分组交换,引入了具有更快数据传输速度的3G网络,其中一些语音电路交换已经是2G的标准,这使得数据流成为可能,并在2003年推出了第一个商业3G服务,包括移动互联网接入、固定无线接入和视频通话。

4G和LTE(真实数据:动态信息接入,可变设备):4G充分利用全IP组网,并完全依赖分组交换,数据传输速度是3G的10倍。由于4G网络的大带宽优势和极快的网络速度提高了视频数据的质量。LTE网络的普及为移动设备和数据传输设定了通信标准。

而5G相比于4G则增加了高速率、泛在网、低功耗、低时延的特点,从而具备超大网络容量,提供千亿设备的连接能力,满足物联网通信。目前,5G时代定义了以下三大应用场景:

eMBB:增强移动宽带,顾名思义是针对的是大流量移动宽带业务;

URLLC:超高可靠超低时延通信,例如无人驾驶等业务(3G响应为500ms,4G为50ms,5G要求05ms);

mMTC:大连接物联网,针对大规模物联网业务;

而5G标准则被分成了分成了R15、R16两大阶段,其中R15又分为三部分,R15 NR NSA(新空口非独立组网)标准2017年12月完成,R15 NR SA(新空口独立组网)标准2018年6月完成,后边的5G Late Drop于今年6月份冻结,而R16标准完成时间则要到2020年6月,到那个时候,5G所有标准才算完成。R15标准主要是5G组网方式,而R16主要是面向智慧工厂、无人驾驶等垂直领域应用。

如今完成的R15阶段的NSA和SA一直被人所广泛热议。

为什么会有NSA也就是非独立组网出现呢?不同于以往2G/3G/4G整体演进,5G时代核心网、基站被分开了,所以就多出了多种组合方式。R15 Late Drop标准也是为 NSA 增加了更多的组合方式,可以令移动运营商可以更便捷部署5G网络,主要是增加NSA非独立组网模式,转换为5G作为核心网,增加了5G基站为主,4G基站为辅;或者4G基站为主,5G基站为辅两种状况。此外还支持NR-NR双连接,意思就是手机同时连接到两个不同频段上,低频作为覆盖层,高频充当扩容层,既保证了信号覆盖又能提高传输速率。

目前商用的5G手机中只有华为手机支持SA组网,SA组网是未来发展趋势,但并不代表NSA是假5G,目前中国运营商很多都是用的NSA,5G的发展是由NSA向SA过渡的。明年所有手机都会支持NSA/SA,建议大家明年再买!

5G两大方案:Sub-6G和毫米波

5G的建设方式有独立组网和非独立组网两种,那你想要建设什么样的5G,其实也有两种,也就是我们说的5G两大方案:Sub-6G和毫米波。

这两种方案是根据5G所使用的不同频谱来划分的,频谱是频率谱密度的简称,手机通讯信号传输都是通过一定频率传输的。

根据2017年12月发布的 V1500版TS 38104规范,5G NR的频率范围分别定义为不同的FR:FR1与FR2。第一种(FR1)的重心放在6GHz以下的电磁(EM)频谱上(“低到中频段频谱”,也称为“Sub-6”),主要在3GHz 和4 GHz频段。第二种FR2侧重于24~300GHz之间的频段(“高频频谱”或“毫米波”)。

5G NR的频段号以“n”开头,与LTE的频段号以“B”开头不同。目前3GPP指定的5G NR频段如下:

① FR1(Sub-6GHz)范围内:

② FR2(毫米波)范围内:

波长较短的毫米波会产生较窄的波束,从而为数据传输提供更好的分辨率和安全性,且速度快、数据量大,时延小。其次,有更多的毫米波带宽可用,不仅提高了数据传输速度,还避免了低频段存在的拥堵(在研究毫米波频率应用在5G之前,该频段的主要运用在雷达和卫星业务)。5G毫米波生态系统需要大规模的基础建设,但可以获得比4G LTE网络高20倍的数据传输速度。

高通在MWC的展示中,通过运用毫米波技术,达到了463Gbps的网络传输速率,这是一个在4G时代无法想象的快速。

但受制于无线电波的物理特性,毫米波的短波长和窄光束特性让信号分辨率、传输安全性以及传输速度得以增强,但传输距离大大缩减。

根据谷歌对于相同范围内、相同基站数量的5G覆盖测试显示,采用毫米波部署的5G网络,100Mbps速率的可以覆盖116%的人口,在1Gbps的速率下可以覆盖39%的人口;而采用Sub-6频段的5G网络,100Mbps速率的网络可以覆盖574%的人口,在1Gbps的速率下可以覆盖212%的人口。

谷歌测试结果对比,上为毫米波覆盖,下为Sub-6覆盖

可以看到,在Sub-6下运营的5G网络覆盖率是毫米波5倍以上。而且建设毫米波基站,需要大约在电线杆上安装1300万个,将花费4000亿美元,如此才能保证28GHz频段下以每秒100 Mbps速度达到72%的覆盖率、每秒1Gbps的速度达到大约55%的覆盖率。而Sub-6只需要在原有4G基站上加装5G基站即可,大大节省了部署成本。

目前因为美国政府尤其是军方将大量3-4GHz范围内的频段用于军用通信和国防通讯,迫使美国只能选择押注毫米波。

中国选择押注Sub-6G,按3GPP关于5G的频谱范围规范,联通、电信舍弃了之前的频谱资源,换来了目前产业成熟度最高的35GHz资源(3400MHz-3500Mhz分配给中国电信,3500MHz-3600MHz分配给中国联通);移动则在26GHz频段和49GHz频段上持续深耕。

另外,中国虽然押注Sub-6G,但是并没有放弃对毫米波的探索,充分贯彻了鸡蛋不放在一个篮子里的理念。

中美5G建设状况

刚才我们说道,美国5G毫米波存在缺陷,所以目前Sub-6G中的3Ghz和4Ghz之间的频谱波段主导了全球的5G活动,因为相比于毫米波频谱,3Ghz和4Ghz的传播范围得到了改善,能用更少的基站数量提供相同的覆盖范围和性能。

而中国也成为了全球5G的领先者,并且有望成为5G全球经济的领导者,构建5G全球标准:

中国计划部署第一个广泛使用的5G网络,其首批Sub-6网络服务将于2020年投入使用。先发优势可能会推动智能手机和电信设备供应商以及国内半导体和系统供应商的市场大幅增长。因此,中国的互联网公司将为其国内市场开发基于5G速度和低延迟性能的服务和应用程序。随着5G在全球以类似的频段部署,中国的智能手机和互联网应用及服务很可能占据主导地位,即便它们被美国市场排除在外。中国在5G领域的发展,将重现美国在4G领域的辉煌。

在海外,中国一直在与国家和外国公司保持合作,以扩大其5G的影响力。在欧洲,尽管美国官员要求盟友阻止中国公司,华为和中兴仍然正在为个别国家的5G网络提供建设的服务,并签署了多项5G合同。此外,中国在“一带一路”计划中投入了大量时间和资源,包括推动中国建设的网络基础设施,以提供跨越整个路线的连通性。这一策略已经取得了一些成功:在2018年第三季度,华为在全球通信设备市场占有28%的份额,比2015年上升了4个百分点。随着更多地区的5G网络依赖中国通信设备推出,预计华为的市场份额将继续增长。这些努力将使中国能够推广其首选的5G网络标准和规范,并将在未来主导全球的5G产品市场。

而美国还在思考如何完全解决毫米波的缺陷,目前美国试图通过大规模MIMO和波束赋型改善毫米波的传播效率。

大规模MIMO是一种天线阵列,它将极大地扩展设备连接数和数据吞吐量,并将使基站能够容纳更多用户的信号,并显著提高网络的容量(假设存在多个用户射频路径)。波束赋型是一种识别特定用户的技术,该技术可以最有效的把数据传递给特定用户并减少附近用户的干扰。虽然这些技术可以改善毫米波的传播效率,但是在更大范围内保持连接稳定仍然存在挑战。在将毫米波作为一种更通用的无线网络解决方案部署之前,还需要投入大量的时间和研发成本来解决毫米波的传播特性问题。

除此之外,美国还在思考是否要转投Sub-6G方案,跟着中国走。

加速在美国进行5G 6 Sub-6 GHz的部署。向复杂的多频段收发器添加新频段大约需要两年时间,美国将能够通过利用市场上已有的子组件和设备来实现更成熟的频谱使用,例如使用现有的高通产品来实现中国5G系统使用的频段,从而避免花费额外的时间来弥补追赶这两年在5G研究上的落后。

然而即使通过共享频谱的方式,也需要花费5年:

想要允许Sub-6频段的商用,可以重新规划政府的频段或者共享这些频段,但这两个方式的时间都相对过长。清除频谱占用(将现有的用户和系统迁移到频谱的其他部分),然后通过拍卖、直接分配或其他方法将其释放到民用部门所花费的平均时间通常在10年以上。共享频谱是一个稍微快一点的过程,因为它不需要对现有的用户进行彻底的改革,但即使是这样,也要花费5年以上的时间。

可以说目前美国已经陷入了5G的困局之中,而中国在5G的发展上正走得十分稳健。工信部近日表示,目前各地所推进的基本上为非独立组网的5G网络,预计明年我国正式大规模投入建设独立组网的5G网络。

中国信息通信研究院的《5G产业经济贡献》认为,预计2020至2025年,我国5G商用直接带动的经济总产出达106万亿元,间接拉动的经济总产出约248万亿元,5G将直接创造超过300万个就业岗位。

最为重要的是,中国将可能成为全球5G的领导者,重现美国在4G时代的全球经济主导权。

数据来源:美国国防部国防创新委员会发布了《5G生态系统:对美国国防部的风险与机遇》(《THE 5G ECOSYSTEM: RISKS & OPPORTUNITIES FOR DoD》)报告


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13239977.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-06-25
下一篇 2023-06-25

发表评论

登录后才能评论

评论列表(0条)

保存