你知道智慧工厂的五大基本特征吗?

你知道智慧工厂的五大基本特征吗?,第1张

在中国制造2025及工业40信息物理融合系统CPS的支持下,离散制造业需要实现生产设备网络化、生产数据可视化、生产文档无纸化、生产过程透明化、生产现场无人化等先进技术应用,建立基于工业大数据和"互联网"的智能工厂。

最近几年,欧美国家最早针对流程工业提出了"智能工厂"的概念。流程工业智能工厂由商业智能、运营智能、 *** 作智能三个层次组成,由于自身的自动化水平较高,因此实施智能工厂相对比较容易。与流程工业相比,离散制造业首先在底层制造环节由于生产工艺的复杂性,如车、铣、刨、磨、铸、锻、铆、焊对生产设备的智能化要求很高,投资很大。特别是装备制造业、家电、 汽车 、机械、模具、航空航天、消费电子等产品大都要求产品智能化,设计智能。

因此,在中国制造2025及工业40信息物理融合系统CPS的支持下,离散制造业需要实现生产设备网络化、生产数据可视化、生产文档无纸化、生产过程透明化、生产现场无人化等先进技术应用,做到纵向、横向和端到端的集成,以实现优质、高效、低耗、清洁、灵活的生产,从而建立基于工业大数据和"互联网"的智能工厂。

生产设备网络化,实现车间"物联网"

工业物联网的提出给"中国制造2025"、工业40提供了一个新的突破口。物联网是指通过各种信息传感设备,实时采集任何需要监控、连接、互动的物体或过程等各种需要的信息,其目的是实现物与物、物与人,所有的物品与网络的连接,方便识别、管理和控制。传统的工业生产采用M2M(Machineto Machine)的通信模式,实现了设备与设备间的通信,而物联网通过Things to Things的通信方式实现人、设备和系统三者之间的智能化、交互式无缝连接。

在离散制造企业车间,数控车、铣、刨、磨、铸、锻、铆、焊、加工中心等是主要的生产资源。在生产过程中,将所有的设备及工位统一联网管理,使设备与设备之间、设备与计算机之间能够联网通讯,设备与工位人员紧密关联。

如:数控编程人员可以在自己的计算机上进行编程,将加工程序上传至DNC服务器,设备 *** 作人员可以在生产现场通过设备控制器下载所需要的程序,待加工任务完成后,再通过DNC网络将数控程序回传至服务器中,由程序管理员或工艺人员进行比较或归档,整个生产过程实现网络化、追溯化管理。

生产数据可视化,利用大数据分析进行生产决策

"中国制造2025"提出以后,信息化与工业化快速融合,信息技术渗透到了离散制造企业产业链的各个环节,条形码、二维码、RFID、工业传感器、工业自动控制系统、工业物联网、ERP、CAD/CAM/CAE/CAI等技术在离散制造企业中得到广泛应用,尤其是互联网、移动互联网、物联网等新一代信息技术在工业领域的应用,离散制造企业也进入了互联网工业的新的发展阶段,所拥有的数据也日益丰富。离散制造企业生产线处于高速运转,由生产设备所产生、采集和处理的数据量远大于企业中计算机和人工产生的数据,对数据的实时性要求也更高。

在生产现场,每隔几秒就收集一次数据,利用这些数据可以实现很多形式的分析,包括设备开机率、主轴运转率、主轴负载率、运行率、故障率、生产率、设备综合利用率(OEE)、零部件合格率、质量百分比等。首先,在生产工艺改进方面,在生产过程中使用这些大数据,就能分析整个生产流程,了解每个环节是如何执行的。

一旦有某个流程偏离了标准工艺,就会产生一个报警信号,能更快速地发现错误或者瓶颈所在,也就能更容易解决问题。利用大数据技术,还可以对产品的生产过程建立虚拟模型,仿真并优化生产流程,当所有流程和绩效数据都能在系统中重建时,这种透明度将有助于制造企业改进其生产流程。再如,在能耗分析方面,在设备生产过程中利用传感器集中监控所有的生产流程,能够发现能耗的异常或峰值情形,由此便可在生产过程中优化能源的消耗,对所有流程进行分析将会大大降低能耗。

生产文档无纸化,实现高效、绿色制造

构建绿色制造体系,建设绿色工厂,实现生产洁净化、废物资源化、能源低碳化是中国制造2025实现"制造大国"走向"制造强国"的重要战略之一。目前,在离散制造企业中产生繁多的纸质文件,如工艺过程卡片、零件蓝图、三维数模、刀具清单、质量文件、数控程序等等,这些纸质文件大多分散管理,不便于快速查找、集中共享和实时追踪,而且易产生大量的纸张浪费、丢失等。

生产文档进行无纸化管理后,工作人员在生产现场即可快速查询、浏览、下载所需要的生产信息,生产过程中产生的资料能够即时进行归档保存,大幅降低基于纸质文档的人工传递及流转,从而杜绝了文件、数据丢失,进一步提高了生产准备效率和生产作业效率,实现绿色、无纸化生产。

生产过程透明化,智能工厂的"神经"系统

"中国制造2025"明确提出推进制造过程智能化,通过建设智能工厂,促进制造工艺的仿真优化、数字化控制、状态信息实时监测和自适应控制,进而实现整个过程的智能管控。在机械、 汽车 、航空、船舶、轻工、家用电器和电子信息等离散制造行业,企业发展智能制造的核心目的是拓展产品价值空间,侧重从单台设备自动化和产品智能化入手,基于生产效率和产品效能的提升实现价值增长。因此其智能工厂建设模式为推进生产设备(生产线)智能化,通过引进各类符合生产所需的智能装备,建立基于制造执行系统MES的车间级智能生产单元,提高精准制造、敏捷制造、透明制造的能力。

离散制造企业生产现场,MES系统在实现生产过程的自动化、智能化、数字化等方面发挥着巨大作用。首先,MES系统借助信息传递对从订单下达到产品完成的整个生产过程进行优化管理,减少企业内部无附加值活动,有效地指导工厂生产运作过程,提高企业及时交货能力。其次,MES在企业和供应链间以双向交互的形式提供生产活动的基础信息,使计划、生产、资源三者密切配合,从而确保决策者和各级管理者可以在最短的时间内掌握生产现场的变化,做出准确的判断并制定快速的应对措施,保证生产计划得到合理而快速的修正、生产流程畅通、资源充分有效地得到利用,进而最大限度地发挥生产效率。

生产现场无人化,真正做到"无人"工厂

"中国制造2025"推动了工业机器人、机械手臂等智能设备的广泛应用,使工厂无人化制造成为可能。在离散制造企业生产现场,数控加工中心、智能机器人和三坐标测量仪及其他所有柔性化制造单元进行自动化排产调度,工件、物料、刀具进行自动化装卸调度,可以达到无人值守的全自动化生产模式(Lights Out MFG)。在不间断单元自动化生产的情况下,管理生产任务优先和暂缓,远程查看管理单元内的生产状态情况,如果生产中遇到问题,一旦解决,立即恢复自动化生产,整个生产过程无需人工参与,真正实现"无人"智能生产。

实现从制造业大国向制造业强国的"升级","中国制造2025"成为最有力的战略驱动。盖勒普是"中国制造2025"的先行 探索 者和实践者。深度结合当前离散制造业的实际现状,基于全球25年领先技术和中国15年的本地化经验,盖勒普提出了离散制造业智能工厂的五个方向,旨在借助全球先进智能工厂整体解决方案(MES-SFC)这一生产力引擎,打破组织边界,将企业整个生产现场都纳入到管理网络中,正深刻地改变着制造模式、流程乃至整个制造业的结构,这一具有未来竞争力的创新成果将有力推动整个制造业的转型升级,也让离散制造企业得到了独一无二的新技术体验,并为行业树立成功典范。

工业物联网是指在工业中应用物联网技术,实现工业特有的价值增值的技术模式。

所有物联网都是为了实现万物互联,特别是物与物的互联,但是工业物联网又有其专有属性,原因是与工业物联网相对的消费物联网本身的联网密度、联网的实时性、联网物的异质化要求都不高,而工业物联网的要求主要表现在联网密度、联网实时性及联网异质化三个方面。

思考所有问题都需要从宏观到微观的细化过程,工业物联网也不能例外,我认为对工业物联网进行深度思考,需要从以下五个维度进行分析,否则将会要么带来一叶障目,要么带来好高骛远。

首先需要我们思考的问题是,工业物联网的价值、意义和目的是什么;第二个是工业物联网需要连什么的问题,这是一个范围的概念;第三个需要我们思考的是连入物联网的物的层级问题,也就是深度的问题;第四个需要我们思考的是实现物联的价值成本分析;第五个需要我们思考的是如何建设工业物联网。
互联网实现了计算机与计算机的连接,或者说实现了人与人的连接,这个连接带来了人的交互的便利,在这个基础上涌现出很多全新的、颠覆性的商业模式,例如,电子商务、即时通讯,社交媒体等等;而物联网将实现人与物、物与物的连接,同样我们也期望带来全新的、颠覆性的商业模式,甚至更进一步,期望带来人类生活、生产方式的全新的颠覆性的模式。

作为物联网主战场的工业物联网,人们对其的期许是在工业设计、制造、流通环节带来革命性的变革,为传统工业注入新的活力,提供新的势能,驱动工业在更高维度上发展、创新、乃至变革。随着计算、存储能力的提升,特别是大数据、人工智能的发展,任何行业对数据获取手段都提出了前所未有的要求。对数据获取手段的要求主要表现在四个特征,第一是高效性;第二是准确性;第三是实时性;第四是经济型;在当前技术能力下,能够同时满足这四个特征的就是工业物联网,首先,芯片技术已经发展到一个具有较强计算能力的MCU在美元以下,RFID芯片价格甚至已经到美分这个量级,使得工业物联网有了物质基础,同时满足了经济性要求;近三十年的通讯技术的发展,从模拟到数字,从简单调制到复杂调制技术的商用化,使无线通讯可以很廉价地覆盖几百米甚至数公里的范围,满足了数据获取的密集部署要求,同时由于工业物联网的永久在线的特征,使工业物联网满足数据获取的高效性、实时性要求;微电子技术在近年也发生了突飞猛进的发展,不论在价格上还是在进度上都有了长足的突破,满足了数据获取的准确性。

总而言之,工业物联网的出现是在以下几个条件成熟时涌现出来的不可逆转的趋势:

1、快速变化的市场需要数据支撑,产生了市场对数据获取的急切要求;

2、MCU的发展使得计算能力快速提升;

3、以调制技术为核心的通讯技术发展为联网建立的管道基础;

4、传感技术,特别是以MEMS为标志的微电子技术的发展给予感知世界提供的保证;

工业物联网不是规划出来的,是各种技术与需求发展进化的产物,是生活、生产、经济发展到一定高度后自然而然出现的,是在需求的驱动下,众多行业创新带了的自然产物。

通过工业物联网,可以把传统经济中不可数字化之物数字化,可以把传统不可数字化之行为数字化,可以把传统不可能变为可能,甚至变为容易获得、解决的方案。
这个问题是第一个问题的延续,如果不考虑经济性,那么我们可以说工业物联网连接一切可连接之物,但是,当我们在做一个务实的、有价值的方案时就不能不考虑可行性及经济性,那么工业物联网连什么呢?我们认为这是一个从哪里来到哪里去的问题,我们通过上面对价值、意义和目的分析可知,我们应该从目的反推,一切从目的出发,时刻盯紧企业需要弥补的最关键环节,例如,如果对量化OEE有需求,那么我们就要连接设备状态;如果要减少在制品,那么我们就要对在制品进行追踪;如果能源消耗对企业是重中之重,那么我们就要把能效物联化,等等。世界上不存在同样的两片树叶,同样地,世界上也不存在同样的两个企业,我们只能对企业本身进行深入分析,紧紧聚焦于企业价值,在保证经济性的基础上,确定工业物联网的实施范围方案。联网范围一个核心点是连入物的属性,也就是说我们通过分析连入物的属性与企业建设工业物联网目标的耦合度,决定需要实施工业物联网的广度。
通过分析工业物联网连什么后,我们得到了连入物的内容,接下来需要我们决定是对每个/每类连入物我们该数字化哪些属性,这里遇到工业物联网特有的一个障碍,需要连入工业物联网的物的可连通性问题, 特别是在设备互联时,可连通性表现的特别突出,例如,有的设备具有开放的通讯协议和可用的通讯接口,有的设备不开放协议等等,那么可连通性就是对方案供应商的很大的考验,我们的经验是有四种方案可供选择:

1、使用设备开放的协议;

2、使用设备自带的传感器;

3、添加新的传感器;

4、改变观察侧面及维度,使用全新的采集模式;

其中第四条,改变观察的侧面和维度,使用全新的连接方式是使用第一性原理,避开设备不开放协议或接口的阻碍,避开被设备供应商牵着鼻子走的方向,从本质上获取数据。例如:通过能效检测获得设备的使用状态,通过震动传感分析设备部件的故障、甚至是转速等,只要通过第一性原理从你需要的信息入手,而不是被动地从设备可以提供的数据入手来提供物联解决方案的方式。直接把我们需要的信息做为目标,观察除了直接连接设备外,我们还能够如何获得需要的信息,因为只有我们获得的数据能够与设备提供的数据在信息上能够“同构”即可。例如,我们可以在我们的物联设备上安装一个震动传感器,从传感器获得的数据中,我们即得到了设备是否开机,又得到了是否启动工作,同时还得到设备的转速。如果不用第一性原理,而是硬要跟设备互联,那至少要采集三个数据,并且未必设备能够给你。这就是典型的边缘计算的案例,边缘计算的计算规则一定要具有定制能力,可以说边缘计算一定是一个知识容器,可以方便地把客户、厂家,甚至是第三方的知识融入的容器,我们开发的支持脚本的设备已经具有了初步的边缘计算的功能,我们需要在这个方面继续加大支持力度。

所以,通过分析企业价值和物的可连通性,我们就可以明确定义需要连入物层级,也就明确了连入物的连接深度;

在连入物联网的物的层级中一个重要的概念是管理粒度,对于制造业来说,连入物的管理粒度大概分为如下几个层级:

1、传感级;

2、设备级;

3、产线级;

4、车间级;

5、企业级;

也就是说我们要在经济性可行的前提下定义数据获取的粒度。理论上讲,细粒度一定比粗粒度更好,更有价值,但是当加入成本分析后,可能并不一定粒度越细越好,需要按照各种制约因素找到一个平衡点。
价值成本永远在企业行为中持有权值最高的赞同或者否决的一票,通过前三项分析,我们仅剩下最后一个问题没有解决,这也是关乎价值成本的关键:管理粒度问题,我们到底需要在多细的粒度下进行管理?这带来了一个哲学问题:世界是不是需要黑盒子。什么意思呢?当我们确定一个管理粒度后,比管理粒度更细的信息将被隐藏在黑盒子中,这个黑盒子将成为我们分析深度或者认知深度的制约因素和约束条件。我们可以通过价值成本分析来找到这个平衡点,从而明确黑盒子的大小,并最终确定连入工业物联网的物的特性。
我们的期许是工业物联网建设的价值观,其他一起都是方法论。首先,我们在规划物联网时要本着既要有高瞻远瞩,又要有务实可行的精神。在思考黑盒子的大小时我们要高瞻远瞩,设计方案尽可能地以黑盒子尽量小为目标,而实施方案则按照价值成本分析选择合适的黑盒子的大小,也就是选择合适的管理粒度,从而保证投入收益的平衡,甚至我们可以把黑盒子尽量定义的大些,用以验证工业物联网的可行性,最大可能地降低工业物联网实施的风险。

总之,我们应该从以几个方案来确定工业物联网的建设原则:

1、期望获得什么结果?

2、期望用什么方式获得想要的结果?

3、需要信息基础提供什么?

4、工业物联网是否能够获得这些信息?

5、工业物联网如何获得这些信息?

6、获得这些信息的性价比如何?

7、回归分析,评估预期结果是否符合经济利益?

8、落地实施。

是指将信息技术、网络技术和智能技术应用于工业领域、给工业注入“智慧”的综合技术。它突出了采用计算机技术模拟人在制造过程中和产品使 用过程中的智力活动,以进行分析、推理、判断、构思和决策,从而去扩大延伸和 部分替代人类专家的脑力劳动,实现知识密集型生产和决策自动化。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13269648.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-07-05
下一篇 2023-07-05

发表评论

登录后才能评论

评论列表(0条)

保存